
String Matching

Problem: Given an alphabet Σ, a text T ∈ Σ∗ and a pattern
P ∈ Σ∗, find some occurrence/all occurrences of P in T .

String Matching

T = Bart played darts at the party

P = art

Σ = {A, B, . . . , Z, a, b, . . . , z, }

Problem: Given an alphabet Σ, a text T ∈ Σ∗ and a pattern
P ∈ Σ∗, find some occurrence/all occurrences of P in T .

String Matching

T = Bart played darts at the party

P = art

Σ = {A, B, . . . , Z, a, b, . . . , z, }

Problem: Given an alphabet Σ, a text T ∈ Σ∗ and a pattern
P ∈ Σ∗, find some occurrence/all occurrences of P in T .

String Matching

T = Bart played darts at the party

P = art

T = ACGTGCTTGCAGTGTGCATTACCTGAGTGC...

P = GTG

Σ = {A, B, . . . , Z, a, b, . . . , z, }

Σ = {A, C, G, T}

Problem: Given an alphabet Σ, a text T ∈ Σ∗ and a pattern
P ∈ Σ∗, find some occurrence/all occurrences of P in T .

String Matching

T = Bart played darts at the party

P = art

T = ACGTGCTTGCAGTGTGCATTACCTGAGTGC...

P = GTG

Σ = {A, B, . . . , Z, a, b, . . . , z, }

Σ = {A, C, G, T}

String Matching

One-shot:

• Both the text and the pattern are part of the input

• Algorithm design problem

String Matching

• The text is static and known beforehand
(can be preprocessed)

• We want to answer each query as quickly as possible

• Patterns are revealed on-demand

One-shot:

Repeated:

• Both the text and the pattern are part of the input

• Algorithm design problem

• Data structure design problem

String Matching

• The text is static and known beforehand
(can be preprocessed)

• We want to answer each query as quickly as possible

• Patterns are revealed on-demand

One-shot:

Repeated:

• Both the text and the pattern are part of the input

• Algorithm design problem

• Data structure design problem

Tries

Tries (Prounounced as“try”)

Data structure to store a dynamic collection of k strings over
an alphabet Σ

• Insert(T): add T to the collection of strings

• Delete(T): remove T from the collection of strings

• Find(P): return whether P is in the collection

Σ = {A, D, E, G, R, S, T}

RAGE RAGSRAD RATERADAR RAG{ }, , , , ,

Tries (Prounounced as“try”)

Data structure to store a dynamic collection of k strings over
an alphabet Σ

• Insert(T): add T to the collection of strings

• Delete(T): remove T from the collection of strings

• Find(P): return whether P is in the collection

Σ = {A, D, E, G, R, S, T}

RAGE RAGSRAD RATERADAR RAG{ }, , , , ,

Obs: A string comparison requires time O(string length).
Binary searching requires time O(max string length · log k)

Tries (Prounounced as“try”)

Data structure to store a dynamic collection of k strings over
an alphabet Σ

• Insert(T): add T to the collection of strings

• Delete(T): remove T from the collection of strings

• Find(P): return whether P is in the collection

Σ = {A, D, E, G, R, S, T}

RAGE RAGSRAD RATERADAR RAG{ }, , , , ,

• Count/return the strings in the collection that start with P

Tries (Prounounced as“try”)

Data structure to store a dynamic collection of k strings over
an alphabet Σ

• Insert(T): add T to the collection of strings

• Delete(T): remove T from the collection of strings

• Find(P): return whether P is in the collection

• Predecessor(T): return the largest string in the collection
that is “not smaller than” T (w.r.t. the lexicopraphic order)

Σ = {A, D, E, G, R, S, T}

RAGE RAGSRAD RATERADAR RAG{ }, , , , ,

• Count/return the strings in the collection that start with P

Tries (Prounounced as“try”)

Data structure to store a dynamic collection of k strings over
an alphabet Σ

• Insert(T): add T to the collection of strings

• Delete(T): remove T from the collection of strings

• Find(P): return whether P is in the collection

• Predecessor(T): return the largest string in the collection
that is “not smaller than” T (w.r.t. the lexicopraphic order)

We will only focus on the static case

Σ = {A, D, E, G, R, S, T}

RAGE RAGSRAD RATERADAR RAG{ }, , , , ,

• Count/return the strings in the collection that start with P

Tries
Pretend that each string ends with a special “end marker” symbol $

RAGE RAGSRAD RATERADAR RAG

Tries
Pretend that each string ends with a special “end marker” symbol $

RAGE RAGSRAD RATE$ $ $RADAR $ RAG$ $

E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $RADAR $ RAG$ $

A

R

$

$

E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $RADAR $ RAG$ $

A

R

$

$

E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of $s in each subtree

1

1 1 11

11

2

1 1 1

3

1

3

1

1

1

6

6

6

E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of $s in each subtree
— Pointers to the first/last leaf in the subtree

