Range Trees

Range Trees

Y2

Y1

Range Trees

Y2

Y1

Range Trees

Range Trees
Input:

A set S of n D-dimensional points.

Goal:
Design a data stucture that, given p; € Z? . ps € ZP can:

e Report the number of points ¢ € S such that p; < g < ps.
e Report the set of points ¢ € S such that p; < g < ps.

e Report the point g € 5, p1 < q < ps, with smallest D-th
coordinate.

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0O(1) if we only care about the number of points.

K —HKHKK 43 K — KK — K — K K>
a b ¢ d € g h 1 9 k

X
f

An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0O(1) if we only care about the number of points.

Space complexity: O(n)

K —HKHKK 43 K — KK — K — K K>
a b ¢ d € g h 1 9 k

X
f

Range Trees: D =1

Range Trees: D =1

(O
(O (O
() () ()}
@ O O () () (O
O O0OC O O O O
X K—AHK—NK K —XK X K —XK X X
a b ¢ d e f g h 1 9 k

Range Trees: D =1

O la]]

ja, d] () e, f1 O 9,916 () [k,

Range Trees: D =1

O la]]

ja, d] () e, f1 C) 9,916 () [k,

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has T} and 15 as its left and right subtrees.

e Return T

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has T} and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)
O(nlogn)

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has T} and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)
O(nlogn)

What if S is already sorted?

Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has T} and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)
O(nlogn)

What if S is already sorted? O(n) (we will need this later)

Range Trees: D =1

Preprocessing time: O(nlogn)
Query time: O(logn + k)
e k = #f reported points.

e kL =0(1) if we only care about the number of points.

Space complexity: O(n)

O 000 O O O O
K KKK KKK KK KK K>

Range Trees: D =2

S |

Range Trees: D =2

Range Trees: D =2

KAHKNK KXK—XK K —XK—X—XK

Range Trees: D =2

Build a range tree on the set of x-coordinates of the points in S

Range Trees: D = 2

For each node v representing an interval [, = |z, x3], build a range tree
R, on the y coodinates of the points in S with x-coordinate in [,

>0
B>~ o >0

> >« >« Q > <)
><0 O+»<1O O =0 <O O O

K —HK KK KXK—XK K — XK —AK—X— XK —>

| | L
L,

Range Trees: D =2

Range Trees: D =2

Range Trees: D =2

X
X
X <
X
X
X
>
A
q X

y A

Range Trees: D =2

X
X
X <
X
X
X
>
A
q X

y A

Range Trees: D = 2

Construction:

e Preliminarily sort S on the z-coordinate.
—>

e Split S into 57 and 5> of & 5 elements each.

e Recursively build 77 and 75 from S; and S5, respectively.

e The root v of T has I} and 15 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Range Trees: D = 2

Construction:
e Preliminarily sort S on the z-coordinate.

—>
e Split S into 57 and 5> of & 5 elements each.

e Recursively build 77 and 75 from S; and S5, respectively.

e The root v of T has I} and 15 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(nlogn)

O(nlog®n)

Range Trees: D = 2

_ SY is the set S sorted on the y-coordinate
Construction:

e Preliminarily sort S on the x-coordinate.

e Split S into S and S of & 5 elements each.

e Recursively build (T1,S57) and (15, S5) from S; and Ss,
respectively.

e The root v of T has I} and 15 as its left and right subtrees.
e Merge S7 and SJ into SY.

e Store, in v, a pointer to a new 1D Range Tree on SY

e Return (T, 5Y)

Range Trees: D = 2

SY is the set S sorted on the y-coordinate

Construction:

Preliminarily sort .S on the z-coordinate.

Split S into 51 and Sy of = 5 elements each.

Recursively build (77, 57) and (7%, 55) from Sy and Ss,
respectively.

The root v of T' has I} and 15 as its left and right subtrees.
Merge S and S into SY.

Store, in v, a pointer to a new 1D Range Tree on SY

Return (T, 5Y)

Time: O(nlogn) +T'(n), where T(n)=2-T(%)+ O(n)

O(nlogn)

Range Trees: D = 2

To report the points p1 = (z1,%1) < ¢ < p2 = (T2, %2):

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (x,y) with 1 < x < x5,

e For each tree R; € {Ry,..., R} } representing the
z-interval I;:

e Query R, to report the number of/set of points
q = (z,y) withx € I, and y1 <y < yo.

