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Range Trees
Input:

A set S of n D-dimensional points.

Goal:
Design a data stucture that, given p; € Z? . ps € ZP can:

e Report the number of points ¢ € S such that p; < g < ps.
e Report the set of points ¢ € S such that p; < g < ps.

e Report the point g € 5, p1 < q < ps, with smallest D-th
coordinate.



An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps




An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0O(1) if we only care about the number of points.
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An easy case: D =1

e Points are integers
e Store points in a sorted array (in time O(nlogn)).

e Perform queries by binary searching for p; and ps

Query time: O(logn + k) k = “size” of the output.
e k = # reported points.

e k£ =0O(1) if we only care about the number of points.

Space complexity: O(n)
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Range Trees: D =1

O la]]

ja, d] () e, f1 O 9,916 () [k,




Range Trees: D =1

O la]]

ja, d] () e, f1 C) 9,916 () [k,




Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has T} and 15 as its left and right subtrees.

e Return T
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e The root of 1" has T} and 15 as its left and right subtrees.
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Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)
O(nlogn)
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What if S is already sorted?



Range Trees: D =1

Construction:

e Preliminarily sort .S (only once!)
—

e Split S into S; and S5 of & % elements each. O(1)

e Recursively build 77 and 15 from S; and S5, respectively.

e The root of 1" has T} and 15 as its left and right subtrees.

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(1)
O(nlogn)

What if S is already sorted? O(n) (we will need this later)



Range Trees: D =1

Preprocessing time: O(nlogn)
Query time: O(logn + k)
e k = #f reported points.

e kL =0(1) if we only care about the number of points.

Space complexity: O(n)
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Range Trees: D =2
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Range Trees: D =2
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Range Trees: D =2

Build a range tree on the set of x-coordinates of the points in S




Range Trees: D = 2

For each node v representing an interval [, = |z, x3], build a range tree
R, on the y coodinates of the points in S with x-coordinate in [,
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Range Trees: D = 2

Construction:

e Preliminarily sort S on the z-coordinate.
—>

e Split S into 57 and 5> of & 5 elements each.

e Recursively build 77 and 75 from S; and S5, respectively.

e The root v of T has I} and 15 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T



Range Trees: D = 2

Construction:
e Preliminarily sort S on the z-coordinate.

—>
e Split S into 57 and 5> of & 5 elements each.

e Recursively build 77 and 75 from S; and S5, respectively.

e The root v of T has I} and 15 as its left and right subtrees.

e Store, in v, a pointer to a new 1D Range Tree on S

e Return T

Time: O(nlogn) 4+ T'(n), where T'(n) =2 -T(%) + O(nlogn)

O(nlog®n)



Range Trees: D = 2

_ SY is the set S sorted on the y-coordinate
Construction:

e Preliminarily sort S on the x-coordinate.

e Split S into S and S of & 5 elements each.

e Recursively build (T1,S57) and (15, S5) from S; and Ss,
respectively.

e The root v of T has I} and 15 as its left and right subtrees.
e Merge S7 and SJ into SY.

e Store, in v, a pointer to a new 1D Range Tree on SY

e Return (T, 5Y)



Range Trees: D = 2

SY is the set S sorted on the y-coordinate

Construction:

Preliminarily sort .S on the z-coordinate.

Split S into 51 and Sy of = 5 elements each.

Recursively build (77, 57) and (7%, 55) from Sy and Ss,
respectively.

The root v of T' has I} and 15 as its left and right subtrees.
Merge S and S into SY.

Store, in v, a pointer to a new 1D Range Tree on SY

Return (T, 5Y)

Time: O(nlogn) +T'(n), where T(n)=2-T(%)+ O(n)

O(nlogn)



Range Trees: D = 2

To report the points p1 = (z1,%1) < ¢ < p2 = (T2, %2):

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (x,y) with 1 < x < x5,

e For each tree R; € {Ry,..., R} } representing the
z-interval I;:

e Query R, to report the number of/set of points
q = (z,y) withx € I, and y1 <y < yo.



Range Trees: D = 2

To report the points p1 = (z1,%1) < ¢ < p2 = (T2, %2):

e Use T to find the h = O(logn) subtrees Ry, ..., Ry that
store the points ¢ = (x,y) with 1 < x < x5,

e For each tree R; € {Ry,..., R} } representing the
z-interval I;:

e Query R, to report the number of/set of points
q = (z,y) withx € I, and y1 <y < yo.

Time complexity:

O(logn) - O(logn) + O(k) = O(log” n + k)
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Number of R;s  Time to query R; “size” of the output




Range Trees: D = 2

Preprocessing time: O(nlogn)

Query time: O(log® n + k)
e k = #f reported points.

e k= 0(1) if we only care about the number of points.

