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Tries (Prounounced as“try")

Data structure to store a dynamic collection of k strings over

an alphabet X
> ={A,D,E,G,R,S, T}

{ RAD, RADAR  RAG RAGE  RAGS, RATE }

)

¢ Insert(T ) —add-F—to-the-colectionof strings

e Delete(T ) remove Ffrom—the—eolection-of strings

e Find(P): return whether P is in the collection

e Count/return the strings in the collection that start with P
e Predecessor(T): return the largest string in the collection

that is “not smaller than” T" (w.r.t. the lexicopraphic order)

We will only focus on the static case



Tries

Pretend that each string ends with a special “end marker” symbol $

RAD RADAR RAG RAGE RAGS RATE



Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADAR$ RAG$ RAGES RAGSS$ RATES



Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADAR$ RAG$ RAGES RAGSS$ RATES

Build a tree in which:

e Edges are labelled with a symbol in
¥ U {$} and are sorted

O
R
O
A




Tries

Pretend that each string ends with a special “end marker” symbol $

RADS RADARS RAG$ RAGES RAGSS RATE S O

R
Build a tree in which: C?q

e Edges are labelled with a symbol in
¥ U {$} and are sorted

T
e Each string T corresponds to a
root-to-leaf path and vice-versa E
O
$ |9




Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADARS RAGS RAGES RAGSS RATES ©

Build a tree in which:

e Edges are labelled with a symbol in

¥ U {$} and are sorted T
e Each string T corresponds to a 1
root-to-leaf path and vice-versa E
| | @
e Satellite data is often useful, e.g.: ¢ %

— Number of $s in each subtree




Tries

Pretend that each string ends with a special “end marker” symbol $

RAD$ RADARS RAGS RAGES RAGSS RATES QR
O
A

Build a tree in which:

e Edges are labelled with a symbol in
¥ U {$} and are sorted

e Each string T corresponds to a
root-to-leaf path and vice-versa

e Satellite data is often useful, e.g.:

— Number of $s in each subtree
— Pointers to the first/last leaf in the subtree




Tries

Pretend that each string ends with a special “end marker” symbol $

RADS RADARS RAG$ RAGES RAGS S RATE S O

R
Build a tree in which: C?q

e Edges are labelled with a symbol in
¥ U {$} and are sorted

e Each string T corresponds to a

root-to-leaf path and vice-versa E N E
) O
e Satellite data is often useful, e.g.: R S ¢ S
— Number of $s in each subtree O O O
— Pointers to the first/last leaf in the subtree $ C :
— Pointers from leaves to strings O

RADAR <« RAGE” RATE



Tries

Pretend that each string ends with a special “end marker” symbol $

RADS RADARS RAG$ RAGES RAGS S RATE S O
R
Build a tree in which: C?q

e Edges are labelled with a symbol in
¥ U {$} and are sorted

e Each string T corresponds to a
root-to-leaf path and vice-versa

e Satellite data is often useful, e.g.:

— Number of $s in each subtree (

— Pointers to the first/last leaf in the subtree‘x\ g
— Pointers from leaves to strings ‘()A

— Leaves arranged in a (doubly) linked list
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Tries: Find (Sketch)

P = RAG QR

Find(P): (')
e Walk down the tree matching the A
characters in P$ with the edge labels

5

To count the number of strings that
start with P:

e Find the node corresponding to P Q$
e Return the number of $s in the G
subtree (stored in the node) O

e The actual matches can be listed in O(1) additional time
per match by following pointers
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Tries: Predecessor Queries (sketch)
TS = 171515 ... 1" = RAG O

The strict predecessor of o € X w.r.t. a node v, if it R

exists, is the child u of v such that (v,u) has the largest ()
label that is smaller than o

Predecessor(7T):

e Walk down a path (vg,v1,v2...) of the
tree matching the characters in T'$ with
the edge labels

