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Advanced Data Structure

Episode I

Data Structures for Big Data



Counting 1s in a window

Datar-Gionis-Indyk-Motwani’s (DGIM)

algorithm

reference:
Algorithms for Massive Data (Lecture Notes)
Nicola Prezza
https://arxiv.org/abs/2301.00754



The problem
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now

goal: process a stream of bits in order to answer queries of the type:
- how many 1s in the last n bits? 

n

motivation: (approximately) count the events that meet a certain criterion.  

Example:
Bank transactions are marked with a flag=1 when exceed a given threshold. 
Queries can be used to detect if the credit card’s owner has changed
behavior (hence detect potential frauds)

Example:
Posts/tweets are marked with a flag=1 when they are about a given topic. 
Queries can be used to detect if the interest on the topic changes.

main challenge: the stream is too large to be entirely stored.

beginning of 
the stream
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goal: design a data structure maintaining a sequence of N bits subject to: 
- query(n): return the number of 1s in the last n bits;
- update(b): add the next bit b{0,1} to the sequence

n

notice: if you want exact answers you need (N) bits.  

N

DGIM data structure:

- quality: 1+ approximated answers  (for any 0)

- size:  O(-1 log2 N) bits

- update time:  O(log N)

- query time:  O(-1 log n)



DGIM data structure:

Let B= 1/ .

Group the bits of the sequence in groups G1,...,Gt satisfying:

1. each Gi begins and ends with a 1-bit;
2. between adjacent groups Gi Gi+1 there are only 0-bits;
3. each Gi contains 2k 1-bits, for some k0;
4. for any 1 i  t, if Gi contains 2k 1-bits, then Gi+1 contains either 2k or 

2k-1  1-bits;
5. for each k except the largest one, the number Zk of groups containing 

2k 1-bits satisfies  B Zk B+1. For the largest k, we only require 
ZkB+1.

B=1
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G1 (8) G2 (4) G3 (4) G4 (2) G6 (1)G5 (2)



DGIM data structure:
group Gj is a pair of integers (left,right)

B=1
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G1 (8) G2 (4) G3 (4) G4 (2) G6 (1)G5 (2)

all adjacent groups having 2i 1-bits are maintained by a doubly-linked list i

i stores: head, tail, and size

L: a global doubly-linked list storing all lists i

left right

3 2 1 0L:

- storing Gj requires O(log N) bits

- |L|= O(log N)

- |i | B+1=O(-1)

overall size of the DS:

O(-1 log2 N) bits



update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming 

a new group of 2 1-bits and add it to 1 as a new rightmost group 
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;
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update operation

update(b): add the next bit b{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to 0;
2. if 0 contains B+2 groups, merge the two leftmost groups thus forming 

a new group of 2 1-bits and add it to 1 as a new rightmost group 
(notice that 0 now has B groups);

3. repeat step 2 for i , i=1,2,...;

update time:

overall update time:  O(log N)

- creating/merging/moving a group takes O(1) time
- number of iterations O(|L|)



query operation

query(n): return the number of 1s in the last n bits

- find all groups intersecting the last n bits
- return the number of 1-bits they contain

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

n

query time:
- navigating all groups from the streaming’s 

head
- O(-1 log n) time



query operation: approximation

Let k be the integer s.t. the leftmost intersecting group has 2k 1-bits

Y: right answer
X: returned answer

0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1

n

2k 1-bits

notice: if k=0 then X=Y (so assume k>0) 

X  Y +2k -1

Y  B 2k-1 + B 2k-2 +...+B 21 + B 20 =B(2k-1)

X/Y  (Y +2k -1)/ Y = 1+ (2k -1)/ Y

 1+ 1/B  1+



Finding frequent items in 
a stream

An application of Sampling

references:
- G.S. Manku, R. Motwani:
Approximate Frequency Counts over Data Streams. VLDB  (2002)
https://www.vldb.org/conf/2002/S10P03.pdf
- C. Demestrescu, I. Finocchi
Algorithms for Data Streams
http://www.dei.unipd.it/~geppo/PrAvAlg/DOCS/DFchapter08.pdf



The problem:

given a stream of elements, find the elements whose frequency is above a 
given threshold

Application domains:
- Data Base world
- Data Mining
- Network Monitoring
- ...



Data Base: iceberg queries

SELECT City; COUNT(*)

Choosing a good city for a trip...

