String Matching

String Matching

Problem: Given an alphabet], a text T' € >* and a pattern
P € ¥*, find some occurrence/all occurrences of P in T.

> ={A,B,...,Z,ab,...,z,.}

' = Bart._played.darts._at_the_party

P = art

String Matching

Problem: Given an alphabet], a text T' € >* and a pattern
P € ¥*, find some occurrence/all occurrences of P in T.

> ={A,B,...,Z,ab,...,z,.}

' = Bart._played.darts._at_the_party

P = art

String Matching

Problem: Given an alphabet], a text T' € >* and a pattern
P € ¥*, find some occurrence/all occurrences of P in T.

> ={A,B,...,Z,ab,...,z,.}

' = Bart._played.darts._at_the_party

P = art

>, ={A,C,G, T}
" = ACGTGCTTGCAGTGTGCATTACCTGAGTGC. ..
P = GTG

String Matching

Problem: Given an alphabet], a text T' € >* and a pattern
P € ¥*, find some occurrence/all occurrences of P in T.

> ={A,B,...,Z,ab,...,z,.}

' = Bart._played.darts._at_the_party

P = art

>, ={A,C,G, T}
1" = ACGTGCTTGCAGTGTGCATTACCTGAGTGC. . .
P = GTG

String Matching

One-shot:
e Both the text and the pattern are part of the input

e Algorithm design problem

String Matching

One-shot:
e Both the text and the pattern are part of the input
e Algorithm design problem

Repeated:

e The text is static and known beforehand
(can be preprocessed)

e Patterns are revealed on-demand
e \We want to answer each query as quickly as possible

e Data structure design problem

String Matching

One-shot:
e Both the text and the pattern are part of the input
e Algorithm design problem

Repeated:

e The text is static and known beforehand
(can be preprocessed)

e Patterns are revealed on-demand
e \We want to answer each query as quickly as possible

e Data structure design problem

Tries

Tries (Prounounced as“try")

Data structure to store a dynamic collection of k strings over

an alphabet X
> = {A,D,E,G,R,S, T}

{ RAD, RADAR RAG RAGE, RAGS RATE }

e Insert(7T'): add T to the collection of strings
e Delete(T): remove T from the collection of strings

e Find(P): return whether P is in the collection

Tries (Prounounced as“try")

Data structure to store a dynamic collection of k strings over

an alphabet X
> = {A,D,E,G,R,S, T}

{ RAD, RADAR RAG RAGE, RAGS RATE }

e Insert(7T'): add T to the collection of strings
e Delete(T): remove T from the collection of strings

e Find(P): return whether P is in the collection

Obs: A string comparison requires time O(string length).
Binary searching requires time O(max string length - log k)

Tries (Prounounced as“try")

Data structure to store a dynamic collection of k strings over

an alphabet X
> = {A,D,E,G,R,S, T}

{ RAD, RADAR RAG RAGE, RAGS RATE }

e Insert(7T'): add T to the collection of strings
e Delete(T): remove T from the collection of strings
e Find(P): return whether P is in the collection

e Count/return the strings in the collection that start with P

Tries (Prounounced as“try")

Data structure to store a dynamic collection of k strings over

an alphabet X
> = {A,D,E,G,R,S, T}

{ RAD, RADAR RAG RAGE, RAGS RATE }

)

e Insert(7T'): add T to the collection of strings

e Delete(T): remove T from the collection of strings

e Find(P): return whether P is in the collection

e Count/return the strings in the collection that start with P

e Predecessor(7T'): return the largest string in the collection
that is “not smaller than” T" (w.r.t. the lexicopraphic order)

Tries (Prounounced as“try")

Data structure to store a dynamic collection of k strings over

an alphabet X
> ={A,D,E,G,R,S, T}

{ RAD, RADAR RAG RAGE RAGS, RATE }

)

¢ Insert(T) —add-F—to-the-colectionof strings

e Delete(T) remove Ffrom—the—eolection-of strings

e Find(P): return whether P is in the collection

e Count/return the strings in the collection that start with P
e Predecessor(T): return the largest string in the collection

that is “not smaller than” T" (w.r.t. the lexicopraphic order)

We will only focus on the static case

Tries

Pretend that each string ends with a special “end marker” symbol $

RAD RADAR RAG RAGE RAGS RATE

Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADAR$ RAG$ RAGES RAGSS$ RATES

Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADAR$ RAG$ RAGES RAGSS$ RATES

Build a tree in which:

e Edges are labelled with a symbol in
¥ U {$} and are sorted

O
R
O
A

Tries

Pretend that each string ends with a special “end marker” symbol $

RADS RADARS RAG$ RAGES RAGSS RATE S O

R
Build a tree in which: C?q

e Edges are labelled with a symbol in
¥ U {$} and are sorted

T
e Each string T corresponds to a
root-to-leaf path and vice-versa E
O
$ |9

Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADARS RAGS RAGES RAGSS RATES ©

Build a tree in which:

e Edges are labelled with a symbol in

¥ U {$} and are sorted T
e Each string T corresponds to a 1
root-to-leaf path and vice-versa E
| | @
e Satellite data is often useful, e.g.: ¢ %

— Number of $s in each subtree

Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADARS RAGS RAGES RAGSS RATES QR
O
A