E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of $s in each subtree
— Pointers to the first/last leaf in the subtree

RAGE RATE

— Pointers from leaves to strings

RADAR

E

Tries

R

A

D G T

$
E
S

$$ $

Pretend that each string ends with a special “end marker” symbol $

• Each string Ti corresponds to a
root-to-leaf path and vice-versa

Build a tree in which:

• Edges are labelled with a symbol in
Σ ∪ {$} and are sorted

RAGE RAGSRAD RATE$ $ $

• Satellite data is often useful, e.g.:

RADAR $ RAG$ $

A

R

$

$

— Number of $s in each subtree
— Pointers to the first/last leaf in the subtree

— Leaves arranged in a (doubly) linked list

— Pointers from leaves to strings

Tries: Find (Sketch)

Find(P):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

R

A

G

E

Tries: Find (Sketch)

Find(P):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

P = RADAR
R

A

G

E

Tries: Find (Sketch)

Find(P):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

P = RAG

To count the number of strings that
start with P :

• Find the node corresponding to P

R

A

G

E

Tries: Find (Sketch)

Find(P):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

P = RAG

To count the number of strings that
start with P :

• Find the node corresponding to P

• Return the number of $s in the
subtree (stored in the node)

3

R

A

G

E

Tries: Find (Sketch)

Find(P):

• Walk down the tree matching the
characters in P$ with the edge labels

E

D T

$ S

$$ $

A

R

$

$

P = RAG

To count the number of strings that
start with P :

• Find the node corresponding to P

• Return the number of $s in the
subtree (stored in the node)

• The actual matches can be listed in O(1) additional time
per match by following pointers

3

R

A

G

E

Predecessor(T):

• Walk down a path ⟨v0, v1, v2 . . . ⟩ of the
tree matching the characters in T$ with
the edge labels

Tries: Predecessor Queries (Sketch)

T = RAG

E

D T

$ S

$$ $

A

R

$

$

R

A

G

E

Predecessor(T):

• Walk down a path ⟨v0, v1, v2 . . . ⟩ of the
tree matching the characters in T$ with
the edge labels

Tries: Predecessor Queries (Sketch)

T = RAG

E

D T

$ S

$$ $

A

R

$

$

R

A

G

E
v

Predecessor(T):

• Walk down a path ⟨v0, v1, v2 . . . ⟩ of the
tree matching the characters in T$ with
the edge labels

Tries: Predecessor Queries (Sketch)

T = RAG

— If T$ is found we are done
E

D T

$ S

$$ $

A

R

$

$

R

A

G

E
v

— Otherwise, stop at the node vi
matching the longest prefix T1T2 . . . Ti

Predecessor(T):

• Walk down a path ⟨v0, v1, v2 . . . ⟩ of the
tree matching the characters in T$ with
the edge labels

Tries: Predecessor Queries (Sketch)

T = RAG

— If T$ is found we are done
E

D T

$ S

$$ $

A

R

$

$

R

A

G

E
v

• Find the deepest ancestor of vj of vi
(possibly vi itself) such that Tj has a
strict predecessor u w.r.t. vj .

u

— Otherwise, stop at the node vi
matching the longest prefix T1T2 . . . Ti

T$ = T1T2T3 . . .

Predecessor(T):

• Walk down a path ⟨v0, v1, v2 . . . ⟩ of the
tree matching the characters in T$ with
the edge labels

• Follow the pointers from u to the
maximum string in its subtree

Tries: Predecessor Queries (Sketch)

T = RAG

— If T$ is found we are done
E

D T

$ S

$$ $

A

R

$

$

R

A

G

E
v

• Find the deepest ancestor of vj of vi
(possibly vi itself) such that Tj has a
strict predecessor u w.r.t. vj .

RADAR

u

— Otherwise, stop at the node vi
matching the longest prefix T1T2 . . . Ti

T$ = T1T2T3 . . .

Predecessor(T):

• Walk down a path ⟨v0, v1, v2 . . . ⟩ of the
tree matching the characters in T$ with
the edge labels

• Follow the pointers from u to the
maximum string in its subtree

Tries: Predecessor Queries (Sketch)

T = RAG

Time?

— If T$ is found we are done
E

D T

$ S

$$ $

A

R

$

$

R

A

G

E
v

• Find the deepest ancestor of vj of vi
(possibly vi itself) such that Tj has a
strict predecessor u w.r.t. vj .