FROM Irish_Pubs

GROUP BY City HAVING COUNT(*)  T 

Irish_Pubs



Data Mining: discovering association rules

(if you buy X then you also buy Y)

I: set of items (products)

goal: find association rules for D whose confidence and support 
are above certain thresholds

it reduces to the problem of finding frequent itemsets

D: set of transactions

- a transaction: T  I

an association rule is an implication of the form

X Y

X Y holds in D with confidence c if  c% of the 
transactions of D that contain X also contain Y

X Y has support s in D if s% of the transactions of D
contain XY



Network Monitoring: Measurement and monitoring of network traffic

goal: identifying large flows, i.e. flows sending more than a given 
threshold (> s% of the link capacity)

a flow: sequence of packets with the same source+destination addresses



The problem

Given two parameters 01, and a stream of n elements x1, x2,...,xn, 
find:
- all items whose frequency is at least n (no false negative). 
- no item with frequency smaller than (-)n.

01: user-defined error parameter

Sticky sampling algorithm (Manku & Motwani, 2002)
- randomized
- meet the two goals with probability 1-
- maintain a sample of expected size of 2-1 log (-1 -1)

notice: space is independent of the stream length n

# of elements 
in sample



The algorithm

t = -1 log (-1 -1)

maintain a sample S : set of pairs (x,fe(x))

- fe(x): estimation of the real frequency f(x) of the element x

to handle potentially unbounded stream, computation proceeds in windows:
- each window has a size and a sampling rate r; 
- next window is double the size and the rate of the previous one;
- at the beginning S is empty and r=1.

2t 
r=1

2t,
r=2

4t,
r=4

8t,
r=8

16t,
r=16

...

in a give window, when the next stream element x comes:
- if xS then increase fe(x) by 1; 
- otherwise, insert (x,1) in S with probability 1/r.



The algorithm

t = -1 log (-1 -1)

goal: transform the state of S to the one it would have been in 
if the new rate 2r had been used from the beginning

whenever the sampling rate changes from r to 2r an adjusting step is 
performed:

2t 
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16t,
r=16

...
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The algorithm

t = -1 log (-1 -1)

goal: transform the state of S to the one it would have been in 
if the new rate 2r had been used from the beginning

16t,
r=8

16t,
r=16

...

whenever the sampling rate changes from r to 2r an adjusting step is 
performed:



The algorithm

t = -1 log (-1 -1)

goal: transform the state of S to the one it would have been in 
if the new rate 2r had been used from the beginning

32t,
r=16

...

whenever the sampling rate changes from r to 2r an adjusting step is 
performed:

query(n): return all items in S with estimated frequency at least (-)n. 



The algorithm: the adjusting step

r 2r

...

for each element xS:
- flip a fair coin
- if (Tail) then

- repeatedly flip a coin with success probability of 1/(2r) until you 
get a success;

- let k be the number of coin flips performed;
- decrease fe(x) by k
- if fe(x) 0 then remove x from S.



The adjusting step: the analysis

obs: r is always a power of 2

- first occurrence
- put in S with 

probability 1/r

i coins

r

x        x x x x x x x

assume r=2i

focus on a given element x and consider all its occurrences in the window
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The adjusting step: the analysis

2r

obs: r is always a power of 2 assume r=2i

focus on a given element x and consider all its occurrences in the window

x        x x x x x x x

- first occurrence
- put in S with 

probability 1/r

i+1 coins

+1 +1 +1 +1 +1

k   (correction)



Lemma
Let n be the number of stream elements seen so far and assume that the 
current sample rate is r. Then 1/r  t/n.

proof

n  t r

2t 
r=1

2t,
r=2

4t,
r=4

8t,
r=8

16t,
r=16

...

n



Theorem
For any , ,  (0,1), with   , sticky sampling solves the frequent items 
problem with probability at least 1 − using a sample of expected size 
2-1 log (-1 -1). 



notice: fe(x)  f(x) algorithm never return an 
item with f(x)  (-)n.

let y1,...,yk, be the elements whose frequency is at least  n.

Clearly: k  1/.

Pr[fe(yi)  (-)n]  (1-1/r)n  (1- t/n)n  e-t

from previous 
Lemma

Pr[ false negative] 
i=1

Pr[yi is not returned]
k


i=1

Pr[fe(yi)  (-)n]
k

union 
bound

 k e-t 
e-t



t = -1 log (-1 -1)

= 



what about the size of S?

1/r

2t 
r=1

2t,
r=2

4t,
r=4

8t,
r=8

16t,
r=16

n

worst case: all stream elements are distinct

Xi r. v. = 
if element i is inserted in S1

otherwise0

|S|=X = 
i

Xi

E[X] =E 
i

Xi = 
i

E[Xi]

 2 t r

= n 1/r  2 t



Another result for the problem

01: user-defined error parameter

Sticky sampling algorithm
- randomized
- meet the two goals with probability 1-
- maintain a sample of expected size of 2-1 log (-1 -1)

Lossy counting algorithm
- deterministic (meet the two goals with probability 1)
- maintain a sample of size of O(-1 log ( n))

In the paper

G.S. Manku, R. Motwani:
Approximate Frequency Counts over Data Streams. VLDB  (2002)


	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