Build a tree in which:

e Edges are labelled with a symbol in
¥ U {$} and are sorted

e Each string T corresponds to a
root-to-leaf path and vice-versa

e Satellite data is often useful, e.g.:

— Number of $s in each subtree
— Pointers to the first/last leaf in the subtree

Tries

Pretend that each string ends with a special “end marker” symbol $

RADS RADARS RAG$ RAGES RAGS S RATE S O

R
Build a tree in which: C?q

e Edges are labelled with a symbol in
¥ U {$} and are sorted

e Each string T corresponds to a

root-to-leaf path and vice-versa E N E
) O
e Satellite data is often useful, e.g.: R S ¢ S
— Number of $s in each subtree O O O
— Pointers to the first/last leaf in the subtree $ C :
— Pointers from leaves to strings O

RADAR <« RAGE” RATE

Tries

Pretend that each string ends with a special “end marker” symbol $

RADS RADARS RAG$ RAGES RAGS S RATE S O
R
Build a tree in which: C?q

e Edges are labelled with a symbol in
¥ U {$} and are sorted

e Each string T corresponds to a
root-to-leaf path and vice-versa

e Satellite data is often useful, e.g.:

— Number of $s in each subtree (

— Pointers to the first/last leaf in the subtree‘x\ g
— Pointers from leaves to strings ‘()A

— Leaves arranged in a (doubly) linked list

Tries: Find (Sketch)

Find(P): (

e Walk down the tree matching the
characters in P$ with the edge labels

EX E
O O
R $| $ $
O O O
$

Tries: Find (Sketch)

P — RADAR OR
Find(P): (')
A

e Walk down the tree matching the
characters in P$ with the edge labels

Tries: Find (Sketch)

P = RAG QR
Find(P): (')
A

e Walk down the tree matching the
characters in P$ with the edge labels

5

To count the number of strings that
start with P:

e Find the node corresponding to P

Tries: Find (Sketch)

P = RAG QR
Find(P): (')
A

e Walk down the tree matching the
characters in P$ with the edge labels

5

To count the number of strings that
start with P:

e Find the node corresponding to P

e Return the number of $s in the G
subtree (stored in the node) O

Tries: Find (Sketch)

P = RAG QR

Find(P): (')
e Walk down the tree matching the A
characters in P$ with the edge labels

5

To count the number of strings that
start with P:

e Find the node corresponding to P Q$
e Return the number of $s in the G
subtree (stored in the node) O

e The actual matches can be listed in O(1) additional time
per match by following pointers

Tries: Predecessor Queries (sketch)

1" = RAG O
R
O
A
Predecessor(7T):
e Walk down a path (vg,v1,vs...) of the G T
tree matching the characters in T'$ with
the edge labels
s B E
D, O
$ $

Tries: Predecessor Queries (sketch)
1" = RAG O

Predecessor(7T):

e Walk down a path (vg,v1,vs...) of the
tree matching the characters in T'$ with
the edge labels

Tries: Predecessor Queries (sketch)
1" = RAG O

Predecessor(7T):

e Walk down a path (vg,v1,vs...) of the
tree matching the characters in T'$ with
the edge labels

— If T'$ is found we are done

— Otherwise, stop at the node v;
matching the longest prefix 1115 ... T;

Tries: Predecessor Queries (sketch)

TS = 171515 ... 1" = RAG O
R
O
A
Predecessor(7T):

e Walk down a path (vg,v1,vs...) of the
tree matching the characters in T'$ with
the edge labels

— If T'$ is found we are done

— Otherwise, stop at the node v;
matching the longest prefix 1115 ... T;

e Find the deepest ancestor of v; of v;
(possibly v; itself) such that 7 has a
strict predecessor u w.r.t. v;.

Tries: Predecessor Queries (sketch)

TS = 171515 ... 1" = RAG O
R
O
A
Predecessor(7T):

e Walk down a path (vg,v1,v2...) of the
tree matching the characters in T'$ with
the edge labels

— If T'$ is found we are done

— Otherwise, stop at the node v;
matching the longest prefix 1115 ... T;

e Find the deepest ancestor of v; of v;
(possibly v; itself) such that 7 has a
strict predecessor u w.r.t. v;.

. »
e Follow the pointers from uw to the RADAR
maximum string in its subtree

Tries: Predecessor Queries (sketch)
TS = 171515 ... 1" = RAG O

The strict predecessor of o € X w.r.t. a node v, if it R

exists, is the child u of v such that (v,u) has the largest ()
label that is smaller than o

Predecessor(7T):

e Walk down a path (vg,v1,v2...) of the
tree matching the characters in T'$ with
the edge labels

— If T'$ is found we are done

— Otherwise, stop at the node v;
matching the longest prefix 1115 ... T;

e Find the deepest ancestor of v; of v;

(possibly v; itself) such that 7 has a
strict predecessor u w.r.t. v;.