Space complexity:
e Bounded by the overall size of 1D Range Trees
e Each point belongs to O(logn) 1D Range Tees
e Total space: O(nlogn)



Higher dimensions: construction

To store points p = (x,y, 2z, w, ...) in D > 2 dimensions:
Recursive construction:

e Build a Range Tree T' on the first coordinate x of the points:

e For each subtree 7T, of 1" associated with the interval
Iv — [331,2[‘2]:
e Construct a range tree R, on the last D — 1 coordinates
(y,z...) of the set of points p = (z,y,...) with x € I,,.

e Store, in v, a pointer to R,.

D—-1

Time: O(nlog™ " n).

v

Space: O(nlog” ' n). ﬁx




Higher dimensions: query

Let D1 = (le,yl, Zlyeoo ), D2 — ($2,y2,22, ce )
To report the points p; < q < pa:
e Use T to find the h = O(logn) subtrees Ry,..., Ry that
store the points ¢ = (z,y, z,...) with 1 < x < 5.

e For each tree R; € {Ry,..., Ry} representing the
z-interval I;:

e Recursively query R; to report the number/set of points
qgst. xeljand (y1,21,...) <q < (y2,22,...).

Query time: O(log” n + k).



> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes
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Fractional Cascading: The problem

Input:
k sorted arrays A1, ..., A, of n elements each:

A1 |49 (15(22|23|38]41(50(53|58

Ao | 3| 7]10]11]15({17|20(36|62|64

As [21]23(29(35(37(40(52|57|61|66

Ay [2]5]615]24]27]39]50]54]76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor
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Input:
k sorted arrays A;i,..., A of n elements each:

A1 | 4]9]15(22]23|38[41|50(53|58

Ao | 3] 710]11|15]17|20{36/62|64

As |21]23/|29(35|37(40|52|57]|61|66

Ay | 2|56 (15]24[27(39]50|54|76

Query:

Given x report, forte =1,....k, x if x € A; or its predecessor



Fractional Cascading: A Trivial solution

o Forve=1,... k:

e Binary search for x in A;

Time: O(klogn)



Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.
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First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.
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Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.
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Fractional Cascading

First idea: cross linking

Keep pointers from A;|j] to the predecessor of A;|j] in A;1.
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Fractional Cascading

How much time does it take?

Ay




Fractional Cascading

How much time does it take?

N asess




Fractional Cascading

How much time does it take?

Ay

/




Fractional Cascading

How much time does it take?

Ay

/




Fractional Cascading

How much time does it take?

N asess

A, []




Fractional Cascading

How much time does it take?

N asess




Fractional Cascading

How much time does it take?

N asess




Fractional Cascading

How much time does it take?

N asess




Fractional Cascading

How much time does it take?

N asess




Fractional Cascading

How much time does it take?

N asess




Fractional Cascading

How much time does it take?
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How much time does it take?

N asess
T




How muc

Fractional Cascading

h time does it take?

Ay




Fractional Cascading

How much time does it take?

N asess

Worst-case time: O(kn)




Fractional Cascading

Second idea: fractional cascading

Forvi =k, k—1,...,2: Add every other element of A; to A;_1.
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Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,
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Fractional Cascading
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Fractional Cascading
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Fractional Cascading
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Fractional Cascading
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Fractional Cascading

Keep pointers from newly added elements to A; to their
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Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,
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Fractional Cascading

Keep pointers from newly added elements to A; to their
predecessor among the original elements of A,
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Preprocessing O(kn)

Query: O(k + logn)
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Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading
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Layered Range Trees, D = 2

Reuse the cross-linking idea from fractional cascading
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Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.
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Layered Range Trees, D = 2
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predecessor of y in the 1D range tree of the left/right child of v.
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Layered Range Trees, D = 2

V element y in the 1D range tree of v, store a pointer to the
predecessor of y in the 1D range tree of the left/right child of v.

XK HK—AHKNXK K—XK XK K—XK XK K—XK—>
Query: O(k + logn) L



> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)

O(nlog” ' n)

Query Time
O(logn + k)
O(log® n + k)

O(log” n + k)

Notes



> 2

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)

O(nlogn)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)

O(logn + k)

Notes

with
cross-linking



> 2
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O(

D—-1

nlog™ " n)

O(nlogn)

O(

nlog” ' n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)
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O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Recap

Preprocessing
Time
O(nlogn)

O(nlogn)
O(nlog” ' n)
O(nlogn)

O(nlog” ' n)

Query Time

O(logn + k)
O(log® n + k)
O(log” n + k)
O(logn + k)

O(log” ' n+k)

Notes

with
cross-linking

with
cross-linking

Can be made dynamic (supports point insertion / deletion) in
O(log” n) amortized time per update.



