Advanced topics on Algorithms

Luciano Guala
www.mat.uniroma?2.it/~guala/

Advanced Data Structure
Episode T

Data Structures for Big Data

Counting 1s in a window

Datar-Gionis-Indyk-Motwani's (DGIM)
algorithm

reference:
Algorithms for Massive Data (Lecture Notes)

Nicola Prezza
https://arxiv.org/abs/2301.00754

The problem

A

o1y1/0(2(0(0|0|21{0f2{1(0|1}0|2{0f(12|0|0|21|2}{2(0|0O|0O|0O|2|12(1

beginning of !
the stream now

goal: process a stream of bits in order to answer queries of the type:
- how many 1s in the last n bits?

motivation: (approximately) count the events that meet a certain criterion.

Bank transactions are marked with a flag=1 when exceed a given threshold.
Queries can be used to detect if the credit card's owner has changed
behavior (hence detect potential frauds)

Posts/tweets are marked with a flag=1 when they are about a given topic.
Queries can be used to detect if the interest on the topic changes.

main challenge: the stream is too large to be entirely stored.

The problem

A

o1y1/0(2(0(0|0|21{0f2{1(0|1}0|2{0f(12|0|0|21|2}{2(0|0O|0O|0O|2|12(1

beginning of !
the stream now

goal: design a data structure maintaining a sequence of N bits subject to:
- query(n): return the number of 1s in the last n bits;
- update(b): add the next bit be{0,1} to the sequence

if you want exact answers you need Q(N) bits.

DGIM data structure:
- quality: 1+¢ approximated answers (for any £>0)
- size: O(g! log® N) bits
- update time: O(log N)
- query time: O(g! log n)

DGIM data structure:
Let B=[1/¢].

Group the bits of the sequence in groups 6;....,6; satisfying:

each G, begins and ends with a 1-bit;

between adjacent groups G; G;,; there are only O-bits;

each G, contains 2k 1-bits, for some k>0;

for any I<i < 1, if G, contains 2% 1-bits, then G,,; contains either 2% or
2k-1 1-bits;

5. for each k except the largest one, the number Z, of groups containing
2k 1-bits satisfies B< Z, <B+1. For the largest k, we only require
Z,<B+1,

Hwn=

G (8) | G, (4) G;3 (4) 64(2) 65(2) 6, (1)

0110111111|0011011010111011|‘0111

B=1

DGIM data structure:
group G; is a pair of integers (left,right)

all adjacent groups having 2' 1-bits are maintained by a doubly-linked list %,
)\; stores: head, tail, and size

: a global doubly-linked list storing all lists A,

A3 A M Ao
f . \ | : \ : Yo'
6, (8) | 6, (4) 6:(4) 64(2) 65(2) 6, (1)
0110111111|0011011010111011“011'?
| |€f1’ r'igh‘r R=1

- storing G, requires O(log N) bits
- |L|= O(log N)
- |, |< B+1=0(¢)

overall size of the DS:
l O(e! log? N) bits

update operation

update(b): add the next bit be{0,1} to the sequence
If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to .,

2. if L,contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to %; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1.
2.

Create a new group with the new 1-bit and add it to .,

if)., contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
A3 A2 M Ao
(: \ [:] | : Yo
0 101111110011011010111011“01111

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1.
2.

Create a new group with the new 1-bit and add it to .,

if)., contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
A3 A2 M Ao
(: \ [:] | : !
0 101111110011011010111011"011111

update operation

update(b): add the next bit be{0,1} to the sequence
If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it o .;

2. if L,contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;

update operation

update(b): add the next bit be{0,1} to the sequence
If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it o .;

2. if L,contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1.
2.

Create a new group with the new 1-bit and add it to .,

if)., contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
A3 A2 M Ao
f : \ [: \ ! : T
0 101111110011011010111011"011111

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1.
2.

Create a new group with the new 1-bit and add it to .,

if)., contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
7‘3 K2 }”1 }\’O
[A \ [A | l : "_L‘
0 101111110011011010111011||011111

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1.
2.

Create a new group with the new 1-bit and add it to .,

if)., contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
A3 A2 Ay o
, ! \ , . y——r
0 1(0(1{1|2(1{1{1j0(0(1{2|O011{1|O|2(0(1|1|101{2|0O|1{1y2| 112

B=1

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1.
2.

Create a new group with the new 1-bit and add it to .,

if)., contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
A3 A2 Ay o
, ! \ , . y——r
0 1(0(1{1|2(1{1{1j0(0(1{2|O01{1|O|2(0(1|1|i01|{2|0O|1{1y2| 112

B=1

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1.
2.

Create a new group with the new 1-bit and add it to .,

if)., contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to 1; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
s N M g
l : \ ‘ —rh
0 1(0(1{1|2(1{1{140(0(11{2|01{1|{0O|2(0f1|2|2401|{2|0O|21f{1y1| 112

update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it o .;

2. if L,contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to %; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;

update time:

- creating/merging/moving a group takes O(1) time
- number of iterations O(|L|)

=

overall update time: O(log N)

query operation
query(n): return the number of 1s in the last n bits

- find all groups intersecting the last n bits
- return the number of 1-bits they contain

query time:

- navigating all groups from the streaming's
head

- O(ellog n) time

1|‘ 0

query operation: approximation

Let k be the integer s.t. the leftmost intersecting group has 2k 1-bits

Y: right answer
X: returned answer

if k=0 then X=Y (so assume k>0)
X <Y +2k-1
Y > B2k1+ B 2k2 4+ +B 21+ B 20=B(2k-1)

=

X/Y < (Y +2k-1)/Y =1+ (2k-1)/ Y
<1+ 1/B < 1+¢

2k 1-bits

0110111111|0011011o

1|‘ 0

Finding frequent items in
a stream

An application of Sampling

references:

- 6.5. Manku, R. Motwani:

Approximate Frequency Counts over Data Streams. VLDB (2002)
https://www.vldb.org/conf/2002/S10P03.pdf

- C. Demestrescu, I. Finocchi

Algorithms for Data Streams
http://www.dei.unipd.it/~geppo/PrAvAlg/DOCS/DFchapter08.pdf

The problem:

given a stream of elements, find the elements whose frequency is above a
given threshold

Application domains:

- Data Base world

- Data Mining
Network Monitoring

Data Base: iceberg queries
Choosing a good city for a trip...