— If T'$ is found we are done

— Otherwise, stop at the node v;
matching the longest prefix 1115 ... T;

e Find the deepest ancestor of v; of v; .
(possibly v; itself) such that T); has a b Time?
strict predecessor u w.r.t. v;. ’

" Depends on ho
e Follow the pointers from u to the RADAI{ pen W

maximum string in its subtree the tree is stored
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Array (dense) n = #nodes = O (3. |T;])
ADEGRST
a : X|® D ® G|G ¢ E:{A,D,E,G,R,S,T}
v v v
b c d (@)
D G T
Space: O(|X]) 2 < <

Time to find a symbol's edge: O(1)
Time to find predecessor: Q=TT O(1)

Overall space: O(|X| - n)
Overall time: O(|P|)
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a .

Representing Tries

D:

G

> -0

O <O

Q<0

n = #nodes = O () _, |T;])

Y = {A,D,E,G,R,S,T}
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a . D

G

T

Balanced Binary Search Tree

> -0

O <0

°
v
d

n = #nodes = O () _, |T;])

> — {A,D,E,G,R,S,T)
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Array (sparse) n = #nodes = O (3. |T}|)
a: [Die GQI TQI > ={A,D,E,G,R,S, T}
v
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Overall space: O(n)
Overall time: O(|P|log |X|)
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Representing Tries

Weight-Balanced BSTs n = #nodes = O (3", |T}|)

Each vertex of the trie has a weight equal

to the number of leaves in its subtree @
D G T
Recursively construct a binary search tree (03 © @

by splitting the children in the trie so that
the sum of their weights is as balanced as
possible

Space: O(#children)
Overall space: O(n)
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Representing Tries
Weight-Balanced BSTs

Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.

Imagine the leaves in the subtree of v as consecutive segments with
length equal to their weight

If the interval [3w(v), 2w(v)] contains more than one segment:

v v

CO00O0 O O
8 6

o the weight of each children of v is at most Zw(v)
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Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.
If the interval [3w(v), 2w(v)] contains a single segment, let = be the
corresponding leaf

sw(v')

e v splits the segments immediately

before/after x. 4 9 3 1 2 4
e Let v/ be the child of v that contains  and let v/ be the other child

o w(v") < %w(v)

e 1z is the first or last leaf in the subtree of v/ and w(x) > sw(v’)
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Claim: All the grand-children u of v satisfy w(u) < £(v) or are leaves.
If the interval [3w(v), 2w(v)] contains a single segment, let = be the
corresponding leaf

Ju(v)

e v splits the segments immediately

before/after x. 4 9 1 2 4
e Let v/ be the child of v that contains  and let v/ be the other child

o w(v") < %w(v)
e 1 is the first or last leaf in the subtree of v and w(x) >

e One child of v is = and the other child weighs < w(v') <
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Can only happen O(|P|) times
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Traversing two edges of a weight-balanced BST either:

e Brings us to the next node in the trie, i.e., we advance one character
Into P; or

Can only happen O(|P|) times
e Reduces the weight (i.e, the number of leaves in the trie reachable

from the current node) by 2/3
Can only happen O(logs, #leaves) = O(log k) times

Overall space: O(n) Overall time: O(|P| + log k)
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Space Query Time
Array (dense) O(|%] - n) O(|P])
Array (sparse) / BST O(n) O(|P|log |X])
Weight-balanced BST 0(2) O(|P| + logk)

Can we get rid
of this term?

Almost. ..