RADAR

u

— Otherwise, stop at the node vi
matching the longest prefix T1T2 . . . Ti

T$ = T1T2T3 . . .

The strict predecessor of σ ∈ Σ w.r.t. a node v, if it
exists, is the child u of v such that (v, u) has the largest
label that is smaller than σ

Predecessor(T):

• Walk down a path ⟨v0, v1, v2 . . . ⟩ of the
tree matching the characters in T$ with
the edge labels

• Follow the pointers from u to the
maximum string in its subtree

Tries: Predecessor Queries (Sketch)

T = RAG

Time?

Depends on how
the tree is stored

— If T$ is found we are done
E

D T

$ S

$$ $

A

R

$

$

R

A

G

E
v

• Find the deepest ancestor of vj of vi
(possibly vi itself) such that Tj has a
strict predecessor u w.r.t. vj .

RADAR

u

— Otherwise, stop at the node vi
matching the longest prefix T1T2 . . . Ti

T$ = T1T2T3 . . .

The strict predecessor of σ ∈ Σ w.r.t. a node v, if it
exists, is the child u of v such that (v, u) has the largest
label that is smaller than σ

Representing Tries

D G T

Array (dense)

a

b c d

Σ = {A, D, E, G, R, S, T}
A E G R S TD

b c d

n = #nodes = O (
∑

i |Ti|)

a :

Representing Tries

D G T

Array (dense)

a

b c d

Σ = {A, D, E, G, R, S, T}
A E G R S TD

b c d

Space: O(|Σ|)

n = #nodes = O (
∑

i |Ti|)

Time to find a symbol’s edge: O(1)

a :

Representing Tries

D G T

Array (dense)

a

b c d

Σ = {A, D, E, G, R, S, T}
A E G R S TD

b c d

Space: O(|Σ|)

n = #nodes = O (
∑

i |Ti|)

Time to find a symbol’s edge: O(1)

a :

Time to find predecessor: O(|Σ|)

Representing Tries

D G T

Array (dense)

a

b c d

Σ = {A, D, E, G, R, S, T}
A E G R S TD

b c d

Space: O(|Σ|)

n = #nodes = O (
∑

i |Ti|)

Time to find a symbol’s edge: O(1)

D G Ga :

Time to find predecessor: O(|Σ|)

Representing Tries

D G T

Array (dense)

a

b c d

Σ = {A, D, E, G, R, S, T}
A E G R S TD

b c d

Space: O(|Σ|)

n = #nodes = O (
∑

i |Ti|)

Time to find a symbol’s edge: O(1)

O(1)

D G Ga :

Time to find predecessor: O(|Σ|)

Representing Tries

D G T

Array (dense)

a

b c d

Σ = {A, D, E, G, R, S, T}
A E G R S TD

b c d

Space: O(|Σ|)

n = #nodes = O (
∑

i |Ti|)

Time to find a symbol’s edge: O(1)

O(1)

D G G

Overall space: O(|Σ| · n)

Overall time: O(|P |)

a :

Time to find predecessor: O(|Σ|)

Array (sparse)

T

Representing Tries

D G T

a

b c d

Σ = {A, D, E, G, R, S, T}

n = #nodes = O (
∑

i |Ti|)

D G

b c d

a :

Array (sparse)

T

Representing Tries

D G T

a

b c d

Σ = {A, D, E, G, R, S, T}

n = #nodes = O (
∑

i |Ti|)

D G

b c d

Balanced Binary Search Tree

a :

G

a
T

D
b

G

c

d

Array (sparse)

T

Representing Tries

D G T

a

b c d

Σ = {A, D, E, G, R, S, T}

n = #nodes = O (
∑

i |Ti|)

D G

b c d

Balanced Binary Search Tree

a :

G

a
T

D

Space: O(#children)

b

G

c

d

Array (sparse)

T

Representing Tries

D G T

a

b c d

Σ = {A, D, E, G, R, S, T}

n = #nodes = O (
∑

i |Ti|)

D G

b c d

Balanced Binary Search Tree

a :

G

a
T

D

Space: O(#children)

Time to find a symbol’s edge/predecessor:
O(log#children) = O(log |Σ|)

b

G

c

d

Array (sparse)

T

Representing Tries

D G T

a

b c d

Σ = {A, D, E, G, R, S, T}

n = #nodes = O (
∑

i |Ti|)

D G

b c d

Balanced Binary Search Tree

a :

G

a
T

D

Space: O(#children)

Time to find a symbol’s edge/predecessor:
O(log#children) = O(log |Σ|)

Overall space: O(n)

Overall time: O(|P | log |Σ|)b

G

c

d

Representing Tries
Weight-Balanced BSTs

Each vertex of the trie has a weight equal
to the number of leaves in its subtree

