Network Formation Games



Network Formation Games

= NFGs model distinct ways in which selfish
agents might create and evaluate networks
s We'll see two models:
= Global Connection Game
= Local Connection Game
= Both models aim to capture two competing
issues: players want

= to minimize the cost they incur in building the
network

= To ensure that the network provides them with a
high quality of service



Motivations

s NFGs can be used to model:

= social network formation (edge
represent social relations)

= how subnetworks connect in computer
networks

= formation of networks connecting

users to each other for downloading
files (P2P networks)



Setting

s What is a stable network?

= we use a NE as the solution concept
= we refer to networks corresponding to Nash
Equilibria as being stable
= How to evaluate the overall quality of a
network?

= we consider the social cost: the sum of players'’
costs

= Our goal: to bound the efficiency loss
resulting from stability



Global Connection Game

E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, T. Roughgarden,
The Price of Stability for Network Design with Fair Cost Allocation, FOCS'04



The model

G=(V,E): directed graph

C.: hon-negative cost of the edge e € E

k players

player i has a source node s; and a sink node t

player i's goal: to build a network in which t; is
reacheable from s; while paying as little as
possible

Strategy for player i: a path P; from s; to t,



The model

= Given a strategy vector S, the constructed network
will be N(S)= U P.

s The cost of the constructed network will be shared
among all players as follows:

cost(S) =e§P.ce/ke(5)
k.(S): number of players whose path contains e

sometimes we write k, instead of k,(S)
when S is clear from the context

this cost-sharing scheme is called
fair or Shapley cost-sharing mechanism



Remind

We use Nash equilibrium (NE) as the solution concept

A strategy vector S is a NE if no player has convenience to
change its strategy

Given a strategy vector S, N(S) is stable if S is a NE

To evaluate the overall quality of a network, we consider
the social cost, i.e. the sum of all players' costs

cost(S)=2. costi(S)
a network is optimal or socially optimal if it minimizes the
social cost




Remind

We use Nash equilibrium (NE) as the solution concept

A strategy vector S is a NE if no player has convenience to
change its strategy

Given a strategy vector S, N(S) is stable if S is a NE

To evaluate the overall quality of a network, we consider

the social cost, i.e. the sum of all players' costs
cost(S)=2. costi(S)

a network is optimal or socially optimal if it minimizes the

social cost

. the optimal network is a
Notice: coS'I'(S):ZeeN(S)Ce cheapest subgraph of &
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G 8 to t;, for each i
2 _~®T
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3132 —® 1 cos‘rizé
N(S) ‘ t,




an example

what is the socially
optimal network?
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an example
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one more example




one more example

optimal network has cost 12

COST1:7
COST2:5

is it stable?



one more example

..nol, player 1 can decrease its cost

COST1:5
cost,=8

is it stable? ..yes!

the social cost is 13



one more example

..a better NE...

COST1:5
COST2:7.5

the social cost is 12.5



Addressed issues

= Does a stable network always exist?
= Can we bound the price of anarchy (PoA)?
= Can we bound the price of stability (PoS)?

» Does the repeated version of the game
always converge to a stable network?



PoA and PoS

for a given network G, we define:

PoA of the = max ccooss‘rT((SS*))

game inG S s.t. G
SisaNE

PoS of the = min CCO°SST*((SS,?)

game in G S s.t. G
SisaNE

Sg + socially
optimum for G
socialy
cos
S
strategy
Es| profiles
36
socialy
cos
strategy
S| profiles
S
S*



PoA and PoS

we want to bound PoA and PoS in the worst case:

PoA of the game = max PoA in G
G

PoS of the game = max PoSinG
G



some notations

we use.
x:(XI,XZ,m'Xk),' X_i:(xl,...,Xi_l,xi_,_l,...,xk); XZ(X_i,Xi)

G: a weighted directed network

cost or length of a path tin G, Y

from a node u to a node v een Ce

d.(Uv): distance in G from . length of any shortest
G\="7" anode utoanodev pathinG fromutov