. »
e Follow the pointers from uw to the RADAR
maximum string in its subtree

Tries: Predecessor Queries (sketch)
TS = 171515 ... 1" = RAG O

The strict predecessor of o € X w.r.t. a node v, if it R

exists, is the child u of v such that (v,u) has the largest ()
label that is smaller than o

Predecessor(7T):

e Walk down a path (vg,v1,v2...) of the
tree matching the characters in T'$ with
the edge labels

— If T'$ is found we are done

— Otherwise, stop at the node v;
matching the longest prefix 1115 ... T;

e Find the deepest ancestor of v; of v; .
(possibly v; itself) such that T); has a b Time?
strict predecessor u w.r.t. v;. ’

" Depends on ho
e Follow the pointers from u to the RADAI{ pen W

maximum string in its subtree the tree is stored

Representing Tries

Array (dense) n = #nodes = O (3. |T;])
ADEGRST
a : X9 X9 X|*X|® E:{A7D7E7G7R787T}
v v v
b d (@)
D G T

Representing Tries

Array (dense) n = #nodes = O (3. |T;])
ADEGRST
a : X ? X f X | X f E:{A7D7E7G7R’787T}
v v v
b c d (@)
D G T
Space: O(|X]) 2 < <

Time to find a symbol’s edge: O(1)

Representing Tries

Array (dense) n = #nodes = O (3. |T;])
ADEGRST
a : X ? X f X | X f E:{A7D7E7G7R’787T}
v v v
b c d (@)
D G T
Space: O(|X]) 2 < <

Time to find a symbol’s edge: O(1)
Time to find predecessor: O(|%])

Representing Tries

Array (dense) n = #nodes = O (3. |T;])
ADEGRST
a : X|® D ® G|G ¢ E:{A7D7E7G7R’787T}
v v v
b c d (@)
D G T
Space: O(|X]) 2 < <

Time to find a symbol’s edge: O(1)
Time to find predecessor: O(|%])

Representing Tries

Array (dense) n = #nodes = O (3. |T;])
ADEGRST
a : X|® D ® G|G ¢ E:{A,D,E,G,R,S,T}
v v v
b c d (@)
D G T
Space: O(|X]) 2 < <

Time to find a symbol's edge: O(1)
Time to find predecessor: Q=TT O(1)

Representing Tries

Array (dense) n = #nodes = O (3. |T;])
ADEGRST
a : X|® D ® G|G ¢ E:{A,D,E,G,R,S,T}
v v v
b c d (@)
D G T
Space: O(|X]) 2 < <

Time to find a symbol's edge: O(1)
Time to find predecessor: Q=TT O(1)

Overall space: O(|X| - n)
Overall time: O(|P|)

Array (sparse)

a .

Representing Tries

D:

G

> -0

O <O

Q<0

n = #nodes = O () _, |T;])

Y = {A,D,E,G,R,S,T}

Array (sparse)

Representing Tries

a . D

G

T

Balanced Binary Search Tree

> -0

O <0

°
v
d

n = #nodes = O () _, |T;])

> — {A,D,E,G,R,S,T)

Representing Tries

Array (sparse) n = #nodes = O (3. |T}|)
a: [Die GQI TQI > ={A,D,E,G,R,S, T}
v
b d
¢ (@)
Balanced Binary Search Tree DG !
O © (d

Space: O(#children)

Representing Tries

Array (sparse) n = #nodes = O (3. |T}|)
a: [Die GQI TQI > ={A,D,E,G,R,S, T}
v
b d
¢ (@)
Balanced Binary Search Tree DG !
O © (d

Space: O(#children)

Time to find a symbol’s edge/predecessor:
O(log #children) = O(log |X|)

Representing Tries

Array (sparse) n = #nodes = O (3. |T}|)
a: [Die GQI TQI > ={A,D,E,G,R,S, T}
v
b d
¢ (@)
Balanced Binary Search Tree DG !
O © (d

Overall space: O(n)
Overall time: O(|P|log |X|)

Space: O(#children)

Time to find a symbol’s edge/predecessor:
O(log #children) = O(log |X|)

Representing Tries

Weight-Balanced BSTs n = #nodes = O (3", |T}|)

Each vertex of the trie has a weight equal

to the number of leaves in its subtree @
D G T
Recursively construct a binary search tree O ©)
by splitting the children in the trie so that 5
the sum of their weights is as balanced as
possible
@
® © @

Representing Tries

Weight-Balanced BSTs n = #nodes = O (3", |T}|)

Each vertex of the trie has a weight equal

to the number of leaves in its subtree @
D G T

Recursively construct a binary search tree O ©)
by splitting the children in the trie so that 5
the sum of their weights is as balanced as
possible

b (@)

ol @

® | © @

Representing Tries

Weight-Balanced BSTs n = #nodes = O (3", |T}|)

Each vertex of the trie has a weight equal

to the number of leaves in its subtree @
D G T
Recursively construct a binary search tree (03 © @

by splitting the children in the trie so that
the sum of their weights is as balanced as
possible

Representing Tries

Weight-Balanced BSTs n = #nodes = O (3", |T}|)

Each vertex of the trie has a weight equal

to the number of leaves in its subtree @
D G T
Recursively construct a binary search tree (03 © @

by splitting the children in the trie so that
the sum of their weights is as balanced as
possible

Space: O(#children)
Overall space: O(n)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

If the interval [3w(v), 2w(v)] contains more than one segment:

CO00O0 O O
8 6

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

If the interval [3w(v), 2w(v)] contains more than one segment:

CO00O0 O O
8 6

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

If the interval [3w(v), 2w(v)] contains more than one segment:

v v

CO00O0 O O
8 6

o the weight of each children of v is at most Zw(v)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < 2

(v) or are leaves.