D G T

a

b c d

2
3

1
Recursively construct a binary search tree
by splitting the children in the trie so that
the sum of their weights is as balanced as
possible

n = #nodes = O (
∑

i |Ti|)

b c d

2 3 1

a

Representing Tries
Weight-Balanced BSTs

Each vertex of the trie has a weight equal
to the number of leaves in its subtree

D G T

a

b c d

2
3

1
Recursively construct a binary search tree
by splitting the children in the trie so that
the sum of their weights is as balanced as
possible

n = #nodes = O (
∑

i |Ti|)

b c d

2 3 1

a
D G
b

Representing Tries
Weight-Balanced BSTs

Each vertex of the trie has a weight equal
to the number of leaves in its subtree

D G T

a

b c d

2
3

1
Recursively construct a binary search tree
by splitting the children in the trie so that
the sum of their weights is as balanced as
possible

n = #nodes = O (
∑

i |Ti|)

b c d

2 3 1

a
D

G T

G
b

c d

Representing Tries
Weight-Balanced BSTs

Each vertex of the trie has a weight equal
to the number of leaves in its subtree

D G T

a

b c d

2
3

1
Recursively construct a binary search tree
by splitting the children in the trie so that
the sum of their weights is as balanced as
possible

n = #nodes = O (
∑

i |Ti|)

b c d

2 3 1

a
D

G T

G
b

c d

Overall space: O(n)

Space: O(#children)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

v

4 2 3 1 8 6

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

If the interval [13w(v),
2
3w(v)] contains more than one segment:

v

4 2 3 1 8 6

1
3w(v)

2
3w(v)

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

If the interval [13w(v),
2
3w(v)] contains more than one segment:

v

4 2 3 1 8 6

1
3w(v)

2
3w(v)

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

If the interval [13w(v),
2
3w(v)] contains more than one segment:

v

4 2 3 1 8 6

1
3w(v)

2
3w(v)

• the weight of each children of v is at most 2
3w(v)

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

✓✓

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

4 2 8 1 2 4

If the interval [13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

x

v1
3w(v)

2
3w(v)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

4 2 8 1 2 4

If the interval [13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

• v splits the segments immediately
before/after x.

x

v1
3w(v)

2
3w(v)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

4 2 8 1 2 4

If the interval [13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

• v splits the segments immediately
before/after x.

• Let v′ be the child of v that contains x and let v′′ be the other child

x

v

v′′v′
1
3w(v)

2
3w(v)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

4 2 8 1 2 4

• w(v′′) ≤ 1
3w(v).

If the interval [13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

• v splits the segments immediately
before/after x.

• Let v′ be the child of v that contains x and let v′′ be the other child

x

v

v′′v′
1
3w(v)

2
3w(v)

✓

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

4 2 8 1 2 4

• w(v′′) ≤ 1
3w(v).

If the interval [13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

• x is the first or last leaf in the subtree of v′ and w(x) ≥ 1
2w(v

′)

• v splits the segments immediately
before/after x.

• Let v′ be the child of v that contains x and let v′′ be the other child

x

v

v′′v′

✓

1
2w(v

′)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

4 2 1 2 4

• w(v′′) ≤ 1
3w(v).

If the interval [13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

• x is the first or last leaf in the subtree of v′ and w(x) ≥ 1
2w(v

′)

• v splits the segments immediately
before/after x.

• One child of v′ is x and the other child weighs ≤ 1
2w(v

′) ≤ 1
2w(v)

• Let v′ be the child of v that contains x and let v′′ be the other child

v

v′′v′

8

x ✓
✓

✓

1
2w(v

′)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

Traversing two edges of a weight-balanced BST either:

• Brings us to the next node in the trie, i.e., we advance one character
into P ; or

Can only happen O(|P |) times

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

Traversing two edges of a weight-balanced BST either:

• Brings us to the next node in the trie, i.e., we advance one character
into P ; or

• Reduces the weight (i.e, the number of leaves in the trie reachable
from the current node) by 2/3

Can only happen O(|P |) times

Can only happen O(log3/2 #leaves) = O(log k) times

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

Traversing two edges of a weight-balanced BST either:

• Brings us to the next node in the trie, i.e., we advance one character
into P ; or

• Reduces the weight (i.e, the number of leaves in the trie reachable
from the current node) by 2/3

Can only happen O(|P |) times

Can only happen O(log3/2 #leaves) = O(log k) times

Overall space: O(n) Overall time: O(|P |+ log k)

Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Optimal

Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Optimal

Can we get rid
of this term?

Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Optimal

Can we get rid
of this term?

Almost. . .