Optimal
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I .
Find the set M of all maximally deep vertices with at least |>| descendants

Split the trie into a tree T” containing all the ancestors of the vertices in
M and several bottom-trees in T\ T".
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Indirection

Storing the top tree:

The number of leaves of T is at most |—"§]‘

Fact: A tree with £ leaves has at most ¢ — 1 branching nodes
(i.e., nodes with at least 2 children)

Space
e Store leaves using dense arrays O(1X] - 557) = O(n)
e Store branching nodes using dense arrays O(|X] - ) = O(n)

e Store the unique child of each non-branching nodes explicitly O(n)
Time to find the next node O(1)

Storing the bottom trees:

e Store each bottom tree using a weight-balanced BST
Total space of all bottom trees: O(n)

e Each bottom tree has at most |X| leaves
Time to navigate a bottom tree: O(|P|+ log|X])



Representing Tries: Recap

Space Query Time
Array (dense) O(1X] - n) O(|P])
Array (sparse) / BST O(n) O(|P|log |X])
Weight-balanced BST O(n) O(|P| +logk)
Indirection O(n) O(|P| + log [X])

Can be made dynamic with a time complexity of
O(|T| + log|X]|) per insertion/deletion of T



Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)
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Application: String Sorting

Sort a collection of k strings 14,15, ...,1} over X
L = max;—1 . |1}

Obs: A string comparison requires time O(L).
Naive sorting algorithm take time O(Lklogk) or O(Lk)

e Create an empty trie Time

e Fori=1,... k: >O(n+klog\2\))

e Insert 7} into the trie )

e An in-order visit of the trie returns the strings in O(n)
lexicographic order

Overall time: O (n + klog |X]))



Application: Packet Routing

Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Packet Routing Table

. Src: Destination Interface

. Dst: 101.167.200.15 | 169.0.0.0/11 ethl

§ | 169.48.0.0/12 PppPO

E 169.128.0.0/10 ethl
169.160.0.0/11 eth0
96.0.0.0/3 tunl
96.0.0.0/5 tun0
100.0.0.0/8 eth0
127.0.0.0/8 o

default wlan0




Application: Packet Routing

Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Packet Routing Table

. Src: Destination Interface

. Dst:  0110010110100111. . | 10101001000% ethl

' ' | 101010010011$% ppp0
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10101001101% ethO
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01111111$% lo
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with the most specific rule

Packet Routing Table

. Src: Destination Interface

. Dst:  0110010110100111. . | 10101001000% ethl

' ' | 101010010011$% ppp0
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011000% tunO
01100100% ethO
01111111$% lo
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Application: Packet Routing

Among all the destinations that match, a packet gets routed to the one
with the most specific rule

Packet Routing Table

. Src: Destination Interface

i Dst: 0110010110100111... i | 101010010003 ethl

' P | 101010010011$ ppp0

"""""""""""""""""""""" 1010100110$% ethl
10101001101% ethQ
011% tunl
011000% tun0
01100100% ethQ
01111111% lo
$ wlan0

Given a pattern P we want the longest string in our collection that
appears as a prefix of P



Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 9~0—_ 10101001
K 011 O—
O—0o
wlan0 () ()
$ = Q
000 O 11111 000 ~10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P
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Build a trie T" with all the addresses in the routing table.

3 ? 9~0—_ 10101001
X 011 O—n
O—0
wlan0 () ()
@
$ 0085 O 11111 oo © 10
tunl () () ()
0/ ©100 $ 0 11 $ 1
v QO
() O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO || ethO ethl || pppO ethO

e Find the node v corresponding to the maximal prefix that matches P



Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 9~0—_ 10101001
% 011 O—0_
wlan0 () - ()
8000 0 11111 00,10
¢ | tunl () () ()
0/ Q100 $ 0 / Wit $ 1
v QO
() (O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO |[| ethO ethl || pppO ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢
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Build a trie T" with all the addresses in the routing table.
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wlan0 () > ()
Q
$ 004 O 11111 000 10
¢ | tunl () () ()
0/ ©100 $ 0 11 $ 1
v QO
() O lo () () |eth1| O
P =01100101101... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢



Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 - 11 $ 1
@
() (O lo () () |eth1| O
P =10101001001110... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢



Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 - 11 $ 1
@
() (O lo () () |eth1| O
P =10101001001110... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢
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Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () |eth1| O
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tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢



Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () leth1| O
P =10101001100010... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢

e Route the packet towards the interface stored in /¢



Application: Packet Routing

Build a trie T" with all the addresses in the routing table.