If the interval [3w(v), 2w(v)] contains a single segment, let = be the

corresponding leaf

sw(v) Fw(v)

\

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

If the interyal [2w(v), 2w(v)] contains a single segment, let x be the
corresponding leaf

sw(v) Fw(v)

v

e v splits the segments irﬁmediately OO N /OO O

before/after x.

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

If the interyal [2w(v), 2w(v)] contains a single segment, let x be the
corresponding leaf

i’wa ng @
sul) - Ju) @ @

e v splits the segments immediately OO N /OO O
before/after x. 4 9 8 1 2 4

e Let v/ be the child of v that contains and let v/ be the other child

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

If the interyal [2w(v), 2w(v)] contains a single segment, let x be the
corresponding leaf

sw(v) Fw(v)

v

e v splits the segments immediately
before/after x.

4 9 8 1 2 4
e Let v/ be the child of v that contains and let v/ be the other child

o w(v") < %w(v)

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.
If the interval [3w(v), 2w(v)] contains a single segment, let = be the
corresponding leaf

sw(v')

e v splits the segments immediately

before/after x. 4 9 3 1 2 4
e Let v/ be the child of v that contains and let v/ be the other child

o w(v") < %w(v)

e 1z is the first or last leaf in the subtree of v/ and w(x) > sw(v’)

Representing Tries
Weight-Balanced BSTs
2

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.
If the interval [3w(v), 2w(v)] contains a single segment, let = be the
corresponding leaf

Ju(v)

e v splits the segments immediately

before/after x. 4 9 1 2 4
e Let v/ be the child of v that contains and let v/ be the other child

o w(v") < %w(v)
e 1 is the first or last leaf in the subtree of v and w(x) >

e One child of v is = and the other child weighs < w(v') <

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Traversing two edges of a weight-balanced BST either:

e Brings us to the next node in the trie, i.e., we advance one character
Into P; or

Can only happen O(|P|) times

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Traversing two edges of a weight-balanced BST either:

e Brings us to the next node in the trie, i.e., we advance one character
Into P; or

Can only happen O(|P|) times

e Reduces the weight (i.e, the number of leaves in the trie reachable
from the current node) by 2/3

Can only happen O(logs, #leaves) = O(log k) times

Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Traversing two edges of a weight-balanced BST either:

e Brings us to the next node in the trie, i.e., we advance one character
Into P; or

Can only happen O(|P|) times
e Reduces the weight (i.e, the number of leaves in the trie reachable

from the current node) by 2/3
Can only happen O(logs, #leaves) = O(log k) times

Overall space: O(n) Overall time: O(|P| + log k)

Representing Tries: Recap

Space Query Time
Array (dense) O(|%] - n) O(|P))
Array (sparse) / BST O(n) O(|P|log |X])

Weight-balanced BST O(n) O(|P| + logk)

Representing Tries: Recap

Space Query Time
Array (dense) O(|%] - n) O(|P])
Array (sparse) / BST O(n) O(|P|log |X])
Weight-balanced BST O(E) O(|P| + logk)

Optimal

Representing Tries: Recap

Space Query Time
Array (dense) O(|%] - n) O(|P])
Array (sparse) / BST O(n) O(|P|log |X])
Weight-balanced BST 0(2) O(|P| + logk)

Can we get rid
of this term?

Optimal

Representing Tries: Recap

Space Query Time
Array (dense) O(|%] - n) O(|P])
Array (sparse) / BST O(n) O(|P|log |X])
Weight-balanced BST 0(2) O(|P| + logk)

Can we get rid
of this term?

Almost. ..

Optimal

Indirection

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Indirection

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Find the set M of all maximally deep vertices with at least |>| descendants

Indirection

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Example for |X| =7
2)

(¥ ()
(#)

<

Find the set M of all maximally deep vertices with at least |>| descendants

Indirection

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Example for |X| =7
2)

(¥ (R
(8)

<O

Find the set M of all maximally deep vertices with at least |>| descendants

Split the trie into a tree T” containing all the ancestors of the vertices in
M and several bottom-trees in T\ T".

Indirection

We can use a similar technique to the one we encountered while

designing level ancestor oracles

‘I-lll‘

Find the set M of all

Example for |X| =7

maximally deep vertices with at least |>| descendants

Split the trie into a tree T” containing all the ancestors of the vertices in

M and several bottom-trees in T\ T".

Indirection

We can use a similar technique to the one we encountered while
designing level ancestor oracles

Example for |X| =7

I .
Find the set M of all maximally deep vertices with at least |>| descendants

Split the trie into a tree T” containing all the ancestors of the vertices in
M and several bottom-trees in T\ T".

