
Network Formation Games



Network Formation Games

◼ NFGs model distinct ways in which selfish 
agents might create and evaluate networks

◼ We’ll see two models:
◼ Global Connection Game
◼ Local Connection Game

◼ Both models aim to capture two competing 
issues: players want
◼ to minimize the cost they incur in building the 

network
◼ to ensure that the network provides them with a 

high quality of service



Motivations

◼ NFGs can be used to model:
◼ social network formation (edge 

represent social relations)

◼ how subnetworks connect in computer 
networks

◼ formation of networks connecting 
users to each other for downloading 
files (P2P networks)



Setting

◼ What is a stable network?
◼ we use a NE as the solution concept
◼ we refer to networks corresponding to Nash 

Equilibria as being stable

◼ How to evaluate the overall quality of a 
network?
◼ we consider the social cost: the sum of players’ 

costs

◼ Our goal: to bound the efficiency loss 
resulting from stability



Global Connection Game

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, T. Roughgarden,
The Price of Stability for Network Design with Fair Cost Allocation, FOCS’04



The model

◼ G=(V,E): directed graph

◼ ce: non-negative cost of the edge e  E

◼ k players

◼ player i has a source node si and a sink node ti

◼ player i’s goal: to build a network in which ti is 
reacheable from si while paying as little as 
possible

◼ Strategy for player i: a path Pi from si to ti



The model
◼ Given a strategy vector S, the constructed network 

will be N(S)= i Pi 

◼ The cost of the constructed network will be shared 
among all players as follows:

costi(S) =  ce/ke(S)
ePi

ke(S): number of players whose path contains e

this cost-sharing scheme is called 
fair or Shapley cost-sharing mechanism

sometimes we write ke instead of ke(S) 
when S is clear from the context



Remind
◼ We use Nash equilibrium (NE) as the solution concept

◼ A strategy vector S is a NE if no player has convenience to 
change its strategy

◼ Given a strategy vector S, N(S) is stable if S is a NE

◼ To evaluate the overall quality of a network, we consider 
the social cost, i.e. the sum of all players’ costs

◼ a network is optimal or socially optimal if it minimizes the 
social cost

cost(S)=i costi(S)
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Remind
◼ We use Nash equilibrium (NE) as the solution concept

◼ A strategy vector S is a NE if no player has convenience to 
change its strategy

◼ Given a strategy vector S, N(S) is stable if S is a NE

◼ To evaluate the overall quality of a network, we consider 
the social cost, i.e. the sum of all players’ costs

◼ a network is optimal or socially optimal if it minimizes the 
social cost

cost(S)=i costi(S)

Notice: cost(S)=eN(S)ce
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N(S)

cost1=7
cost2=6

the optimal network is a 
cheapest subgraph of G
containg a path from si 
to ti, for each i
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an example
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what is the socially
optimal network? is it stable?

…yes!

cost1= 6
cost2= 10

social cost
of the network

16

cost of the social 
optimum: 13



one more example
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one more example

optimal network has cost 12

cost1=7
cost2=5

is it stable?
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one more example

the social cost is 13

cost1=5
cost2=8

is it stable? …yes!

…no!, player 1 can decrease its cost
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one more example

the social cost is 12.5

cost1=5
cost2=7.5

…a better NE…
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Addressed issues

◼ Does a stable network always exist?
◼ Can we bound the price of anarchy (PoA)?
◼ Can we bound the price of stability (PoS)?
◼ Does the repeated version of the game 

always converge to a stable network?



PoA and PoS

for a given network G, we define:

PoA of the 
game in G 

= max
S s.t.

S is a NE

cost(S)
cost(S*)

G

GS* : socially 
optimum for G

PoS of the 
game in G

= min
S s.t.

S is a NE

cost(S)
cost(S*)

G

GS* 

S

social 
cost

NEs
strategy
profiles

GS* 

S

social 
cost

NEs
strategy
profiles



PoA and PoS

PoA of the game = max
G

PoA in G 

PoS of the game = max
G

PoS in G 

we want to bound PoA and PoS in the worst case:



some notations

we use: 
x=(x1,x2,…,xk);   x-i=(x1,…,xi-1,xi+1,…,xk);  x=(x-i,xi)

G: a weighted directed network

cost or length of a path  in G 
from a node u to a node v : e ce

distance in G from 
a node u to a node v

length of any shortest 
path in G from u to v

dG(u,v): :



