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goal: process a stream of bits in order to answer queries of the type:
- how many 1s in the last n bits?

motivation: (approximately) count the events that meet a certain criterion.

Bank transactions are marked with a flag=1 when exceed a given threshold.
Queries can be used to detect if the credit card's owner has changed
behavior (hence detect potential frauds)

Posts/tweets are marked with a flag=1 when they are about a given topic.
Queries can be used to detect if the interest on the topic changes.

main challenge: the stream is too large to be entirely stored.
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goal: design a data structure maintaining a sequence of N bits subject to:
- query(n): return the number of 1s in the last n bits;
- update(b): add the next bit be{0,1} to the sequence

if you want exact answers you need Q(N) bits.

DGIM data structure:
- quality: 1+¢ approximated answers (for any £>0)
- size: O(g! log® N) bits
- update time: O(log N)
- query time: O(g! log n)



DGIM data structure:
Let B=[1/¢].

Group the bits of the sequence in groups 6;....,6; satisfying:

each G, begins and ends with a 1-bit;

between adjacent groups G; G;,; there are only O-bits;

each G, contains 2k 1-bits, for some k>0;

for any I<i < 1, if G, contains 2% 1-bits, then G,,; contains either 2% or
2k-1 1-bits;

5. for each k except the largest one, the number Z, of groups containing
2k 1-bits satisfies B< Z, <B+1. For the largest k, we only require
Z,<B+1,
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DGIM data structure:
group G; is a pair of integers (left,right)

all adjacent groups having 2' 1-bits are maintained by a doubly-linked list %,
)\; stores: head, tail, and size

: a global doubly-linked list storing all lists A,

A3 A M Ao
f . \ | : \ : Yo'
6, (8) | 6, (4) 6:(4)  64(2) 65(2) 6, (1)
0110111111|0011011010111011“011'?
| |€f1’ r'igh‘r R=1

- storing G, requires O(log N) bits
- |L|= O(log N)
- |, |< B+1=0(¢)

overall size of the DS:
l O(e! log? N) bits



update operation

update(b): add the next bit be{0,1} to the sequence
If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it to .,

2. if L,contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to %; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;
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update operation

update(b): add the next bit be{0,1} to the sequence

If b=0 do nothing. Otherwise (b=1):

1. Create a new group with the new 1-bit and add it o .;

2. if L,contains B+2 groups, merge the two leftmost groups thus forming
a new group of 2 1-bits and add it to %; as a new rightmost group
(notice that 1, now has B groups);

3. repeat step 2 for 1, ,i=12,...;

update time:

- creating/merging/moving a group takes O(1) time
- number of iterations O(|L|)

=

overall update time: O(log N)



query operation
query(n): return the number of 1s in the last n bits

- find all groups intersecting the last n bits
- return the number of 1-bits they contain

query time:

- navigating all groups from the streaming's
head

- O(ellog n) time

1|‘ 0




query operation: approximation

Let k be the integer s.t. the leftmost intersecting group has 2k 1-bits

Y: right answer
X: returned answer

if k=0 then X=Y (so assume k>0)
X <Y +2k-1
Y > B2k1+ B 2k2 4+ +B 21+ B 20=B(2k-1)

=

X/Y < (Y +2k-1)/Y =1+ (2k-1)/ Y
<1+ 1/B < 1+¢

2k 1-bits

0110111111|0011011o

1|‘ 0




Finding frequent items in
a stream

An application of Sampling

references:

- 6.5. Manku, R. Motwani:

Approximate Frequency Counts over Data Streams. VLDB (2002)
https://www.vldb.org/conf/2002/S10P03.pdf

- C. Demestrescu, I. Finocchi

Algorithms for Data Streams
http://www.dei.unipd.it/~geppo/PrAvAlg/DOCS/DFchapter08.pdf



The problem:

given a stream of elements, find the elements whose frequency is above a
given threshold

Application domains:

- Data Base world

- Data Mining
Network Monitoring



Data Base: iceberg queries
Choosing a good city for a trip...