SELECT City; COUNT(™)
FROM Irish Pubs

GROUP BY City HAVING COUNT(*)>T

Data Mining: discovering association rules

I: set of items (products)
D: set of transactions
- a transaction: TcI

an association rule is an implication of the form

X=Y

¥ =y holds in D with confidence c if c% of the
transactions of D that contain X also contain Y

¥ =y has support sinD if s% of the transactions of D
contain XuY

goal: find association rules for D whose confidence and support
are above certain thresholds

it reduces to the problem of finding frequent itemsets

Network Monitoring: Measurement and monitoring of network traffic

a flow: sequence of packets with the same source+destination addresses

goal: identifying large flows, i.e. flows sending more than a given
threshold (> s% of the link capacity)

The problem

Given two parameters O<e<op<1, and a stream of n elements x;, x5,...,X,,
find:

- all items whose frequency is at least on ().

- no item with frequency smaller than (¢-¢)n.

Sticky sampling algorithm (Manku & Motwani, 2002)

- randomized

- meet the two goals with probability 1-6

- maintain a sample of expected size of 2¢! log (p151)

0<6<1: user-defined error parameter

space is independent of the stream length n

The algorithm
t=¢llog (p151)

maintain a sample S : set of pairs (x,f (x))
- f.(x): estimation of the real frequency f(x) of the element x

to handle potentially unbounded stream, computation proceeds in windows:
- each window has a size and a sampling rate r;

- next window is double the size and the rate of the previous one;

- at the beginning S is empty and r=1.

2t 2f, 41, 8t, 161,
r=1 pr=2 r=4 r=8 r=16

in a give window, when the next stream element x comes:
- if xeS then increase f,(x) by 1;
- otherwise, insert (x,1) in S with probability 1/r.

The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning

2t ' 2f, 41, 8t, 161,
r=1 pr=2 r=4 r=8 r=16

The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning

2t ' 2f, 41, 8t, 161,
r=2 r=2 r=4 r=8 r=16

The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning

41, 41, 8t, 161,
r=2 r=4 r=8 r=16

The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning

81, 81, 161,
r=4 r=8 r=16

The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning

161, 161,
r=8 r=16

The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning

32t,
r=16

query(n): return all items in S with estimated frequency at least (¢-¢)n.

The algorithm: the adjusting step

for each element xeS:
- flip a fair coin
- |f (Tail) then
repeatedly flip a coin with success probability of 1/(2r) until you
get a success;
- let k be the number of coin flips performed;
- decrease f,(x) by k
- if f,(x)< 0 then remove x from S.

The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

O
i coins — O
O

| X X X X X X X X

- first occurrence
- putin S with
probability 1/r

The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

i coins =

- first occurrence
- putin S with
probability 1/r

The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

i coins =

- first occurrence
- putin S with
probability 1/r

The adjusting step: the analysis

ris always a power of 2 =) assume r=2

focus on a given element x and consider all its occurrences in the window

i coins =

+1 +1 +1 +1 +1

- first occurrence
- putin S with
probability 1/r

The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

i+1 coins

+1 +1 +1 +1 +1

- first occurrence
- putin S with
probability 1/r

The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

i+1 coins

+1 +1 +1 +1 +1

- first occurrence
- putin S with
probability 1/r

The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

i+1 coins

/ 2r +1 +1 +1 +1 +1

- first occurrence ,
- put in S with k (correction)

probability 1/r

Lemma
Let n be the number of stream elements seen so far and assume that the
current sample rate is r. Then 1/r > t/n.

proof

n>tr

2t 2, 4, 81, 161,
r=1 pr=2 r=4 r=8 r=16

Theorem

For any ¢, 0, 5 €(0,1), with ¢ < ¢, sticky sampling solves the frequent items
problem with probability at least 1 -5 using a sample of expected size

2¢71 log (o 1571).

algorithm never return an
flI<fO) = e with £(x) < (0-0)n.

let yy,....y., be the elements whose frequency is at least o n.

Clearly: k < 1/0.

Prif.(y) < (0-e)n] <(1-1/r)" <(1- t/n)n <e'®
‘ K

Pr[3 false negative] < Prlyis not returned] <Y Pr[f,(y;) < (¢-£)n]
=1 =1

t = o1 log (p157)

what about the size of S?
all stream elements are distinct

n<2tr
A
f \
| | | | | | | | |
2t 2ft, 41, 81, 161,
r=1 pr=2 r=4 r=8 r=16

1 if elementiisinsertedin S
Xir.v.= =

0 otherwise

|S]=X = 2. X
|

E[X]:E[in] = D EX]=nl/r <2+t
i e
1/r

Another result for the problem

In the paper

G.S. Manku, R. Motwani:
Approximate Frequency Counts over Data Streams. VLDB (2002)

Sticky sampling algorithm

- randomized

- meet the two goals with probability 1-6

- maintain a sample of expected size of 2:! log (p151)

0<6<1: user-defined error parameter

Lossy counting algorithm
- deterministic (meet the two goals with probability 1)
- maintain a sample of size of O(c! log (¢ n))

	Slide 1: Advanced topics on Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