Price of Anarchy



Price of Anarchy: a lower 
bound

s1,…,sk t1,…,tk

k

1

optimal network has cost 1

best NE: all players use the lower edge

worst NE: all players use the upper edge

PoS in G is 1

PoA in G is k 

☺

G

PoA of the
 game is  k



The price of anarchy in the global connection
game with k players is at most k

Theorem

proof
S: a NE            S*: a strategy profile minimizing the social cost
for each player i, 
 let  i be a shortest path in G from si to ti

costi(S) costi(S-i, i)
we have

 dG(si,ti)  cost(S*)

N(S*)
si

ti



The price of anarchy in the global connection
game with k players is at most k

Theorem

proof
S: a NE            S*: a strategy profile minimizing the social cost
for each player i, 
 let  i be a shortest path in G from si to ti

costi(S) costi(S-i, i)
we have

 dG(si,ti)  cost(S*)

N(S*)

cost(S)=i costi(S)  k cost(S*)

si

ti

: any path in N(S*)
from si to ti

cost of cost(S*)dG(si,ti) 



Price of Stability & 
potential function method



Price of Stability: a lower bound
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The optimal solution has a cost of 1+

is it stable?

Price of Stability: a lower bound
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1+. . .

1 1/2 1/(k-1) 1/k1/3

0 0 0 0 0

s1 sks2 s3
sk-1

t1,…,tk

>o: small value

…no! player k-1 can decrease its cost…

is it stable?

Price of Stability: a lower bound



1+. . .

1 1/2 1/(k-1) 1/k1/3

0 0 0 0 0

s1 sks2 s3
sk-1

t1,…,tk

>o: small value

the only stable network

social cost:  1/j = Hk  ln k + 1      k-th harmonic number
j=1

k

Price of Stability: a lower bound

the optimal solution 
has a cost of 1+

PoS of the 
game is  Hk 



Any instance of the global connection game has 
a pure Nash equilibrium, and better response
dynamic always converges

Theorem

The price of stability in the global connection
game with k players is at most Hk , the k-th
harmonic number

Theorem

To prove them we use the 
Potential function method 



For any finite game, an exact potential function  is a 
function that maps every strategy vector S to some real 
value and satisfies the following condition:

Definition

S=(S1,…,Sk), S’iSi, let S’=(S-i,S’i), then

(S)-(S’) = costi(S)-costi(S’)

A game that posses an exact potential function 
is called potential game

Notation: 
x=(x1,x2,…,xk);   x-i=(x1,…,xi-1,xi+1,…,xk);  x=(x-i,xi)



Every potential game has at least one pure Nash 
equilibrium, namely the strategy vector S that 
minimizes (S)

Theorem

proof

consider any move by a player i that results in a new 
strategy vector S’

we have:

(S)-(S’) = costi(S)-costi(S’)

 0

costi(S)  costi(S’)

player i cannot 
decrease its cost, 
thus S is a NE



In any finite potential game, better response dynamics 
always converge to a Nash equilibrium

Theorem

proof

better response dynamics simulate local search on :
 1. each move strictly decreases 
 2. finite number of solutions

Note: in our game, a best response can be computed in 
polynomial time



Suppose that we have a potential game with potential 
function , and assume that for any outcome S we have

Theorem

proof
Let S’ be the strategy vector minimizing 

we have:

(S’)  (S*) 

cost(S)/A  (S)  B cost(S)

for some A,B>0. Then the price of stability is at most AB

Let S* be the strategy vector minimizing the social cost

 B cost(S*) cost(S’)/A 



…turning our attention to 
the global connection game…

Let  be the following function mapping any strategy 
vector S to a real value:

(S) = eE e(S)

where

e(S)= ce Hke(S)

Hk=  1/j        k-th harmonic number
j=1

k

[we define H0 = 0]



Let S=(P1,…,Pk), let P’i be an alternative path for some 
player i, and define a new strategy vector S’=(S-i,P’i).
Then: 

Lemma 1

Lemma 2

(S) - (S’) = costi(S) – costi(S’)

cost(S)  (S)  Hk cost(S)

For any strategy vector S, we have:

…from which we have:
PoS of the 
game is  Hk



Lemma 2

cost(S)  (S)  Hk cost(S)

For any strategy vector S, we have:

proof

(S) = ce Hke(S)

= 
eN(S)

eE

ce Hke(S)

1  ke(S)  k   for eN(S)

cost(S) 

 
eN(S)

ce Hk = Hkcost(S)