Indirection
We can use a similar technique to the one we encountered while
designing level ancestor oracles

Indirection

Find the set M of all maximally deep vertices with at least |Σ| descendants

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Indirection

Find the set M of all maximally deep vertices with at least |Σ| descendants

Example for |Σ| = 7

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Indirection

Find the set M of all maximally deep vertices with at least |Σ| descendants

Example for |Σ| = 7

Split the trie into a tree T ′ containing all the ancestors of the vertices in
M and several bottom-trees in T \ T ′.

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Indirection

Find the set M of all maximally deep vertices with at least |Σ| descendants

Example for |Σ| = 7

Split the trie into a tree T ′ containing all the ancestors of the vertices in
M and several bottom-trees in T \ T ′.

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Indirection

Find the set M of all maximally deep vertices with at least |Σ| descendants

Example for |Σ| = 7

Split the trie into a tree T ′ containing all the ancestors of the vertices in
M and several bottom-trees in T \ T ′.

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

Storing the top tree:

Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

Storing the top tree:

Space
O(|Σ| · n

|Σ|) = O(n)

Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

Storing the top tree:

• Store branching nodes using dense arrays

Space
O(|Σ| · n

|Σ|) = O(n)

O(|Σ| · n
|Σ|) = O(n)

Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching nodes explicitly

Storing the top tree:

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ|) = O(n)

O(|Σ| · n
|Σ|) = O(n)

Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching nodes explicitly

Storing the top tree:

Time to find the next node O(1)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ|) = O(n)

O(|Σ| · n
|Σ|) = O(n)

Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching nodes explicitly

Storing the top tree:

Storing the bottom trees:

Time to find the next node O(1)

• Store each bottom tree using a weight-balanced BST

Total space of all bottom trees: O(n)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ|) = O(n)

O(|Σ| · n
|Σ|) = O(n)

Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching nodes explicitly

• Each bottom tree has at most |Σ| leaves

Storing the top tree:

Storing the bottom trees:

Time to find the next node O(1)

• Store each bottom tree using a weight-balanced BST

Time to navigate a bottom tree: O(|P |+ log |Σ|)

Total space of all bottom trees: O(n)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ|) = O(n)

O(|Σ| · n
|Σ|) = O(n)

Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Indirection O(n) O(|P |+ log |Σ|)

Can be made dynamic with a time complexity of
O(|T |+ log |Σ|) per insertion/deletion of T

Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lk log k) or O(Lk)

L = maxi=1,...,k |Ti|

Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

• Create an empty trie

• For i = 1, . . . , k:

• Insert Ti into the trie

• An in-order visit of the trie returns the strings in
lexicographic order

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lk log k) or O(Lk)

L = maxi=1,...,k |Ti|

Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

• Create an empty trie

• For i = 1, . . . , k:

• Insert Ti into the trie

• An in-order visit of the trie returns the strings in
lexicographic order

O
(∑k

i=1(|Ti|+ log |Σ|)
)

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lk log k) or O(Lk)

} Time

L = maxi=1,...,k |Ti|

Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

• Create an empty trie

• For i = 1, . . . , k:

• Insert Ti into the trie

• An in-order visit of the trie returns the strings in
lexicographic order

O (n+ k log |Σ|))

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lk log k) or O(Lk)

} Time

L = maxi=1,...,k |Ti|

Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

• Create an empty trie

• For i = 1, . . . , k:

• Insert Ti into the trie

• An in-order visit of the trie returns the strings in
lexicographic order

O (n+ k log |Σ|))

O(n)

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lk log k) or O(Lk)

} Time

L = maxi=1,...,k |Ti|

Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

• Create an empty trie

• For i = 1, . . . , k:

• Insert Ti into the trie

• An in-order visit of the trie returns the strings in
lexicographic order

O (n+ k log |Σ|))

O(n)

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lk log k) or O(Lk)

}

Overall time: O (n+ k log |Σ|))

Time

L = maxi=1,...,k |Ti|

Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst:

169.48.0.0/12

169.0.0.0/11

169.128.0.0/10

169.160.0.0/11

eth1
ppp0

eth1

96.0.0.0/3
eth0

101.167.200.15

192.168.42.10

default wlan0

100.0.0.0/8 eth0
127.0.0.0/8 lo

tun0

tun1
96.0.0.0/5

Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst: eth1
ppp0

eth1

eth0

192.168.42.10

wlan0

0110010110100111. . .

1010100110$

10101001101$

01100100$

01111111$

$

eth0

lo

10101001000$

101010010011$

011000$ tun0

011$ tun1

Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst: eth1
ppp0

eth1

eth0

192.168.42.10

wlan0

0110010110100111. . .