Indirection

Storing the top tree:

The number of leaves of T is at most %

Fact: A tree with £ leaves has at most ¢ — 1 branching nodes
(i.e., nodes with at least 2 children)

Indirection

Storing the top tree:

The number of leaves of T” is at most %
Fact: A tree with £ leaves has at most ¢ — 1 branching nodes

(i.e., nodes with at least 2 children)
Space

e Store leaves using dense arrays O(1X] - 557) = O(n)

Indirection

Storing the top tree:

The number of leaves of T is at most IE\

Fact: A tree with £ leaves has at most ¢ — 1 branching nodes

(i.e., nodes with at least 2 children)
Space

e Store leaves using dense arrays O(1X] - 557) = O(n)
e Store branching nodes using dense arrays O(|X] - %) = O(n)

Indirection

Storing the top tree:

The number of leaves of T is at most |—"§]‘

Fact: A tree with £ leaves has at most ¢ — 1 branching nodes
(i.e., nodes with at least 2 children)

Space
e Store leaves using dense arrays O(1X] - 557) = O(n)
e Store branching nodes using dense arrays O(|X] -) = O(n)

e Store the unique child of each non-branching nodes explicitly O(n)

Indirection

Storing the top tree:

The number of leaves of T is at most |—"§]‘

Fact: A tree with £ leaves has at most ¢ — 1 branching nodes
(i.e., nodes with at least 2 children)

Space
e Store leaves using dense arrays O(1X] - 557) = O(n)
e Store branching nodes using dense arrays O(|X] -) = O(n)

e Store the unique child of each non-branching nodes explicitly O(n)
Time to find the next node O(1)

Indirection

Storing the top tree:

The number of leaves of T is at most |—"§]‘

Fact: A tree with £ leaves has at most ¢ — 1 branching nodes
(i.e., nodes with at least 2 children)

Space
e Store leaves using dense arrays O(1X] - 557) = O(n)
e Store branching nodes using dense arrays O(|X] -) = O(n)

e Store the unique child of each non-branching nodes explicitly O(n)
Time to find the next node O(1)

Storing the bottom trees:

e Store each bottom tree using a weight-balanced BST
Total space of all bottom trees: O(n)

Indirection

Storing the top tree:

The number of leaves of T is at most |—"§]‘

Fact: A tree with £ leaves has at most ¢ — 1 branching nodes
(i.e., nodes with at least 2 children)

Space
e Store leaves using dense arrays O(1X] - 557) = O(n)
e Store branching nodes using dense arrays O(|X] -) = O(n)

e Store the unique child of each non-branching nodes explicitly O(n)
Time to find the next node O(1)

Storing the bottom trees:

e Store each bottom tree using a weight-balanced BST
Total space of all bottom trees: O(n)

e Each bottom tree has at most |X| leaves
Time to navigate a bottom tree: O(|P|+ log|X])

Representing Tries: Recap

Space Query Time
Array (dense) O(1X] - n) O(|P])
Array (sparse) / BST O(n) O(|P|log |X])
Weight-balanced BST O(n) O(|P| +logk)
Indirection O(n) O(|P| + log [X])

Can be made dynamic with a time complexity of
O(|T| + log|X]|) per insertion/deletion of T

Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)

Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X
L = max;—1 . |1}

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)

e Create an empty trie
o Fori=1,... k:
e Insert 7} into the trie

e An in-order visit of the trie returns the strings in
lexicographic order

Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X
L = max;—1 . |1}

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)

e Create an empty trie Time

o Fori=1,... k:
O (X1, (1T + log [2)))

e Insert 7} into the trie)

e An in-order visit of the trie returns the strings in
lexicographic order

Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X
L = max;—1 . |1}

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)

e Create an empty trie Time

e Fori=1,... k: >O(n+klog\2\))

e Insert 7} into the trie)

e An in-order visit of the trie returns the strings in
lexicographic order

Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X
L = max;—1 . |1}

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)

e Create an empty trie Time

e Fori=1,... k: >O(n+klog\2\))

e Insert 7} into the trie)

e An in-order visit of the trie returns the strings in O(n)
lexicographic order

Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X
L = max;—1 . |1}

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)

e Create an empty trie Time

e Fori=1,... k: >O(n+klog\2\))

e Insert 7} into the trie)

e An in-order visit of the trie returns the strings in O(n)
lexicographic order

Overall time: O (n + klog |X]))

Application: Packet Routing

Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Packet Routing Table

. Src: Destination Interface

. Dst: 101.167.200.15 | 169.0.0.0/11 ethl

§ | 169.48.0.0/12 PppPO

E 169.128.0.0/10 ethl
169.160.0.0/11 eth0
96.0.0.0/3 tunl
96.0.0.0/5 tun0
100.0.0.0/8 eth0
127.0.0.0/8 o

default wlan0

Application: Packet Routing

Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Packet Routing Table

. Src: Destination Interface

. Dst: 0110010110100111. . | 10101001000% ethl

' ' | 101010010011$% ppp0

"""""""""""""""""""""" 10101001109 ethl
10101001101% ethO
011% tunl
011000% tunO
01100100% ethO
01111111$% lo

$ wlan0

Application: Packet Routing

Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Packet Routing Table

. Src: Destination Interface

. Dst: 0110010110100111. . | 10101001000% ethl

' ' | 101010010011$% ppp0

"""""""""""""""""""""" 10101001109 ethl
10101001101% ethO
011% tunl
011000% tunO
01100100% ethO
01111111$% lo

$ wlan0

Application: Packet Routing

Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Packet Routing Table

. Src: Destination Interface

i Dst: 0110010110100111... i | 101010010003 ethl

' P | 101010010011$ ppp0

"""""""""""""""""""""" 1010100110$% ethl
10101001101% ethQ
011% tunl
011000% tun0
01100100% ethQ
01111111% lo
$ wlan0