Price of Anarchy



Price of Anarchy: a lower

bound

Sy,..,Sk

optimal network has cost 1

best NE: all players use the lower edge

G

T,

=)

worst NE: all players use the upper edge ‘

=)

PoA of the
game is > k

PoSinGis1 ()
PoAinGisk &



Theorem

The price of anarchy in the global connection
game with k players is at most k

proof
S:aNE S*: a strategy profile minimizing the social cost
for each player i,

let 7; be a shortest path in G from s; to t;

we have
cost(S) <cost (S, ) <dg(s;,t;) < cost(S*)

N(S*) o'



Theorem

The price of anarchy in the global connection
game with k players is at most k

proof
S:aNE S*: a strategy profile minimizing the social cost

for each player i,
let w; be a shortest path in G from s; to t;

we have
cost(S) <cost (S, ) <dg(s;,t;) < cost(S*)
N(S*) X m: any path in N(S*)
from s, to t,

T, dg(s;, 1) <cost ofm <cost(S*)

=)

cost(S)=X. cost(S) < k cost(S5*)



Price of Stability &
potential function method



Price of Stability: a lower bound

£0: small value

LEPROA )

1+¢




Price of Stability: a lower bound

£0: small value

LEPROA )

1+¢

The optimal solution has a cost of 1+¢

Is it stable?
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£0: small value

LEPROA )

1+¢

..nol player k can decrease its cost...

Is it stable?



Price of Stability: a lower bound

£0: small value

1+¢

..nol player k-1 can decrease its cost...

Is it stable?



Price of Stability: a lower bound

£0: small value

LETRA )
1 1/ 1/(k-1) 1/k
S S, Sk-1 Sk l+¢
o) 0 0 Q
the only stable network

k
social cost: JZI 1/j=H,<Ink+1  k-th harmonic number

the optimal solution =) PoS of the
has a cost of 1+¢ game is > H,




Theorem

Any instance of the global connection game has
a pure Nash equilibrium, and better response
dynamic always converges

Theorem

The price of stability in the global connection
game with k players is at most H, , the k-th
harmonic number

To prove them we use the
Potential function method




Notation:
X=(X1, X0, X1 ) Xo=(Xqe X 1. XX )s X=(X1,X0)

Definition

For any finite game, an exact potential function @ is a
function that maps every strategy vector S to some real
value and satisfies the following condition:

vS=(S,,..,S.), S'#S,, let S'=(5.,,S"), then

D(S)-D(S') = cost(S)-costi(S)

A game that posses an exact potential function
is called potential game



Theorem

Every potential game has at least one pure Nash
equilibrium, namely the strategy vector S that
minimizes ®(S)

proof

consider any move by a player i that results in a new
strategy vector S

we have:

\CD(S)—(D(S')) = cost.(S)-cost(S)

Y

<0 player i cannot

m) cost(S)<cost(S) mm fﬁj;‘esasl::ril EOST,




Theorem

In any finite potential game, better response dynamics
always converge to a Nash equilibrium

proof

better response dynamics simulate local search on @:
1. each move strictly decreases @
2. finite number of solutions

Note: in our game, a best response can be computed in
polynomial time




Theorem

Suppose that we have a potential game with potential
function ®, and assume that for any outcome S we have

cost(S)/A < ©(S) < B cost(S)
for some A,B>0. Then the price of stability is at most AB

proof
Let S’ be the strategy vector minimizing ®
Let S* be the strategy vector minimizing the social cost

we have:

cost(S')/ A <D(S') < d(S*) < B cost(5*)




..furning our attention to
the global connection game...

Let ® be the following function mapping any strategy
vector S to a real value:

(D(S) = ZeeE (De(s)
where

®,(S)= c. Hy (s

K
H,= J21 1/ k-th harmonic number
[we define Hy= O]



Lemma 1

Let S=(P,,..,P.), let P'; be an alternative path for some
player i, and define a new strategy vector S'=(S,,P").
Then:

D(S) - ®(S') = cost,(S) - cost(S')

Lemma 2

For any strategy vector S, we have:

cost(S) < d(S) < H, cost(S)