1010100110$

10101001101$

01100100$

01111111$

$

eth0

lo

10101001000$

101010010011$

011000$ tun0

011$ tun1

Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst:

Given a pattern P we want the longest string in our collection that
appears as a prefix of P

eth1
ppp0

eth1

eth0

192.168.42.10

wlan0

0110010110100111. . .

1010100110$

10101001101$

01100100$

01111111$

$

P
︸ ︷︷ ︸

eth0

lo

10101001000$

101010010011$

011000$ tun0

011$ tun1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

0 11

ppp0eth1

00

eth0

0 100

P = 01100101101 . . .

$

$

$ $ $ $

tun0

tun1

wlan0

eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

0 11

ppp0eth1

00

eth0

0 100

P = 01100101101 . . .

$

$

$ $ $ $

tun0

v

tun1

wlan0

eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

0 11

ppp0eth1

00

eth0

0 100

P = 01100101101 . . .

$

$

$ $ $ $

tun0

v

u

tun1ℓ

wlan0

eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

0 11

ppp0eth1

00

eth0

0 100

P = 01100101101 . . .

$

• Route the packet towards the interface stored in ℓ

$

$ $ $ $

tun0

v

u

tun1ℓ

wlan0

eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

0 11

ppp0eth1

00

eth0

0 100

$

• Route the packet towards the interface stored in ℓ

$

$ $ $ $

tun0

tun1

P = 10101001001110 . . .

wlan0

eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

0 11

ppp0eth1

00

eth0

0 100

$

• Route the packet towards the interface stored in ℓ

$

$ $ $ $

tun0

tun1

P = 10101001001110 . . .

wlan0

eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

0 11

ppp0eth1

00

eth0

0 100

$

• Route the packet towards the interface stored in ℓ

$

$ $ $ $

tun0

tun1

wlan0

P = 10101001100010 . . .
eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

0 11

ppp0eth1

00

eth0

0 100

$

• Route the packet towards the interface stored in ℓ

$

$ $ $ $

tun0

tun1

wlan0

P = 10101001100010 . . .
eth1

$

Application: Packet Routing

10101001

10

$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

Time: O(address length)

0 11

ppp0eth1

00

eth0

0 100

$

• Route the packet towards the interface stored in ℓ

$

$ $ $ $

tun0

tun1

wlan0

P = 10101001100010 . . .
eth1

E

R

A

D G T

$
E

S

$$ $

A

R

$

$

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

E

R

A

D G T

$
E

S

$$ $

A

R

$

$

RA

D G
TE$

E$
AR$$ $

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

S$

E

R

A

D G T

$
E

S

$$ $

A

R

$

$

RA

D G
TE$

E$
AR$$ $

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

Previous constructions apply

Use the first character on each
edge as the key

S$

E

R

A

D G T

$
E

S

$$ $

A

R

$

$

RA

D G
TE$

E$
AR$$ $

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

Previous constructions apply

Use the first character on each
edge as the key

Store edge labels as indices in the
input strings

T2= RADAR$
0:1

T6= RATE

2:3

S$

$

Suffix Trees

Back to String Matching

Problem: Given an alphabet Σ, a text T ∈ Σ∗ and a pattern
P ∈ Σ∗, find some occurrence/all occurrences of P in T .

T = Bart played darts at the party

P = art

Σ = {A, B, . . . , Z, a, b, . . . , z, }

Want: A data structure that can preprocesses T and answer
string matching queries

The suffix tree of T is the compressed trie of all the suffixes of T$

Suffix Trees

T = BANANASΣ = {A, B, N, S} $

The suffix tree of T is the compressed trie of all the suffixes of T$

Suffix Trees

T = BANANAS

$

AS$
NAS$
ANAS$
NANAS$
ANANAS$
BANANAS$

Σ = {A, B, N, S}

S$

01234567
$

0

1

2

3

4

5

6

7

The suffix tree of T is the compressed trie of all the suffixes of T$

Suffix Trees

T = BANANAS

$

AS$
NAS$
ANAS$
NANAS$
ANANAS$
BANANAS$

Σ = {A, B, N, S}

$ A

S$ NA

NASS

NA
B
A
N
A
N
A
S$

S$
S$

01234567
$

S$ NAS$

0

1

2

3

4

5

6

7

The suffix tree of T is the compressed trie of all the suffixes of T$

Suffix Trees

T = BANANAS

$

AS$
NAS$
ANAS$
NANAS$
ANANAS$
BANANAS$

Σ = {A, B, N, S}

$ A

S$ NA

NASS

NA
B
A
N
A
N
A
S$

S$

Label edges with indices into T

Label leaves with the index of the start of the corresponding suffix

7

S$

6

5

3

4 2

1

0

01234567
$

S$ NAS$

0

1

2

3

4

5

6

7

The suffix tree of T is the compressed trie of all the suffixes of T$

Suffix Trees

T = BANANAS

$

AS$
NAS$
ANAS$
NANAS$
ANANAS$
BANANAS$

Σ = {A, B, N, S}

$ A

S$ NA

NASS

NA
B
A
N
A
N
A
S$

S$

Space: O(# nodes) = O(# leaves) = O(|T |)