Given a pattern P we want the longest string in our collection that
appears as a prefix of P

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 9~0—_ 10101001
K 011 O—
O—0o
wlan0 () ()
$ = Q
000 O 11111 000 ~10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 9~0—_ 10101001
X 011 O—n
O—0
wlan0 () ()
@
$ 0085 O 11111 oo © 10
tunl () () ()
0/ ©100 $ 0 11 $ 1
v QO
() O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO || ethO ethl || pppO ethO

e Find the node v corresponding to the maximal prefix that matches P

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 9~0—_ 10101001
% 011 O—0_
wlan0 () - ()
8000 0 11111 00,10
¢ | tunl () () ()
0/ Q100 $ 0 / Wit $ 1
v QO
() (O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO |[| ethO ethl || pppO ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 9~0—_ 10101001
X 011 O—0_
wlan0 () > ()
Q
$ 004 O 11111 000 10
¢ | tunl () () ()
0/ ©100 $ 0 11 $ 1
v QO
() O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 - 11 $ 1
@
() (O lo () () |eth1| O
P =10101001001110... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 - 11 $ 1
@
() (O lo () () |eth1| O
P =10101001001110... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () |eth1| O
P =10101001100010... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () leth1| O
P =10101001100010... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢

Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () leth1| O
P =10101001100010... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢
e Route the packet towards the interface stored in /¢

Time: O(address length)

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

Previous constructions apply

Use the first character on each
edge as the key

Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

T, =RADAR$ 15 =RATE$
» O 4
.. 0:1 :
IR RA 12:3
TE
D o 3
—>
1 $/ \ AR$ $ S$
ES$
O
E
g <>$ Previous constructions apply
O Use the first character on each
edge as the key

Store edge labels as indices in the
Input strings

Suffix Trees

Back to String Matching

Problem: Given an alphabet], a text T' € >* and a pattern
P € ¥*, find some occurrence/all occurrences of P in T.

> ={A,B,...,Z,ab,...,z,.}

' = Bart._played.darts._at_the_party

P = art

Want: A data structure that can preprocesses 1" and answer
string matching queries

Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

>, = {A,B,N, S} T = BANANASS

Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

01234567
>, = {A,B,N, S} T = BANANASS

[

6 S$

5 AS$

4 NAS$

3 ANAS$

2 NANAS$

1 ANANAS$
O BANANAS$

Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

01234567
>, = {A,B,N, S} T = BANANASS

7% o
=
6 S$ =
5 AS$ @
4 NASS$ O
3 ANAS$ NAS$
2 NANASS$
1 ANANASS$

O BANANASS$

Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

01234567
>, = {A,B,N, S} T = BANANASS

[

6 S$

5 AS$

4 NAS$

3 ANAS$

2 NANAS$

1 ANANAS$
O BANANAS$

Label edges with indices into T’

Label leaves with the index of the start of the corresponding suffix

Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

01234567
>, = {A,B,N, S} T = BANANASS

[

6 S$

5 AS$

4 NAS$

3 ANAS$

2 NANAS$

1 ANANAS$
O BANANAS$

Label edges with indices into T’

Label leaves with the index of the start of the corresponding suffix

Space: O(# nodes) = O(# leaves) = O(|T)

Applications: String Matching

Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v

Applications: String Matching

$SYNVNVL

—————

Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v
e Arrange leaves in a linked list to find the next match in O(1) time

Applications: String Matching

$SYNVNVL

—————

Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v
e Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P| 4+ log |X| + #desired matches)

Applications: String Matching

$SYNVNVL

—————

Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v
e Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P| 4+ log |X| + #desired matches)
Number of matches in time O(|P| + log |X|) (store # leaves in the subtree)

Applications: Longest Repeated Substring

Find the longest string that appears at least twice in T as a substring:

Applications: Longest Repeated Substring

Find the longest string that appears at least twice in T as a substring:

e Assign a length to each edge equal to the number of symbols in its
label

Applications: Longest Repeated Substring

Find the longest string that appears at least twice in T as a substring:

e Assign a length to each edge equal to the number of symbols in its
label

e Find the deepest (w.r.t. edge lengths) node with at least two
descendants

Applications: Longest Repeated Substring

Find the longest string that appears at least twice in T as a substring:

e Assign a length to each edge equal to the number of symbols in its
label

e Find the deepest (w.r.t. edge lengths) node with at least two
descendants

Time: O(|T))

Applications: Longest Common Prefix

01234567

T — BANANASS
A

Given indicies ¢ and 7, find the longest common prefix of T'|i :| and T'[j]

e Look at the leaves u;, u; corresponding to T'[: :] and T'[j :]

Applications: Longest Common Prefix

01234567

T — BANANASS
A

Given indicies ¢ and 7, find the longest common prefix of T'|i :| and T'[j]
e Look at the leaves u;, u; corresponding to T'[: :] and T'[j :]

e Find the common prefix of the paths from the root to u; and u;

Applications: Longest Common Prefix

01234567

T — BANANASS
A

Given indicies ¢ and 7, find the longest common prefix of T'|i :| and T'[j]
e Look at the leaves u;, u; corresponding to T'[: :] and T'[j :]

e Find the common prefix of the paths from the root to u; and u;

e This is the path from the root to the lowest common ancestor of w;
and u;

Applications: Longest Common Prefix

01234567

T — BANANASS
A

Given indicies ¢ and 7, find the longest common prefix of T'|i :| and T'[j]
e Look at the leaves u;, u; corresponding to T'[: :] and T'[j :]

e Find the common prefix of the paths from the root to u; and u;

e This is the path from the root to the lowest common ancestor of w;
and u;
We already know how to answer LCA queries in constant time!

