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Binary searching requires time O(max string length · log k)
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Tries (Prounounced as“try”)

Data structure to store a dynamic collection of k strings over
an alphabet Σ

• Insert(T ): add T to the collection of strings

• Delete(T ): remove T from the collection of strings

• Find(P ): return whether P is in the collection

• Predecessor(T ): return the largest string in the collection
that is “not smaller than” T (w.r.t. the lexicopraphic order)

We will only focus on the static case

Σ = {A, D, E, G, R, S, T}

RAGE RAGSRAD RATERADAR RAG{ }, , , , ,

• Count/return the strings in the collection that start with P
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To count the number of strings that
start with P :

• Find the node corresponding to P

• Return the number of $s in the
subtree (stored in the node)
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Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

If the interval [ 13w(v),
2
3w(v)] contains more than one segment:

v
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• the weight of each children of v is at most 2
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length equal to their weight
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Claim: All the grand-children u of v satisfy w(u) ≤ 2
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• w(v′′) ≤ 1
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If the interval [ 13w(v),
2
3w(v)] contains a single segment, let x be the

corresponding leaf

• x is the first or last leaf in the subtree of v′ and w(x) ≥ 1
2w(v

′)

• v splits the segments immediately
before/after x.

• One child of v′ is x and the other child weighs ≤ 1
2w(v

′) ≤ 1
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• Let v′ be the child of v that contains x and let v′′ be the other child

v

v′′v′
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Claim: All the grand-children u of v satisfy w(u) ≤ 2
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Traversing two edges of a weight-balanced BST either:

• Brings us to the next node in the trie, i.e., we advance one character
into P ; or

Can only happen O(|P |) times
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Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) ≤ 2
3 (v) or are leaves.

Traversing two edges of a weight-balanced BST either:

• Brings us to the next node in the trie, i.e., we advance one character
into P ; or

• Reduces the weight (i.e, the number of leaves in the trie reachable
from the current node) by 2/3

Can only happen O(|P |) times

Can only happen O(log3/2 #leaves) = O(log k) times

Overall space: O(n) Overall time: O(|P |+ log k)
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Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Optimal

Can we get rid
of this term?

Almost. . .
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|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays
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The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching nodes explicitly

Storing the top tree:

Time to find the next node O(1)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ| ) = O(n)

O(|Σ| · n
|Σ| ) = O(n)



Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching nodes explicitly

Storing the top tree:

Storing the bottom trees:

Time to find the next node O(1)

• Store each bottom tree using a weight-balanced BST

Total space of all bottom trees: O(n)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ| ) = O(n)
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Indirection

The number of leaves of T ′ is at most n
|Σ|

Fact: A tree with ℓ leaves has at most ℓ− 1 branching nodes
(i.e., nodes with at least 2 children)

• Store leaves using dense arrays

• Store the unique child of each non-branching nodes explicitly

• Each bottom tree has at most |Σ| leaves

Storing the top tree:

Storing the bottom trees:

Time to find the next node O(1)

• Store each bottom tree using a weight-balanced BST

Time to navigate a bottom tree: O(|P |+ log |Σ|)

Total space of all bottom trees: O(n)

• Store branching nodes using dense arrays

Space

O(n)

O(|Σ| · n
|Σ| ) = O(n)

O(|Σ| · n
|Σ| ) = O(n)



Representing Tries: Recap

Array (dense)

Array (sparse) / BST

Weight-balanced BST

Space Query Time

O(|Σ| · n) O(|P |)

O(n) O(|P | log |Σ|)

O(n) O(|P |+ log k)

Indirection O(n) O(|P |+ log |Σ|)

Can be made dynamic with a time complexity of
O(|T |+ log |Σ|) per insertion/deletion of T
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Application: String Sorting

Sort a collection of k strings T1, T2, . . . , Tk over Σ

• Create an empty trie

• For i = 1, . . . , k:

• Insert Ti into the trie

• An in-order visit of the trie returns the strings in
lexicographic order

O (n+ k log |Σ|))

O(n)

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lk log k) or O(Lk)

}

Overall time: O (n+ k log |Σ|))

Time

L = maxi=1,...,k |Ti|



Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst:

169.48.0.0/12

169.0.0.0/11

169.128.0.0/10

169.160.0.0/11

eth1
ppp0

eth1

96.0.0.0/3
eth0

101.167.200.15

192.168.42.10

default wlan0

100.0.0.0/8 eth0
127.0.0.0/8 lo

tun0

tun1
96.0.0.0/5
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Application: Packet Routing
Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Routing TablePacket

Destination InterfaceSrc:

Dst:

Given a pattern P we want the longest string in our collection that
appears as a prefix of P

eth1
ppp0

eth1

eth0

192.168.42.10

wlan0

0110010110100111. . .