Label edges with indices into T

Label leaves with the index of the start of the corresponding suffix

7

S$

6

5

3

4 2

1

0

01234567
$

S$ NAS$

0

1

2

3

4

5

6

7

Applications: String Matching

$ A

S$ NA

NASS

NA

S$ NAS$

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

1

Applications: String Matching

$ A

S$ NA

NASS

NA

S$ NAS$

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

• Arrange leaves in a linked list to find the next match in O(1) time

1

Applications: String Matching

$ A

S$ NA

NASS

NA

S$ NAS$

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

• Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P |+ log |Σ|+#desired matches)

1

Applications: String Matching

$ A

S$ NA

NASS

NA

S$ NAS$

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

• Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P |+ log |Σ|+#desired matches)

1

Number of matches in time O(|P |+ log |Σ|) (store # leaves in the subtree)

Applications: Longest Repeated Substring

$

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

Find the longest string that appears at least twice in T as a substring:

1

S$ NAS$

Applications: Longest Repeated Substring

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

Find the longest string that appears at least twice in T as a substring:

• Assign a length to each edge equal to the number of symbols in its
label

81
1

2

2

2 2

2 3

32
S$ NAS$

Applications: Longest Repeated Substring

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

Find the longest string that appears at least twice in T as a substring:

• Assign a length to each edge equal to the number of symbols in its
label

• Find the deepest (w.r.t. edge lengths) node with at least two
descendants

81
1

2

2

2 2

2 3

32
S$ NAS$

Applications: Longest Repeated Substring

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

Find the longest string that appears at least twice in T as a substring:

• Assign a length to each edge equal to the number of symbols in its
label

• Find the deepest (w.r.t. edge lengths) node with at least two
descendants

Time: O(|T |)

81
1

2

2

2 2

2 3

32
S$ NAS$

Applications: Longest Common Prefix

Given indicies i and j, find the longest common prefix of T [i :] and T [j :]

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

T = BANANAS
01234567

$

• Look at the leaves ui, uj corresponding to T [i :] and T [j :]

i j

Applications: Longest Common Prefix

Given indicies i and j, find the longest common prefix of T [i :] and T [j :]

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

T = BANANAS
01234567

$

• Look at the leaves ui, uj corresponding to T [i :] and T [j :]

i j

uiuj

• Find the common prefix of the paths from the root to ui and uj

Applications: Longest Common Prefix

Given indicies i and j, find the longest common prefix of T [i :] and T [j :]

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

T = BANANAS
01234567

$

• Look at the leaves ui, uj corresponding to T [i :] and T [j :]

i j

uiuj

• Find the common prefix of the paths from the root to ui and uj

• This is the path from the root to the lowest common ancestor of ui

and uj

LCA(ui, uj)

Applications: Longest Common Prefix

Given indicies i and j, find the longest common prefix of T [i :] and T [j :]

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

T = BANANAS
01234567

$

• Look at the leaves ui, uj corresponding to T [i :] and T [j :]

i j

uiuj

• Find the common prefix of the paths from the root to ui and uj

• This is the path from the root to the lowest common ancestor of ui

and uj

LCA(ui, uj)

We already know how to answer LCA queries in constant time!

Applications: Fiding Additional Matches

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

P = T [2 : 3] = NA

Applications: Fiding Additional Matches

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

• Start from the leaf corresponding to T [i :]

P = T [2 : 3] = NA

Applications: Fiding Additional Matches

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

• Start from the leaf corresponding to T [i :]

P = T [2 : 3] = NA

• Walk up the tree for “|T | − j” characters

Applications: Fiding Additional Matches

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

• Start from the leaf corresponding to T [i :]

P = T [2 : 3] = NA

• Walk up the tree for “|T | − j” characters

• This is a weighted level ancestor query!

Applications: Fiding Additional Matches

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

• Start from the leaf corresponding to T [i :]

P = T [2 : 3] = NA

• Walk up the tree for “|T | − j” characters

• This is a weighted level ancestor query!

We can answer weighted LA queries in O(log log |T |) time!

≤ |T |

Applications: Fiding Additional Matches

$ A

S$ NA

NASS

NA

B
A
N
A
N
A
S$

7

S$

6

5

3

4 2

0

1

81
1

2

2

2 2

2 3

32
S$ NAS$

Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

• Start from the leaf corresponding to T [i :]

P = T [2 : 3] = NA

• Walk up the tree for “|T | − j” characters

• This is a weighted level ancestor query!