(proof of Lemma 1)

for each ePi  Pi

si ti

Pi

Pi
’

’

e

term e of costi ()  & potential e  remain the same



(proof of Lemma 1)

for each ePi \ Pi

si ti

Pi

Pi
’

’

e

term e of costi ()  increases by ce/(ke(S)+1)

potential e increases from ce (1 + ½ +  . . . +       )ke(S)
1

to ce (1 + ½ +  . . . +        +        )ke(S)
1

ke(S)+1
1

e =  ce/(ke(S)+1)



(proof of Lemma 1)

for each ePi \ Pi

si ti

Pi

Pi
’

’

e

term e of costi ()  decreases by ce/ ke(S)

potential e decreases from ce (1 + ½ +  . . . +        +        )ke(S)-1
1

to ce (1 + ½ +  . . . +        )1

e = - ce/ke(S)

ke(S)
1

ke(S)-1



Given an instance of a GC Game and a value C, it is NP-
complete to determine if a game has a Nash equilibrium 
of cost at most C.

Theorem

proof

Reduction from 3-dimensional matching problem



3-dimensional matching problem

◼ Input: 
◼ disjoint sets X, Y, Z, each 

of size n
◼ a set T  XYZ of 

ordered triples

◼ Question: 
◼ does there exist a set of n 

triples in T so that each 
element of XYZ is 
contained in exactly one of 
these triples?

X Y Z



3-dimensional matching problem

◼ Input: 
◼ disjoint sets X, Y, Z, each 

of size n
◼ a set T  XYZ of 

ordered triples

◼ Question: 
◼ does there exist a set of n 

triples in T so that each 
element of XYZ is 
contained in exactly one of 
these triples?

X Y Z



the reduction

s1 s3ns2 si

X Y Z

T

3 3 3

edges of cost 0

There is a 3D matching if and only if there is a NE of 
cost at most C=3n



the reduction

s1 s3ns2 si

X Y Z

T

3 3 3

edges of cost 0

Assume there is a 3D matching.

S: strategy profile in which each player choose a path passing  
    through the triple of the matching it belongs to



the reduction

s1 s3ns2 si

X Y Z

T

3 3 3

edges of cost 0

Assume there is a 3D matching.

S: strategy profile in which each player choose a path passing  
    through the triple of the matching it belongs to

cost(S)= 3n

S is a NE



the reduction

s1 s3ns2 si

X Y Z

T

3 3 3

edges of cost 0

Y
Assume there is a NE of cost 3n

N(S) uses at most n edges of cost 3

then, the edge of cost 3 are exactly n

…and they define a set of triples that must be a 3D-matching

each edge of cost 3 can “serve” at most 3 players



What is the PoS of the 
game for undirected 

networks?



PoS for undirected graphs: State of the art UB LB

[FOCS’04] 

Hn (1-Θ(1/n4)) Hn 

[CIAC’13] 

Hn/2+ε 

[MFCS’14] [FOCS’04] 

1.778 

[WAOA’09] 

1.826

[SAGT’10] 

2.245

one single terminal (multicast)

+ all sources (broadcast)

[IPL’09] 

O(log n/loglog n) 

[ICALP’06] 

O(loglog n) 

[EC’06] 

O(logloglog n) 

[FOCS’13] 

O(1) 

[SAGT’10] 

1.818



Max-cut game

◼ G=(V,E): undirected graph

◼ Nodes are (selfish) players

◼ Strategy Su of u is a color {red, 
green}

◼ player u’s payoff in S (to 
maximize):
◼ pu(S)=|{(u,v)E : Su ≠ Sv}|

social welfare of 
strategy vector S  

u pu(S)= 
2 #edges crossing 
the red-green cut



Max-cut game

does a Nash Equilibrium
always exist?

how bad a Nash 
Equilibrium

Can be?

does the repeated 
game always 

converge to a 
Nash Equilibrium?



…let’s play Max-cut game
on Petersen Graph

…is it a NE?
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…let’s play Max-cut game
on Petersen Graph

…is it a NE?



…let’s play Max-cut game
on Petersen Graph

…is it a NE?

…yes!

# of edges crossing 
the cut is 12 



Show that:
(i)  Max-cut game is a potential game
(ii)  PoS is 1
(iii) PoA  ½
(iv)  there is an instance of the game having a NE with 

social welfare of ½ the social optimum

Exercise
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