3 ? 0=~ 10101001
K 011 OO0y
wlan0 () - ()
8000 O 11111 00 10
tunl ‘ . . ‘
0/ O100 $ 0 11 $ 1
@
() (O lo () () leth1| O
P =10101001100010... $ $ $ $ $
tunO || ethO ethl || ppp0 ethO

e Find the node v corresponding to the maximal prefix that matches P

e Walk up the tree searching for the deepest ancestor u of v incident
to a“$" edge towards a leaf ¢
e Route the packet towards the interface stored in /¢

Time: O(address length)



Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring
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Use the first character on each
edge as the key




Compressed Tries (Radix Trees)

Contract non-branching paths to a single edge labelled with the
corresponding substring

T, =RADAR$ 15 =RATE$
» O 4
.. 0:1 :
IR RA 12:3
TE
D o 3
—>
1 $/ \ AR$ $ S$
ES$
O
E
g <>$ Previous constructions apply
O Use the first character on each
edge as the key

Store edge labels as indices in the
Input strings



Suffix Trees



Back to String Matching

Problem: Given an alphabet ], a text T' € >* and a pattern
P € ¥*, find some occurrence/all occurrences of P in T.

> ={A,B,...,Z,ab,...,z,.}

' = Bart._played.darts._at_the_party

P = art

Want: A data structure that can preprocesses 1" and answer
string matching queries



Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

>, = {A,B,N, S} T = BANANASS
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5 AS$
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3 ANAS$
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1 ANANAS$
O BANANAS$



Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

01234567
>, = {A,B,N, S} T = BANANASS

7% o
=
6 S$ =
5 AS$ @
4 NASS$ O
3 ANAS$ NAS$
2 NANASS$
1 ANANASS$

O BANANASS$



Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

01234567
>, = {A,B,N, S} T = BANANASS

[

6 S$

5 AS$

4 NAS$

3 ANAS$

2 NANAS$

1 ANANAS$
O BANANAS$

Label edges with indices into T’

Label leaves with the index of the start of the corresponding suffix



Suffix Trees

The suffix tree of T is the compressed trie of all the suffixes of T'$

01234567
>, = {A,B,N, S} T = BANANASS

[

6 S$

5 AS$

4 NAS$

3 ANAS$

2 NANAS$

1 ANANAS$
O BANANAS$

Label edges with indices into T’

Label leaves with the index of the start of the corresponding suffix

Space:  O(# nodes) = O(# leaves) = O(|T)



Applications: String Matching

Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v
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Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v
e Arrange leaves in a linked list to find the next match in O(1) time
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Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v
e Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P| 4+ log |X| + #desired matches)



Applications: String Matching

$SYNVNVL

—————

Searching for a pattern P returns a compact representation of all
occurrences of P in T

e Find the node v corresponding to P
e The occurrences of P are all and only the leaves in the subtree of v
e Arrange leaves in a linked list to find the next match in O(1) time

Time: O(|P| 4+ log |X| + #desired matches)
Number of matches in time O(|P| + log |X|) (store # leaves in the subtree)



Applications: Longest Repeated Substring

Find the longest string that appears at least twice in T as a substring:
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Applications: Longest Repeated Substring

Find the longest string that appears at least twice in T as a substring:

e Assign a length to each edge equal to the number of symbols in its
label

e Find the deepest (w.r.t. edge lengths) node with at least two
descendants



Applications: Longest Repeated Substring

Find the longest string that appears at least twice in T as a substring:

e Assign a length to each edge equal to the number of symbols in its
label

e Find the deepest (w.r.t. edge lengths) node with at least two
descendants

Time: O(|T))



Applications: Longest Common Prefix

01234567

T — BANANASS
A

Given indicies ¢ and 7, find the longest common prefix of T'|i :| and T'[j ]

e Look at the leaves u;, u; corresponding to T'[: :] and T'[j :]
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e Find the common prefix of the paths from the root to u; and u;
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A