Applications: Fiding Additional Matches

Given an occurrence T'[i : j] of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P

Applications: Fiding Additional Matches

Given an occurrence T'[i : j] of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
e Start from the leaf corresponding to T’ :|

Applications: Fiding Additional Matches

Given an occurrence T'[i : j] of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
e Start from the leaf corresponding to T’ :|
e Walk up the tree for “|T'| — 5" characters

Applications: Fiding Additional Matches

Given an occurrence T'[i : j] of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
e Start from the leaf corresponding to T’ :|
e Walk up the tree for “|T'| — 5" characters
e [his is a weighted level ancestor query!

Applications: Fiding Additional Matches

Given an occurrence T'[i : j] of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
e Start from the leaf corresponding to T’ :|
e Walk up the tree for “|T'| — 5" characters
e [his is a weighted level ancestor query!

We can answer weighted LA queries in O(loglog|T|) time!

Applications: Fiding Additional Matches

Given an occurrence T'[i : j]\ of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
e Start from the leaf corresponding to T’ :|
e Walk up the tree for “|T'| — 5" characters
e [his is a weighted level ancestor query!
e Link leaves to find the other occurrences in O(1) additional time each

We can answer weighted LA queries in O(loglog|T|) time!

Applications: Document Retrieval

Preprocess collection of documents 17,715, ..., T} to quickly find all
documents that contain a pattern P

Applications: Document Retrieval

Preprocess collection of documents 17,715, ..., T} to quickly find all
documents that contain a pattern P

Use the end symbol $; for document T} and build a suffix-tree with the
suffxes of all the strings T;$;

Applications: Document Retrieval

Preprocess collection of documents 17,715, ..., T} to quickly find all
documents that contain a pattern P

Use the end symbol $; for document T} and build a suffix-tree with the
suffxes of all the strings T;$;

sausage$; sugar$, samosa$; salsa$,

) ¢ % 1
SEA RN * % a2
$3 D4 P2 ff’f% 5} , W) N
2
5 5% %
f‘%ﬂ@

FEOOB0

Applications: Document Retrieval

s, g & g%o“& %
1 32 83§, ~ AT u
slefefo] d 0 OBVV'N O
=2 & %)
%&@ a Qoé@, O(E;Gé
$3 $4~69§e e%é” % » P

T506650 66 D66

Og
Index the leaves from left to right CD/ O O\()

Applications: Document Retrieval

® N
S1 %2 83 8, » 8 %@%a%‘?& &8 u
ofofofof ¢ O BBEE N O
//é%@ % &%
$3 $4~69§e 6‘3‘5)’ = @% ébs‘ g%

900D ©6 % D66
Index the leaves from left to right ‘/ ‘ @ @@

Applications: Document Retrieval

/ 7
60%

31 %2 83 g, & gﬁ% %30%‘{2 % u
<2
@ﬁ@f@/@///gg ® el loiole e
59% @ o %‘*@ oé?G&
IR é”@@ & = K &z
GEOOODD 0B /gi DO G

Index the leaves from left to right ‘/ ‘ @ @@

Store an array A where Ali| poinst to the document of leaf ¢
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26

Applications: Document Retrieval

/ 4 P =sa
5182 85 8, g%;%?o%% &g u
ocee é @@@Spé\gp
$: 84 S5 g9§e° &@@ =2 H % :"‘z%‘%
TGO DD @@ - '@

Index the leaves from left to right ‘ ‘ @ @@ -

Store an array A where Ali| poinst to the document of leaf ¢
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26

Searching for a pattern P returns the interval Ali : j] containing all and
only the leaves corresponding to the matches of P

Applications: Document Retrieval

/ P =sa
51 820 857 s, %go%%*%@% o u
ésee ") bBwE’R O
$5 B4 S5 g?g%o &@@ % :"‘z%‘%
TGO DD @@ - C@

\/

Index the leaves from left to right ‘ ‘ @ @@ -

Store an array A where Ali| poinst to the document of leaf ¢
18 19 20 21 22 23

Searching for a pattern P returns the interval Ali : j] containing all and
only the leaves corresponding to the matches of P

Find all distinct documents (colors) in Al : j]

Applications: Document Retrieval

/ 4 P =sa
ee
2 LN
ddas @ e Q \Q
095% Q@ H 0{3?0&
$5 $4 5o §'9 P é”@@ é% &£

TEED® DO @@ - Y Y

Index the leaves from left to right ‘ ‘ @ @@ -

Store an array A where Ali| poinst to the document of leaf ¢
18 19 20 21 22 23

Searching for a pattern P ret Time:

only the leaves corresponding O(|P| + log |%| + # retrieved documents)
Find all distinct documents (c via range minimum queries

