Network Formation Games

Network Formation Games

- NFGs model distinct ways in which selfish agents might create and evaluate networks
- We'll see two models:
 - Global Connection Game
 - Local Connection Game
- Both models aim to capture two competing issues: players want
 - to minimize the cost they incur in building the network
 - to ensure that the network provides them with a high quality of service

Motivations

NFGs can be used to model:

- social network formation (edge represent social relations)
- how subnetworks connect in computer networks
- formation of networks connecting users to each other for downloading files (P2P networks)

Setting

- What is a stable network?
 - we use a NE as the solution concept
 - we refer to networks corresponding to Nash Equilibria as being stable
- How to evaluate the overall quality of a network?
 - we consider the social cost: the sum of players' costs
- Our goal: to bound the efficiency loss resulting from stability

Global Connection Game

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, T. Roughgarden, The Price of Stability for Network Design with Fair Cost Allocation, FOCS'04

The model

- G=(V,E): directed graph
- c_e : non-negative cost of the edge $e \in E$
- k players
- player i has a source node s_i and a sink node t_i
- player i's goal: to build a network in which t_i is reacheable from s_i while paying as little as possible
- Strategy for player i: a path P_i from s_i to t_i

The model

- Given a strategy vector S, the constructed network will be N(S)= $\cup_i P_i$
- The cost of the constructed network will be shared among all players as follows:

$$cost_i(S) = \sum_{e \in P_i} c_e / k_e(S)$$

 $k_e(S)$: number of players whose path contains e

sometimes we write k_e instead of $k_e(S)$ when S is clear from the context

this cost-sharing scheme is called fair or Shapley cost-sharing mechanism

Remind

- We use Nash equilibrium (NE) as the solution concept
- A strategy vector 5 is a NE if no player has convenience to change its strategy
- Given a strategy vector S, N(S) is stable if S is a NE
- To evaluate the overall quality of a network, we consider the social cost, i.e. the sum of all players' costs

 $cost(S)=\Sigma_i cost_i(S)$

a network is optimal or socially optimal if it minimizes the social cost

Remind

- We use Nash equilibrium (NE) as the solution concept
- A strategy vector S is a NE if no player has convenience to change its strategy
- Given a strategy vector S, N(S) is stable if S is a NE
- To evaluate the overall quality of a network, we consider the social cost, i.e. the sum of all players' costs

 $cost(S)=\Sigma_i cost_i(S)$

a network is optimal or socially optimal if it minimizes the social cost

the optimal network is a cheapest subgraph of G containg a path from s_i to t_i , for each i

 $cost_1=7$ $cost_2=6$

an example

what is the socially optimal network?

an example

cost₁=7 cost₂=6

social cost of the network 13

what is the socially optimal network?

cost of the social optimum: 13

is it stable?

...no!

 $cost_1 = 6$ $cost_2 = 11$

social cost of the network 17

what is the socially optimal network?

cost of the social optimum: 13

is it stable?

...no!

 $cost_1 = 6$ $cost_2 = 10$

social cost of the network 16

what is the socially optimal network?

cost of the social optimum: 13

is it stable?

...yes!

one more example

...no!, player 1 can decrease its cost cost₁=5 cost₂=8

is it stable? ...yes!

the social cost is 13

the social cost is 12.5

Addressed issues

- Does a stable network always exist?
- Can we bound the price of anarchy (PoA)?
- Can we bound the price of stability (PoS)?
- Does the repeated version of the game always converge to a stable network?

PoA and PoS S^{*}_G : socially optimum for G for a given network G, we define: social cost S PoA of the = max $\frac{cost(S)}{cost(S_G^*)}$ game in G S s.t. strategy NEs profiles S is a NE S^{*}_G social cost <u>cost(S)</u> cost(S*) PoS of the= mingame in GS s.t.strategy S is a NE NEs profiles

S^{*}

PoA and PoS

```
we want to bound PoA and PoS in the worst case:
```

```
PoA of the game = max PoA in G
G
PoS of the game = max PoS in G
G
```

some notations

we use: x=($x_1, x_2, ..., x_k$); x_{-i} =($x_1, ..., x_{i-1}, x_{i+1}, ..., x_k$); x=(x_{-i}, x_i)

G: a weighted directed network cost or length of a path π in G: $\sum_{e \in \pi} c_e$ from a node u to a node v

