
Combinatorial Auction

A single item auction

t1=10

t2=12

t3=7

r1=11

r2=10

Social-choice function:
the winner should be the
guy having in mind the
highest value for the

painting

The mechanism tells to players:
(1) How the item will be allocated

(i.e., who will be the winner),
depending on the received bids

(2) The payment the winner has to
return, as a function of the

received bids

ti: is the maximum amount of money
player i is willing to pay for the painting

If player i wins and has to pay p
its utility is ui=ti-p

ri: is the amount of
money player i bids

(in a sealed
envelope) for the

painting

r3=7

Conbinatorial auction
t1 =20

t2=15

t3=6

f(t): the set WF
with the highest

total value

the mechanism decides
the set of winners and the
corresponding payments

Each player wants a bundle of objects

ti: value player i is willing to pay for
its bundle

if player i gets the bundle at price p
his utility is ui=ti-p

F={ W{1,…,N} : winners in W
are compatible}

r1=20

r2=16

r3=7

Combinatorial Auction (CA)
problem – single-minded case

◼ Input:
◼ n buyers, m indivisible objects

◼ each buyer i:
◼ Wants a subset Si of the objects

◼ has a value ti for Si

◼ Solution:
◼ W{1,…,n}, such that for every

i,jW, with ij, SiSj=

◼ Measure (to maximize):

◼ Total value of W: iW ti

CA game

◼ each buyer i is selfish
◼ Only buyer i knows ti (while Si is public)
◼ We want to compute a “good” solution w.r.t. the true

values
◼ We do it by designing a mechanism
◼ Our mechanism:

◼ Asks each buyer to report its value ri

◼ Computes a solution using an output algorithm g(٠)
◼ takes payments pi from buyer i using some payment function p

More formally
◼ Type of agent buyer i:

◼ ti: value of Si

◼ Intuition: ti is the maximum value buyer i is
willing to pay for Si

◼ Buyer i’s valuation of WF:
◼ vi(ti,W)= ti if iW, 0 otherwise

◼ SCF: a good allocation of the objects w.r.t.
the true values

How to design a truthful
mechanism for the problem?

Notice that:
the (true) total value of a feasible W is:

iW ti = i vi(ti,W)

the problem is utilitarian!

…VCG mechanisms apply

VCG mechanism

◼ M= <g(r), p(x)>:

◼ g(r): x*=arg maxxF j vj(rj,x)

◼ pi(r): for each i:

pi (r)=j≠i vj(rj,g(r-i)) -j≠i vj(rj,x*)

g(r) has to compute an
optimal solution…

…can we do that?

Approximating CA problem within a factor better than
m1/2- is NP-hard, for any fixed >0.

Theorem

proof

Reduction from maximum independent set problem

Maximum Independent Set (IS)
problem

◼ Input:
◼ a graph G=(V,E)

◼ Solution:
◼ UV, such that no two

vertices in U are
jointed by an edge

◼ Measure:
◼ Cardinality of U

Approximating IS problem within a factor better than
n1- is NP-hard, for any fixed >0.

Theorem (J. Håstad, 2002)

the reduction

CA instance has a solution of total value  k if and only if
there is an IS of size  k

G=(V,E)
each edge is an object
each node i is a buyer with:

Si: set of edges incident to i
ti=1

since m  n2

A solution of value k for the instance of CA with OptCA/k m½-

for some >0

A solution of value k for the instance of IS and hence:
would imply

OptIS/k = OptCA/k m½-  n1-2

How to design a truthful
mechanism for the problem?

Notice that:
the (true) total value of a feasible W is:

i vi(ti,W)

the problem is utilitarian!

…but a VCG mechanism is not computable
in polynomial time!

what can we do?
…fortunately, our problem is one parameter!

A problem is binary demand (BD) if

1. ai‘s type is a single parameter ti

2. ai‘s valuation is of the form:

vi(ti,o)= ti wi(o),

wi(o){0,1} work load for ai in o

when wi(o)=1 we’ll say that ai is
selected in o

An algorithm g() for a maximization BD problem is
monotone if

 agent ai, and for every r-i=(r1,…,ri-1,ri+1,…,rN),
wi(g(r-i,ri)) is of the form:

Definition

1

Өi(r-i) ri

Өi(r-i){+}: threshold

payment from ai is:
pi(r)= Өi(r-i)

◼ Our goal: to design a mechanism
satisfying:

1. g(٠) is monotone

2. Solution returned by g(٠) is a “good”
solution, i.e. an approximated solution

3. g(٠) and p(٠) computable in polynomial
time

A greedy m-approximation
algorithm

1. reorder (and rename) the bids such that

2. W  ; X  

3. for i=1 to n do
1. if SiX= then W  W{i}; X  XSi

4. return W

r1/|S1|  r2/|S2|  …  rn/|Sn|

The algorithm g() is monotone

Lemma

proof

It suffices to prove that, for any selected agent i, we have
that i is still selected when it raises its bid

Increasing ri can only move bidder i up in the greedy
order, making it easier to win

r1/|S1|  …  ri/|Si|  …  rn/|Sn|

How much can bidder i decrease
its bid before being non-

selected?

Computing the payments

…we have to compute for each selected bidder i
its threshold value

Computing payment pi

r1/|S1|  …  ri/|Si|  …  rn/|Sn|

Consider the greedy order without i

index j
Use the greedy algorithm to find
the smallest index j (if any) such that:

1. j is selected
2. SjSi pi= rj |Si|/|Sj|

pi= 0 if j doesn’t exist

Let OPT be an optimal solution for CA problem, and let
W be the solution computed by the algorithm, then

Lemma

iW

iOPT ri  m iW ri

proof

OPTi={jOPT : j i and SjSi}

iW OPTi=OPT

since
it suffices to prove: 

jOPTi

rj  m ri iW


jOPTi

rj  m ri
iW


iW

rj 
jOPT

 m ri
iW

Let OPT be an optimal solution for CA problem, and let
W be the solution computed by the algorithm, then

Lemma

iW

iOPT ri  m iW ri

proof

OPTi={jOPT : j i and SjSi}

iW OPTi=OPT

since
it suffices to prove: 

jOPTi

rj  m ri

crucial observation
for greedy order we have

ri |Sj|

iW

jOPTi
|Si|

rj 

proof

we can bound
Cauchy–Schwarz

inequality

iW


jOPTi

rj  
jOPTi

ri

|Si|
|Sj|


jOPTi

|Sj| |OPTi| 
jOPTi

|Sj|

≤|Si|
≤ m

 m ri

 |Si|m

Si

j1 j2 j3

OPTi={j1 j2 j3}

S S S

Cauchy–Schwarz inequality

yj=|Sj|
xj=1

n= |OPTi| for j=1,…,|OPTi|

…in our case…

1/2 1/2

	Slide 1: Combinatorial Auction
	Slide 2: A single item auction
	Slide 3: Conbinatorial auction
	Slide 4: Combinatorial Auction (CA) problem – single-minded case
	Slide 5: CA game
	Slide 6: More formally
	Slide 7: How to design a truthful mechanism for the problem?
	Slide 8: VCG mechanism
	Slide 9
	Slide 10: Maximum Independent Set (IS) problem
	Slide 11: the reduction
	Slide 12: How to design a truthful mechanism for the problem?
	Slide 13: A problem is binary demand (BD) if
	Slide 14
	Slide 15
	Slide 16: A greedy m-approximation algorithm
	Slide 17
	Slide 18: Computing the payments
	Slide 19: Computing payment pi
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Cauchy–Schwarz inequality