Constructing Suffix Trees
&
Suffix Arrays

Suffix Arrays & Suffix Trees

1" = BANANAS

Sort all suffixes along with their start index

BANANASS
ANANAS$
NANAS$
ANAS$
NAS$

AS$

S$

$

N O O = W N~ O

Suffix Arrays & Suffix Trees

1" = BANANAS

Sort all suffixes along with their start index

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

@)EEN SR ENG BNCCE e

Suffix Arrays & Suffix Trees

1" = BANANAS

Sort all suffixes along with their start index

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

A\ Suffix

array

D= O[O W]

Suffix Arrays & Suffix Trees

1" = BANANAS

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

71 $
ANANAS$
ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

A\ Suffix

array

SN O O = W O

@pll TS I \ON Napll e i RGN I

Suffix Arrays & Suffix Trees

1" = BANANAS

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

71 $
ANANAS$
ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

A\ Suffix LCP /

array array

O[O |W|OD

@pll TS I \ON Napll e i RGN I

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

7

@pll TS I \ON Napll e i RGN I

Suffix Arrays & Suffix Trees

1" = BANANAS

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

O[O |W|OD

A\ Suffix LCP /

array array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

013111010120

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

7

@pll TS I \ON Napll e i RGN I

Suffix Arrays & Suffix Trees

1" = BANANAS

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

O[O |W|OD

A\ Suffix LCP /

array array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

013111010120

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

7

@pll TS I \ON Napll e i RGN I

Suffix Arrays & Suffix Trees

1" = BANANAS

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

O[O |W|OD

A\ Suffix LCP /

array array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

013111010120

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

7

@pll TS I \ON Napll e i RGN I

Suffix Arrays & Suffix Trees

1" = BANANAS

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

O[O |W|OD

A\ Suffix LCP /

array array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

013111010120

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

7

@pll TS I \ON Napll e i RGN I

Suffix Arrays & Suffix Trees

1" = BANANAS

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

O[O |W|OD

A\ Suffix LCP /

array array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

013111010120

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

7

@pll TS I \ON Napll e i RGN I

Suffix Arrays & Suffix Trees

1" = BANANAS

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

O[O |W|OD

A\ Suffix LCP /

array array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices

013111010120

Suffix Arrays & Suffix Trees

T" = BANANAS We can construct a suffix tree from
the Suffix and LCP arrays

Length of the longest common

prefix between adjacent suffixes A construction similar to the one of
(w.r.t. the sorted order) cartesian trees yields the subtree of

71 g \OV branching vertices

L| ANANASS 3 013[1(0]0[2]0

3| ANAS$]

5| ASS$ 0 0101010

0 | BANANAS$ 0

2 | NANASS$

2 1 2
4| NAS$ 0 ! <§> &
6| S$
3 5 2 4
A\Suffix LCP .
Place leaves using an
array - array L 3 in-order traversal

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

010(0(0

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

010(0(0

$ (7 DEROENE 6

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

010(0(0

$ (7 DEROENE 6

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

010(0(0

$ (7 DEROENE 6

1 3
ANANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0]0]0]0
$
$ (7 DEROENE 6
3) (5 2) (4
NASS
DINE

ANANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0]0]0]0
$
$ (7 DEROENE 6
3) (5 2) (4
NASS
DINE

ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0]0[0]0
$
$ (7 DEROENE 6
3) (5 2) (4
NAS$ S$
DINE

ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0]0[0]0
$
$ (7 DEROENE 6
NA
3) (5 2) (4
NAS$ S$
DINE

ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0]0[0]0
$
$ (7 DEROENE 6
NA
3) (5 2) (4
AS$
NAS$ S$
DINE

ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0(0]10]0

$

$ (7 DEROENE 6

NA S$

3 D 2 4
AS$

NAS$ S$
1 3

ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0(0]10]0
$ A
$ (7 DEROENE 6
NA S$
3 D 2 4
AS$
NAS$ S$

1 3
ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0101010
69
$ A 5 NA S$
=
$ (7) s00) (2 6
BANANAS$ S$
NA S$ NASS g
3 H 2 4
AS$ NANAS$ NAS$
NAS$ S$
1 3

ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0 2 010 Construction time
$ v/ F NA S$ (from Suffix + LCP Arrays):
=
s (7 1) & @ 9 6 O(|T1)
BANANASS S$
NA S$ NASS 3%
3 5 2 4
AS$ NANAS$ NAS$
NAS$ S$

1 3
ANANAS$ ANAS$

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0

0

$ A

s (7 15@

BANANASS$

NA S$

3 D

AS$
NAS$ S$

1 3
ANANAS$ ANAS$

0
g
=

0

NAS$

2

NA

2

S$

NANAS$ NAS$

Construction time
(from Suffix + LCP Arrays):
o(|T)

Suffix + LCP Arrays can be
built in O(|T'|) time
[J. Karkkainen, P. Sanders, ICALP’03]

Suffix Arrays & Suffix Trees

Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0 2 O]9 Construction time
$ v/ F NA S$ (from Suffix + LCP Arrays):
NOoBROEIONROERG o(T))
BANANASS S :
NA 59 NASS S$ ’ Suffix + LCP Arrays can be
AS$ NANAS$ NASS [J. Karkkadinen, P. Sanders, ICALP'03]
NAS$ S$

DIRE |

ANANAS$ ANAS]]
$ 8 Suffix trees can be built

in O(|T|) time!