 $d_G(u,v)$: distance in G from : length of any shortest a node u to a node v : path in G from u to v

Price of Anarchy

Price of Anarchy: a lower bound

optimal network has cost 1

best NE: all players use the lower edge

worst NE: all players use the upper edge

The price of anarchy in the global connection game with k players is at most k

proof

S: a NE S*: a strategy profile minimizing the social cost for each player i,

let π_i be a shortest path in G from s_i to t_i

we have

 $cost_i(S) \leq cost_i(S_{-i}, \pi_i) \leq d_G(s_i, t_i) \leq cost(S^*)$

The price of anarchy in the global connection game with k players is at most k

proof

S: a NE S*: a strategy profile minimizing the social cost for each player i,

let π_i be a shortest path in G from s_i to t_i

we have

 $cost_i(S) \leq cost_i(S_{-i}, \pi_i) \leq d_G(s_i, t_i) \leq cost(S^*)$

 $cost(S)=\Sigma_i cost_i(S) \le k cost(S^*)$

Price of Stability & potential function method

E>0: small value

E>0: small value

The optimal solution has a cost of $1+\varepsilon$

E>0: small value

...no! player k can decrease its cost...

E>0: small value

...no! player k-1 can decrease its cost...

E>0: small value

social cost: $\sum_{j=1}^{k} 1/j = H_k \le \ln k + 1$ k-th harmonic number

the optimal solution has a cost of $1+\epsilon$

PoS of the game is $\geq H_{k}$

Any instance of the global connection game has a pure Nash equilibrium, and better response dynamic always converges

The price of stability in the global connection game with k players is at most H_k , the k-th harmonic number

To prove them we use the *Potential function method*

Notation: $x=(x_1,x_2,...,x_k); x_{-i}=(x_1,...,x_{i-1},x_{i+1},...,x_k); x=(x_{-i},x_i)$

Definition

For any finite game, an *exact potential function* Φ is a function that maps every strategy vector S to some real value and satisfies the following condition:

$$\forall S=(S_1,...,S_k), S'_i \neq S_i, let S'=(S_{-i},S'_i), then$$

 $\Phi(S)-\Phi(S') = cost_i(S)-cost_i(S')$

A game that posses an exact potential function is called *potential game*

Every potential game has at least one pure Nash equilibrium, namely the strategy vector S that minimizes $\Phi(S)$

proof

consider any move by a player i that results in a new strategy vector S'

we have:

 $cost_i(S) \leq cost_i(S')$

$$\Phi(S)-\Phi(S') = cost_i(S)-cost_i(S')$$
$$\leq 0$$
 play

player i cannot decrease its cost, thus S is a NE

In any finite potential game, better response dynamics always converge to a Nash equilibrium

proof

better response dynamics simulate local search on Φ :

- 1. each move strictly decreases Φ
- 2. finite number of solutions

Note: in our game, a best response can be computed in polynomial time

Suppose that we have a potential game with potential function Φ , and assume that for any outcome S we have $cost(S)/A \le \Phi(S) \le B cost(S)$

for some A,B>O. Then the price of stability is at most AB

proof Let S' be the strategy vector minimizing Φ Let S* be the strategy vector minimizing the social cost

we have:

 $cost(S')/A \le \Phi(S') \le \Phi(S^*) \le B cost(S^*)$

...turning our attention to the global connection game...

Let Φ be the following function mapping any strategy vector S to a real value:

$$\Phi(S) = \Sigma_{e \in E} \Phi_e(S)$$

where

$$\Phi_{e}(S) = c_{e} H_{k_{e}(S)}$$

 $H_{k} = \sum_{j=1}^{k} 1/j$ k-th harmonic number [we define $H_{0} = 0$]

Lemma 1

Let $S=(P_1,...,P_k)$, let P'_i be an alternative path for some player i, and define a new strategy vector $S'=(S_{-i},P'_i)$. Then:

$$\Phi(S) - \Phi(S') = cost_i(S) - cost_i(S')$$

Lemma 2

For any strategy vector S, we have:

 $cost(S) \le \Phi(S) \le H_k cost(S)$

...from which we have:

Lemma 2

For any strategy vector S, we have:

$$cost(S) \le \Phi(S) \le H_k cost(S)$$

proof

$$\begin{aligned} \mathsf{cost}(\mathsf{S}) &\leq \Phi(\mathsf{S}) = \sum_{e \in \mathsf{E}} \mathsf{c}_e \ \mathsf{H}_{\mathsf{k}_e(\mathsf{S})} \\ &= \sum_{e \in \mathsf{N}(\mathsf{S})} \mathsf{c}_e \ \mathsf{H}_{\mathsf{k}_e(\mathsf{S})} \leq \sum_{e \in \mathsf{N}(\mathsf{S})} \mathsf{c}_e \ \mathsf{H}_{\mathsf{k}} \ = \mathsf{H}_{\mathsf{k}}\mathsf{cost}(\mathsf{S}) \end{aligned}$$

 $1 \leq k_e(S) \leq k$ for $e \in N(S)$

(proof of Lemma 1)

for each $\textbf{e}{\in}P_i {\,\cap\,} P_i'$

term e of $cost_i$ () & potential Φ_e remain the same

(proof of Lemma 1)

for each $e \in P'_i \setminus P_i$

term e of $cost_i$ () increases by $c_e/(k_e(S)+1)$

potential
$$\Phi_e$$
 increases from $C_e \left(1 + \frac{1}{2} + \ldots + \frac{1}{k_e(S)}\right)$
to $C_e \left(1 + \frac{1}{2} + \ldots + \frac{1}{k_e(S)} + \frac{1}{k_e(S)+1}\right)$

 $\implies \Delta \Phi_e = c_e / (k_e(S) + 1)$

(proof of Lemma 1)

for each $e \in P_i \setminus P'_i$

term e of $cost_i$ () decreases by $c_e / k_e(S)$

potential Φ_e decreases from $C_e \left(1 + \frac{1}{2} + \dots + \frac{1}{k_e(S)-1} + \frac{1}{k_e(S)}\right)$ to $C_e \left(1 + \frac{1}{2} + \dots + \frac{1}{k_e(S)-1}\right)$

$$\rightarrow \Delta \Phi_e = -c_e/k_e(S)$$

Given an instance of a GC Game and a value C, it is NPcomplete to determine if a game has a Nash equilibrium of cost at most C.

proof

Reduction from 3-dimensional matching problem

3-dimensional matching problem

- Input:
 - disjoint sets X, Y, Z, each of size n
 - a set T
 X×Y×Z of ordered triples
- Question:
 - does there exist a set of n triples in T so that each element of XUYUZ is contained in exactly one of these triples?

3-dimensional matching problem

- Input:
 - disjoint sets X, Y, Z, each of size n
 - a set T
 X×Y×Z of ordered triples
- Question:
 - does there exist a set of n triples in T so that each element of XUYUZ is contained in exactly one of these triples?

There is a 3D matching if and only if there is a NE of cost at most C=3n

Assume there is a 3D matching.

S: strategy profile in which each player choose a path passing through the triple of the matching it belongs to

Assume there is a 3D matching.

S: strategy profile in which each player choose a path passing through the triple of the matching it belongs to

cost(S)= 3n

<mark>S</mark> is a NE

Assume there is a NE of cost $\leq 3n$

N(S) uses at most n edges of cost 3

each edge of cost 3 can "serve" at most 3 players

then, the edge of cost 3 are exactly n

...and they define a set of triples that must be a 3D-matching

What is the PoS of the game for undirected networks?

1.778 1.826 2.245 $H_{n/2}+\epsilon (1-\Theta(1/n^4)) H_n H_n$

one single terminal (multicast) + all sources (broadcast)

Max-cut game

- G=(V,E): undirected graph
- Nodes are (selfish) players
- Strategy S_u of u is a color {red, green}
- player u's payoff in S (to maximize):
 - $p_u(S) = |\{(u,v) \in E : S_u \neq S_v\}|$

Max-cut game

does a Nash Equilibrium always exist?

how bad a Nash Equilibrium Can be?

does the repeated game always converge to a Nash Equilibrium?

...is it a NE?

...yes!

of edges crossing the cut is 12

Exercise

Show that:
(i) Max-cut game is a potential game
(ii) PoS is 1
(iii) PoA ≥ 1/2
(iv) there is an instance of the game having a NE with social welfare of 1/2 the social optimum