PoS of the

..from which we have: game is < H,




Lemma 2

For any strategy vector S, we have:

cost(S) < ®(S) < H, cost(S)

proof
cost(S) <P(S) = ZECe er(S)

=2C er(S) < 2C, Hk = HkCOST(S)
ecN(S) ecN(S)

1<k,(S)<k foreeN(S)




(proof of Lemma 1)

Si
for each ecP,~ P,

term e of cost;() & potential ®, remain the same



(proof of Lemma 1)

for each ecP; \ P,
term e of cost;() increases by c,/(k.(S)+1)

. . 1 1
potential @, increases from C, (1 +2+ ... F k.(5) )
1 1 1
to Ce (1 + 2 + ... F ke(S) +ke(5)+1)

- AD, = C/(k,(S)+1)



Si
for each ecP; \ P;
term e of cost;() decreases by c./ k,(S)

1

potential ®, decreases from C, (1 ++ ...

1

to Ce(1+§+

- AD,=-c/K(S)

(proof of Lemma 1)

l__ 4

1
HTGERTOR,

+

1
k(5)-1 )




Theorem

Given an instance of a GC Game and a value C, it is NP-
complete to determine if a game has a Nash equilibrium
of cost at most C.

proof

Reduction from 3-dimensional matching problem




3-dimensional matching problem

= Input:
= disjoint sets X, Y, Z, each
of size n

s aset T < XxYxZ of
ordered triples

= Question:
= does there exist a set of n
triples in T so that each
element of XuYuUZ is

contained in exactly one of
these triples?




3-dimensional matching problem

= Input:
= disjoint sets X, Y, Z, each
of size n

s aset T < XxYxZ of
ordered triples

= Question:
= does there exist a set of n
triples in T so that each
element of XuYuZ is

contained in exactly one of
these triples?




the reduction

edges of cost O

e

S1 S S S3n
X Y V4

There is a 3D matching if and only if there is a NE of
cost at most C=3n



the reduction

edges of cost O

e

i S3n
X Y Z
Assume there is a 3D matching.

S: strategy profile in which each player choose a path passing
through the triple of the matching it belongs to




the reduction

edges of cost O

e

i S3n

X Y Z
Assume there is a 3D matching.

S: strategy profile in which each player choose a path passing
through the triple of the matching it belongs to

cost(S)= 3n
SisaNE




the reduction

edges of cost O

e

i S3n

X Y Z
Assume there is a NE of cost <3n

N(S) uses at most n edges of cost 3
each edge of cost 3 can "serve” at most 3 players

then, the edge of cost 3 are exactly n

..and they define a set of triples that must be a 3D-matching




What is the PoS of the
game for undirected
networks?



PoS for undirected graphs: State of the art O UB @LB

[FOCS'04] [WAOA'09] [SAGT'10] [MFCS'14] [CIAC'13] [FOCS'04]
O O O O O O—
1778 1826 2.245 Hp/o+€ (1-0(1/nH)) H, H,

one single terminal (multicast)
+ all sources (broadcast)

[SAGT'10] [FOCS'13] [EC'06] [ICALP'06] [IPL'09]
@ O O O O
1.818 O(1) O(logloglog n) O(loglog n) O(log n/loglog n)




Max-cut game

G=(V,E): undirected graph
Nodes are (selfish) players
Strategy S, of u is a color {red,
green}

player u's payoff in S (o
maximize):

= pu(S):=[{(uv)eE: S, 2 S}

social welfare of
strategy vector S
Z,py(S)=
2 #edges crossing
the red-green cut




Max-cut game

does a Nash Equilibrium
always exist?

how bad a Nash
Equilibrium
Can be?

does the repeated
game always
converge o a

Nash Equilibrium?



..let's play Max-cut game
on Petersen Graph

.is it a NE?
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..let's play Max-cut game
on Petersen Graph

.is it a NE?




..let's play Max-cut game
on Petersen Graph

.is it a NE?

..yes|

# of edges crossing
the cut is 12



Exercise

Show that:

(i) Max-cut game is a potential game

(i) PoSis 1

(iii) PoA > 3

(iv) there is an instance of the game having a NE with
social welfare of 3 the social optimum
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