Given indicies ¢ and 7, find the longest common prefix of T'|i :| and T'[j ]
e Look at the leaves u;, u; corresponding to T'[: :] and T'[j :]

e Find the common prefix of the paths from the root to u; and u;

e This is the path from the root to the lowest common ancestor of w;
and u;



Applications: Longest Common Prefix

01234567

T — BANANASS
A

Given indicies ¢ and 7, find the longest common prefix of T'|i :| and T'[j ]
e Look at the leaves u;, u; corresponding to T'[: :] and T'[j :]

e Find the common prefix of the paths from the root to u; and u;

e This is the path from the root to the lowest common ancestor of w;
and u;
We already know how to answer LCA queries in constant time!



Applications: Fiding Additional Matches

Given an occurrence T'[i : j] of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
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Applications: Fiding Additional Matches

Given an occurrence T'[i : j] of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
e Start from the leaf corresponding to T’ :|
e Walk up the tree for “|T'| — 5" characters
e [his is a weighted level ancestor query!

We can answer weighted LA queries in O(loglog|T|) time!



Applications: Fiding Additional Matches

Given an occurrence T'[i : j]\ of P in T, find all other occurrences of P:
e \We want to quickly find the node that corresponds to P
e Start from the leaf corresponding to T’ :|
e Walk up the tree for “|T'| — 5" characters
e [his is a weighted level ancestor query!
e Link leaves to find the other occurrences in O(1) additional time each

We can answer weighted LA queries in O(loglog|T|) time!



Applications: Document Retrieval

Preprocess collection of documents 17,715, ..., T} to quickly find all
documents that contain a pattern P
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documents that contain a pattern P

Use the end symbol $; for document T} and build a suffix-tree with the
suffxes of all the strings T;$;



Applications: Document Retrieval

Preprocess collection of documents 17,715, ..., T} to quickly find all
documents that contain a pattern P

Use the end symbol $; for document T} and build a suffix-tree with the
suffxes of all the strings T;$;

sausage$; sugar$, samosa$; salsa$,

) ¢ % 1
SEA RN * % a2
$3 D4 P2 ff’f% 5} , W ) N
2
5 5% %
f‘%ﬂ@

FEOOB0



Applications: Document Retrieval

s, g & g%o“& %
1 32 83§, ~ AT u
slefefo] d 0 OBVV'N O
=2 & %)
%&@ a Qoé@, O(E;Gé
$3 $4~69§e e%é” % » P

T506650 66 D66

Og
Index the leaves from left to right CD/ O O\()



Applications: Document Retrieval

® N
S1 %2 83 8, » 8 %@%a%‘?& &8 u
ofofofof ¢ O BBEE N O
//é%@ % &%
$3 $4~69§e 6‘3‘5)’ = @% ébs‘ g%

900D ©6 % D66
Index the leaves from left to right ‘/ ‘ @ @@



Applications: Document Retrieval

/ 7
60%

31 %2 83 g, & gﬁ% %30%‘{2 % u
<2
@ﬁ@f@/@///gg ® el loiole e
59% @ o %‘*@ oé?G&
IR é”@@ & = K &z
GEOOODD 0B /gi DO G

Index the leaves from left to right ‘/ ‘ @ @@

Store an array A where Ali| poinst to the document of leaf ¢
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26




Applications: Document Retrieval

/ 4 P =sa
5182 85 8, g%;%?o%% &g u
ocee é @@@Spé\gp
$: 84 S5 g9§e° &@@ =2 H % :"‘z%‘%
TGO DD @@ - '@

Index the leaves from left to right ‘ ‘ @ @@ -

Store an array A where Ali| poinst to the document of leaf ¢
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26

Searching for a pattern P returns the interval Ali : j] containing all and
only the leaves corresponding to the matches of P