SELECT City; COUNT(™)
FROM Irish Pubs

GROUP BY City HAVING COUNT(*)>T




Data Mining: discovering association rules

I: set of items (products)
D: set of transactions
- a transaction: TcI

an association rule is an implication of the form

X=Y

¥ =y holds in D with confidence c if c% of the
transactions of D that contain X also contain Y

¥ =y has support sinD if s% of the transactions of D
contain XuY

goal: find association rules for D whose confidence and support
are above certain thresholds

it reduces to the problem of finding frequent itemsets



Network Monitoring: Measurement and monitoring of network traffic

a flow: sequence of packets with the same source+destination addresses

goal: identifying large flows, i.e. flows sending more than a given
threshold (> s% of the link capacity)



The problem

Given two parameters O<e<op<1, and a stream of n elements x;, x5,...,X,,
find:

- all items whose frequency is at least on ( ).

- no item with frequency smaller than (¢-¢)n.

Sticky sampling algorithm (Manku & Motwani, 2002)

- randomized

- meet the two goals with probability 1-6

- maintain a sample of expected size of 2¢! log (p151)

0<6<1: user-defined error parameter

space is independent of the stream length n



The algorithm
t=¢llog (p151)

maintain a sample S : set of pairs (x,f (x))
- f.(x): estimation of the real frequency f(x) of the element x

to handle potentially unbounded stream, computation proceeds in windows:
- each window has a size and a sampling rate r;

- next window is double the size and the rate of the previous one;

- at the beginning S is empty and r=1.

2t 2f, 41, 8t, 161,
r=1 pr=2 r=4 r=8 r=16

in a give window, when the next stream element x comes:
- if xeS then increase f,(x) by 1;
- otherwise, insert (x,1) in S with probability 1/r.



The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning
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81, 81, 161,
r=4 r=8 r=16



The algorithm
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The algorithm

t=¢llog (p151)

whenever the sampling rate changes from r to 2r an adjusting step is
performed:

transform the state of S to the one it would have been in
if the new rate 2r had been used from the beginning

32t,
r=16

query(n): return all items in S with estimated frequency at least (¢-¢)n.



The algorithm: the adjusting step

for each element xeS:
- flip a fair coin
- |f (Tail) then
repeatedly flip a coin with success probability of 1/(2r) until you
get a success;
- let k be the number of coin flips performed;
- decrease f,(x) by k
- if f,(x)< 0 then remove x from S.



The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

O
i coins  — O
O

| X X X X X X X X

- first occurrence
- putin S with
probability 1/r
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The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window
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The adjusting step: the analysis

r is always a power of 2 =) assume r=2!

focus on a given element x and consider all its occurrences in the window

i+1 coins

/ 2r +1 +1 +1 +1 +1

- first occurrence ,
- put in S with k (correction)

probability 1/r



Lemma
Let n be the number of stream elements seen so far and assume that the
current sample rate is r. Then 1/r > t/n.

proof

n>tr

2t 2, 4, 81, 161,
r=1 pr=2 r=4 r=8 r=16




Theorem

For any ¢, 0, 5 €(0,1), with ¢ < ¢, sticky sampling solves the frequent items
problem with probability at least 1 -5 using a sample of expected size

2¢71 log (o 1571).



algorithm never return an
flI<fO) = e with £(x) < (0-0)n.

let yy,....y., be the elements whose frequency is at least o n.

Clearly: k < 1/0.

Prif.(y) < (0-e)n] <(1-1/r)" <(1- t/n)n <e'®
‘ K

Pr[3 false negative] < Prlyis not returned] <Y Pr[f,(y;) < (¢-£)n]
=1 =1

t = o1 log (p157)




what about the size of S?
all stream elements are distinct

n<2tr
A
f \
| | | | | | | | |
2t  2ft, 41, 81, 161,
r=1 pr=2 r=4 r=8 r=16

1 if elementiisinsertedin S
Xir.v.= =

0 otherwise

|S]=X = 2. X
|

E[X]:E[in ] = D EX]=nl/r <2+t
i e
1/r




Another result for the problem

In the paper

G.S. Manku, R. Motwani:
Approximate Frequency Counts over Data Streams. VLDB (2002)

Sticky sampling algorithm

- randomized

- meet the two goals with probability 1-6

- maintain a sample of expected size of 2:! log (p151)

0<6<1: user-defined error parameter

Lossy counting algorithm
- deterministic (meet the two goals with probability 1)
- maintain a sample of size of O(c! log (¢ n))
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