• Link leaves to find the other occurrences in O(1) additional time each

We can answer weighted LA queries in O(log log |T |) time!

≤ |T |

Applications: Document Retrieval

Preprocess collection of documents T1, T2, . . . , Tk to quickly find all
documents that contain a pattern P

Applications: Document Retrieval

Preprocess collection of documents T1, T2, . . . , Tk to quickly find all
documents that contain a pattern P

Use the end symbol $i for document Ti and build a suffix-tree with the
suffxes of all the strings Ti$i

Applications: Document Retrieval

Preprocess collection of documents T1, T2, . . . , Tk to quickly find all
documents that contain a pattern P

sausage$1 sugar$2 samosa$3 salsa$4

Use the end symbol $i for document Ti and build a suffix-tree with the
suffxes of all the strings Ti$i

a
l
s
a$

4
mosa$

3

s
u

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a

usage$
1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g
e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

P =sa

ji

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Searching for a pattern P returns the interval A[i : j] containing all and
only the leaves corresponding to the matches of P

u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

P =sa

ji

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Find all distinct documents (colors) in A[i : j]

Searching for a pattern P returns the interval A[i : j] containing all and
only the leaves corresponding to the matches of P

u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

P =sa

ji

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Find all distinct documents (colors) in A[i : j]

Searching for a pattern P returns the interval A[i : j] containing all and
only the leaves corresponding to the matches of P

Time:
O(|P |+ log |Σ|+# retrieved documents)

via range minimum queries

Constructing Suffix Trees

&

Suffix Arrays

T = BANANAS

$

AS$
NAS$
ANAS$
NANAS$
ANANAS$
BANANAS$

S$

Suffix Arrays & Suffix Trees

0

1

2

3

4

5

6

7

Sort all suffixes along with their start index

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Sort all suffixes along with their start index

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

Sort all suffixes along with their start index

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

LCP
array

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

0 3 1 0 0 2 0

LCP
array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

0 3 1 0 0 2 0

0 0 0

LCP
array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

0

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

0 3 1 0 0 2 0

0 0 0

LCP
array

We can construct a suffix tree from
the Suffix and LCP arrays

23 1

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

0

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

0 3 1 0 0 2 0

1

0 0 0

LCP
array

We can construct a suffix tree from
the Suffix and LCP arrays

2

3

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

0

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

0 3 1 0 0 2 0

1

0 0 0

LCP
array

We can construct a suffix tree from
the Suffix and LCP arrays

3

2

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

0

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

0 3 1 0 0 2 0

1

0 0 0

LCP
array

We can construct a suffix tree from
the Suffix and LCP arrays

3

2

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

0

T = BANANAS

Suffix Arrays & Suffix Trees

$

AS$

NAS$

ANAS$

NANAS$

ANANAS$

BANANAS$

S$

0

1

2

3

4

5

6

7

Suffix
array

0

3

1

0

0

2

0

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order)

0 3 1 0 0 2 0

1

0 0 0

LCP
array

We can construct a suffix tree from
the Suffix and LCP arrays

3

2

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

7

1 3

5

0

2 4

0

6

Place leaves using an
in-order traversal

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

AS$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

AS$

S$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

A

AS$

S$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

A

AS$

S$

B
A
N
A
N
A
S
$

BANANAS$

NANAS$

NA

NAS$

NAS$

S$
S$

S$

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

A

AS$

S$

B
A
N
A
N
A
S
$

BANANAS$

NANAS$

NA

NAS$

NAS$

S$
S$

S$

Construction time
(from Suffix + LCP Arrays):

O(|T |)

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

A

AS$

S$

B
A
N
A
N
A
S
$

BANANAS$

NANAS$

NA

NAS$

NAS$

S$
S$

S$

Construction time
(from Suffix + LCP Arrays):

O(|T |)

Suffix + LCP Arrays can be
built in O(|T |) time

[J. Kärkkäinen, P. Sanders, ICALP’03]

Suffix Arrays & Suffix Trees

1

0 0 0

3

27

1 3

5

0

2 4

0

6

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

$

ANANAS$

NAS$

$

ANAS$

S$

NA

A

AS$

S$

B
A
N
A
N
A
S
$

BANANAS$

NANAS$

NA

NAS$

NAS$

S$
S$

S$

Construction time
(from Suffix + LCP Arrays):

O(|T |)

Suffix + LCP Arrays can be
built in O(|T |) time

Suffix trees can be built
in O(|T |) time!

=⇒

[J. Kärkkäinen, P. Sanders, ICALP’03]