Applications: Document Retrieval

/ P =sa
51 820 857 s, %go%%*%@% o u
ésee " ) bBwE’R O
$5 B4 S5 g?g%o &@@ % :"‘z%‘%
TGO DD @@ - C@

\/

Index the leaves from left to right ‘ ‘ @ @@ -

Store an array A where Ali| poinst to the document of leaf ¢
18 19 20 21 22 23

Searching for a pattern P returns the interval Ali : j] containing all and
only the leaves corresponding to the matches of P

Find all distinct documents (colors) in Al : j]



Applications: Document Retrieval

/ 4 P =sa
ee
2 LN
ddas @ e Q \Q
095% Q@ H 0{3?0&
$5 $4 5o §'9 P é”@@ é% &£

TEED® DO @@ - Y Y

Index the leaves from left to right ‘ ‘ @ @@ -

Store an array A where Ali| poinst to the document of leaf ¢
18 19 20 21 22 23

Searching for a pattern P ret Time:

only the leaves corresponding O(|P| + log |%| + # retrieved documents)
Find all distinct documents (c via range minimum queries



Constructing Suffix Trees
&
Suffix Arrays



Suffix Arrays & Suffix Trees

1" = BANANAS

Sort all suffixes along with their start index

BANANASS
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NANAS$
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Suffix Arrays & Suffix Trees

1" = BANANAS

Sort all suffixes along with their start index
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Suffix Arrays & Suffix Trees

1" = BANANAS

Sort all suffixes along with their start index

$
ANANASS

ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

A\ Suffix

array

D= O[O W]




Suffix Arrays & Suffix Trees

1" = BANANAS

Length of the longest common
prefix between adjacent suffixes
(w.r.t. the sorted order) \v

71 $
ANANAS$
ANAS$
AS$
BANANAS$
NANAS$
NAS$

S$

A\ Suffix

array
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Suffix Arrays & Suffix Trees

1" = BANANAS

$
ANANASS

ANAS$
AS$
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A\ Suffix LCP /

array  array

We can construct a suffix tree from
the Suffix and LCP arrays

A construction similar to the one of
cartesian trees yields the subtree of
branching vertices
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Suffix Arrays & Suffix Trees

T" = BANANAS We can construct a suffix tree from
the Suffix and LCP arrays

Length of the longest common

prefix between adjacent suffixes A construction similar to the one of
(w.r.t. the sorted order) cartesian trees yields the subtree of

71 g \OV branching vertices

L| ANANASS 3 013[1(0]0[2]0

3| ANAS$ ]

5| ASS$ 0 0101010

0 | BANANAS$ 0

2 | NANASS$

2 1 2
4| NAS$ 0 ! <§> &
6| S$
3 5 2 4
A\Suffix LCP .
Place leaves using an
array - array L 3 in-order traversal
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0

0

$ A

s (7 15@

BANANASS$

NA S$

3 D

AS$
NAS$ S$

1 3
ANANAS$ ANAS$

0
g
=

0

NAS$

2

NA

2

S$

NANAS$ NAS$

Construction time
(from Suffix + LCP Arrays):
o(|T)

Suffix + LCP Arrays can be
built in O(|T'|) time
[J. Karkkainen, P. Sanders, ICALP’03]
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Branching vertices are labelled with their letter depth, i.e., the number
of letters of the prefix encoded in the path from the root to the vertex

Edge labels are easy to reconstruct with a post-order visit

0 2 O]9 Construction time
$ v/ F NA S$ (from Suffix + LCP Arrays):
NOoBROEIONROERG o(T))
BANANASS S :
NA 59 NASS S$ ’ Suffix + LCP Arrays can be
AS$ NANAS$ NASS [J. Karkkadinen, P. Sanders, ICALP'03]
NAS$ S$

DIRE |

ANANAS$ ANAS ] ]
$ 8 Suffix trees can be built

in O(|T|) time!