Range Trees: D = 2

To report the points p1 = (z1,%1) < ¢ < p2 = (T2, %2):

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (x,y) with 1 < x < x5,

e For each tree R; € {Ry,..., R} } representing the
z-interval I;:

e Query R, to report the number of/set of points
q = (z,y) withx € I, and y1 <y < yo.

Time complexity:

O(logn) - O(logn) + O(k) = O(log” n + k)

[— |

—|
Number of R;s Time to query R; “size” of the output

Range Trees: D = 2

Preprocessing time: O(nlogn)

Query time: O(log® n + k)
e k = #f reported points.

e k= 0(1) if we only care about the number of points.

Space complexity:
e Bounded by the overall size of 1D Range Trees
e Each point belongs to O(logn) 1D Range Tees
e Total space: O(nlogn)

Higher dimensions: construction

To store points p = (x,y, 2z, w, ...) in D > 2 dimensions:
Recursive construction:

e Build a Range Tree T' on the first coordinate x of the points:

e For each subtree 7T, of 1" associated with the interval
Iv — [331,2[‘2]:
e Construct a range tree R, on the last D — 1 coordinates
(y,z...) of the set of points p = (z,y,...) with x € I,,.

e Store, in v, a pointer to R,.

D—-1

Time: O(nlog™ " n).

v

Space: O(nlog” ' n). ﬁx

Higher dimensions: query

Let D1 = (le,yl, Zlyeoo), D2 — ($2,y2,22, ce)
To report the points p; < q < pa:
e Use T to find the h = O(logn) subtrees Ry,..., Ry that
store the points ¢ = (z,y, z,...) with 1 < x < 5.

e For each tree R; € {Ry,..., Ry} representing the
z-interval I;:

e Recursively query R; to report the number/set of points
qgst. xeljand (y1,21,...) <q < (y2,22,...).

Query time: O(log” n + k).

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes

Fractional Cascading

Fractional Cascading: The problem

Input:
k sorted arrays A1, ..., A, of n elements each:

A1 |49 (15(22|23|38]41(50(53|58

Ao | 3| 7]10]11]15({17|20(36|62|64

As [21]23(29(35(37(40(52|57|61|66

Ay [2]5]615]24]27]39]50]54]76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: The problem

Input:
k sorted arrays A;i,..., A of n elements each:

A1 | 4]9](15(22/23]38]41|50|53|58

Ao | 3| 7(10|11]15|17|20|36|62|64

Az |21|23]29]35(37|40(52|57|61|66

Ay |2]5]6[15/24]27|39(50|54|76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: The problem

Input:
k sorted arrays A;i,..., A of n elements each:

A1 | 4]9]15(22]23|38[41|50(53|58

Ao | 3] 710]11|15]17|20{36/62|64

As |21]23/|29(35|37(40|52|57]|61|66

Ay | 2|56 (15]24[27(39]50|54|76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor

Fractional Cascading: A Trivial solution

o Forve=1,... k:

e Binary search for x in A;

Time: O(klogn)

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

A [4]9]15]2 50|53 (58
62

TN\~ -

As |31]7(10]1 36(62|64

|/

Ag 19]23|29|35(37(40|52|57|61|66
15(24(27(39|50

Ay |2]5]6 54|76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

IIAN /e

As |37 (10 2|64
As |19 716166

\\\\\\\\l/

Ay 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

T

A; 336 264
As |19 716166

\\\\\\\\l/

Ay 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

NIRNANEE

716166

\\\\\\\l/

Ag 12 015476

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

NIRNANEE

29|13 716166

\\\\\\l/

Ay 1215 0(54(76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

NIRNANEE

29|13 716166

\\\\\\l/

Ay [2]5]6[15]24]27]39]50[54]76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

NIRNANEE

29|13 716166

\\\\\\l/

Ag |25 1527 0[54|76

Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.

NIRNANEE

29|13 716166

\\\\\\l/

Ay 1215 739 015476

Fractional Cascading

How much time does it take?