1010100110$

10101001101$

01100100$

01111111$

$

P
︸ ︷︷ ︸

eth0

lo

10101001000$

101010010011$

011000$ tun0

011$ tun1
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0 100
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Application: Packet Routing

10101001
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$ 1

011
$

00 11111

eth0

lo

Build a trie T with all the addresses in the routing table.

• Find the node v corresponding to the maximal prefix that matches P

• Walk up the tree searching for the deepest ancestor u of v incident
to a“$” edge towards a leaf ℓ

Time: O(address length)
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• Route the packet towards the interface stored in ℓ
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Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

Previous constructions apply

Use the first character on each
edge as the key

Store edge labels as indices in the
input strings

T2= RADAR$
0:1

T6= RATE

2:3

S$

$



Suffix Trees



Back to String Matching

Problem: Given an alphabet Σ, a text T ∈ Σ∗ and a pattern
P ∈ Σ∗, find some occurrence/all occurrences of P in T .

T = Bart played darts at the party

P = art

Σ = {A, B, . . . , Z, a, b, . . . , z, }

Want: A data structure that can preprocesses T and answer
string matching queries



The suffix tree of T is the compressed trie of all the suffixes of T$

Suffix Trees

T = BANANASΣ = {A, B, N, S} $
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The suffix tree of T is the compressed trie of all the suffixes of T$

Suffix Trees

T = BANANAS

$
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NAS$
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NANAS$
ANANAS$
BANANAS$

Σ = {A, B, N, S}
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B
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A
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A
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Space: O(# nodes) = O(# leaves) = O(|T |)

Label edges with indices into T

Label leaves with the index of the start of the corresponding suffix
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Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

• Arrange leaves in a linked list to find the next match in O(1) time
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Applications: String Matching

$ A

S$ NA

NAS$S$

NA

S$ NAS$
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A
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A
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Searching for a pattern P returns a compact representation of all
occurrences of P in T

• Find the node v corresponding to P

• The occurrences of P are all and only the leaves in the subtree of v

• Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P |+ log |Σ|+#desired matches)

1

Number of matches in time O(|P |+ log |Σ|) (store # leaves in the subtree)
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Applications: Longest Repeated Substring
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S$ NA

NAS$S$
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N
A
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A
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Find the longest string that appears at least twice in T as a substring:

• Assign a length to each edge equal to the number of symbols in its
label

• Find the deepest (w.r.t. edge lengths) node with at least two
descendants

Time: O(|T |)
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Applications: Longest Common Prefix

Given indicies i and j, find the longest common prefix of T [i :] and T [j :]
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• Look at the leaves ui, uj corresponding to T [i :] and T [j :]

i j
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Given an occurrence T [i : j] of P in T , find all other occurrences of P :

• We want to quickly find the node that corresponds to P

• Start from the leaf corresponding to T [i :]

P = T [2 : 3] = NA

• Walk up the tree for “|T | − j” characters

• This is a weighted level ancestor query!

• Link leaves to find the other occurrences in O(1) additional time each

We can answer weighted LA queries in O(log log |T |) time!

≤ |T |
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documents that contain a pattern P

sausage$1 sugar$2 samosa$3 salsa$4

Use the end symbol $i for document Ti and build a suffix-tree with the
suffxes of all the strings Ti$i

a
l
s
a$

4
mosa$

3

s
u

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a

usage$
1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g
e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4



u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right



u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26



u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26



u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

P =sa

ji

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Searching for a pattern P returns the interval A[i : j] containing all and
only the leaves corresponding to the matches of P



u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

P =sa

ji

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Find all distinct documents (colors) in A[i : j]

Searching for a pattern P returns the interval A[i : j] containing all and
only the leaves corresponding to the matches of P



u

Applications: Document Retrieval

a

l
s
a$

4
mosa$

3

s

osa$
3

s
a
g
e
$
1

g
a
r
$
2

usage$
1

g
e
$
1

r$
2

m
o
s
a
$
3

l
s
a
$
4$3 $4

a
usage$

1

g
e
$
1

mosa$
3

$3
$4

ugar$
2

g

e
$
1

a
r
$
2

l
s
a
$
4

r$
2

e
$
1$1 $2 $3 $4

Index the leaves from left to right

0 1 2 3

4 5 6 7 8 9 10

11

12 13

14 15 16 17

18 19 20 21 22 23

24 25 26

P =sa

ji

Store an array A where A[i] poinst to the document of leaf i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Find all distinct documents (colors) in A[i : j]

Searching for a pattern P returns the interval A[i : j] containing all and
only the leaves corresponding to the matches of P

Time:
O(|P |+ log |Σ|+# retrieved documents)

via range minimum queries
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