Ay

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

Ay

/

Fractional Cascading

How much time does it take?

Ay

/

Fractional Cascading

How much time does it take?

N asess

A, []

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess

Fractional Cascading

How much time does it take?

N asess
T

Fractional Cascading

How much time does it take?

N asess
T

How muc

Fractional Cascading

h time does it take?

Ay

Fractional Cascading

How much time does it take?

N asess

Worst-case time: O(kn)

Fractional Cascading

Second idea: fractional cascading

Forvi =k, k—1,...,2: Add every other element of A; to A;_1.

VARRININYZZ724

//////////////

As |5 [15]19]23[2

\\\l \l///////

Ay 15(24127(39]50|54 76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

9 111]115]115]20]22|23|29|37|38|41|50|53|57|58|64

~ AN AN N

Ao |3 7(10(11(15(15(17]|20(23|29(36|37|50|57|62(64|66

Almr\?r\ﬂ\ﬂ\ ~_n

| AN y\ F\
As | 5(15[19|23]|27(29|35|37|40(50|52|57|61|66|76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

A T

| A

| A

)

23

29

37

38

41

50

53|57

58|64

F\

11 1520

A\

AN

| AN

Ay |37

10

11

15

15

17

20

23

29

36

37

o0

57

62|64

66

19

| A

23

27

29

39

37

| A

40

o0

D2

57

61

F\

66

76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| A

A T

9

11

| A

| A

e

)

23

29

37

38

41

50

03

D7

58|64

2

A\

AN

| AN

Ay |37

10

11

15

20

23

29

36

37

o0

57

62

64

66

| A

15&7

| A

F\

19

23

27

29

39

37

40

o0

D2

57

61

66

76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| A

A T

9

11

| A

| A

e

)

23129

37

38

41

50

53|57

58|64

2

Ay |37

10

11

15

15

| A

AN

| AN

36

37

o0

57

62|64

66

9

| A

F\

19

23

27

29

39

37

40150

D2

57

61

66

76

15

24

27

39

50

54|76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| AN | ANEN A
Aj [4|7]9[11]15]15]20(22|23|29|37|38|41(50|53|57|58|64
m A
Ag |37 36/37(50(57|62|64|66
r =19
Y\
Az [5]15[19 52|57|61|66|76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

A T

| ANEN AN
11{15]15[20|22(23|29(37|38[41|50(53|57|58|64
m N
36|37(50(57(62|64|66
r =19
P\
52|57(61|66|76

15

24

27

39

50

54

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| A\
Ay 4|79 11f15]15

| AN

| A

20

)

23

29

37

38

41

50

03

D7

58

64

AN

| AN

36

37

o0

57

62

64

66

F\

D2

57

61

66

76

Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,

AN\

| AN
A1|74r\7911

| AN

| A

)

23

29

37138

41

50

03

D7

58

64

AN

| AN

29

36|37

o0

57

62

64

66

F\

o0

52|57

61

66

76

Size O(kn)

27

39

50

54

76

Preprocessing O(kn)

Query: O(k + logn)

Layered Range Trees

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

| l«—()
U U
| [«—() | -)
U l U Ul
1<) 1<) [1<) 1 <)
Ul Ul U U

Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading

] | [«—()
UI U
T T 1<)] [J<—)
Ul Ul U Ul
T J=() [T [T 1 <) [T] <—)
Ul Ul U U

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

K —HK KK KXK—XK K — XK —AK—X— XK —>

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

XK HK—AHKNXK K—XK XK K—XK XK K—XK—>
Query: O(k + logn) L

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes

> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)

O(nlogn)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)

O(logn + k)

Notes

with
cross-linking

> 2

> 2

O(

D—-1

nlog™ " n)

O(nlogn)

O(

nlog” ' n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)
O(logn + k)

O(log” ' n+k)

Notes

with
cross-linking

with
cross-linking

> 2

2

> 2

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)
O(logn + k)

O(log” ' n+k)

Notes

with
cross-linking

with
cross-linking

Can be made dynamic (supports point insertion / deletion) in
O(log” n) amortized time per update.

