
Consensus & fault tolerance:
distributed and strategic aspects

of the Blockchain technology

University of Rome

“Tor Vergata”

Luciano Gualà

Understanding

Blockchain technology

cryptography

distributed

computing
game

theory

Understanding

Blockchain technology

cryptography

distributed

computing
game

theory
fault

tolerance

the distributed ledger
problem

Roger Wattenhofer,
 Distributed Ledger Technology – The science of the Blockchain

- all agents agree on the content of the ledger

problem:

maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

- all agents agree on the content of the ledger

problem:

maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

- all agents agree on the content of the ledger

problem:

maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

- all agents agree on the content of the ledger

problem:

maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

- all agents agree on the content of the ledger

problem:

maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

.

.

.

- all agents agree on the content of the ledger

problem:

maintain a ledger containing a sequence of commands such that:

- every agent can fairly write its commands

.

.

.

In Bitcoin System:

node of the network (miners) =

blockchain =

block (of transactions) =

- all agents agree on the content of the ledger

problem:

maintain a distributed ledger containing a seq. of commands such that:

- every agent can fairly write its commands

network can be

 used to exchange

messages

?

a simple solution

serializer

(trusted party)

a simple solution

serializer

(trusted party)

a simple solution

serializer

(trusted party)

a simple solution

- what if the serializer fails?

- what if the serializer is not honest?

fault

tolerance

is it really

distributed?

serializer

(trusted party)

.

.

.

a better solution

Consistency:

all nodes always agree on the

current state of the ledger

Eventual consistency:

all nodes eventually agree on the

current state of the ledger (if no

new updates are issued)

a better solution

Consistency:

all nodes always agree on the

current state of the ledger

Eventual consistency:

all nodes eventually agree on the

current state of the ledger (if no

new updates are issued)

how to solve the distributed
ledger problem

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

distributed ledger via repeated consensus

repeat:

- each node supports its command

- exchange messages to get an

 agreement on the winning

 command

- every node updates its (local)

 ledger with the winning

 command

Bitcoin system
(in a nutshell)

Tim Roughgarden, Incentives in Computer Science
Lecture #9: Incentives in Bitcoin Mining,
 http://timroughgarden.org/f16/l/l9.pdf

http://timroughgarden.org/f16/l/l9.pdf

A Bitcoin transaction:

1. One or more senders.

2. One or more receivers.

3. The amount of BTC (Bitcoins) transferred from each

 sender to each receiver.

4. A proof of ownership of the coins being transferred,

 in the form of a pointer back to most recent transactions

 involving the transferred coins.

5. A transaction fee, paid by the sender to the authorizer of

 the transaction.

Transactions

Transactions

A transaction is valid if:

1. It has been cryptographically signed by all of the senders.

2. The senders really do own the coins being transferred.

This can be verified using

the senders’ public keys.

This can be verified as follows:

-transactions are broadcast to all other users (through a peer-to-peer network);

-all users keep track of all transactions that have ever been authorized;

-thus, everyone knows everyone’s current balance

the ledger: the record of all the authorized transactions.

Transactions

Two important questions:

1. How do transactions get authorized and added to the ledger?
(Traditionally, this would done by a centralized entity like a bank.)

2. How do Bitcoins get created in the first place?

(Traditionally, money is printed by the government.)

Blocks

A block contains:

1. One or more transactions.

2. A hash of the previous block.

3. A nonce. (I.e., a bunch of bits that can be set arbitrarily.)

This imposes a natural linked list-type structure on the ledger:

-the predecessor of a block b2 being the block b1 whose hash matches the hash

stored in b2.

Transactions are added to the ledger in groups, known as blocks.

 b1 b2 b3 b4 …

Blockchain

Blockchain

Some issues:

-How do new blocks get added to the blockchain?

-Who can do it?

-Why should they bother?

-How can we make sure that everybody agrees on the contents of

the blockchain?

Two key ingredients:

1. Any user can authorize a block. Bitcoin incentivizes users to do

authorizations through explicit monetary rewards (in BTC,

naturally).

2. Authorizing a new block of transactions involves a proof of work,

meaning that the authorizer has to solve a computationally

difficult puzzle.

Computational difficult puzzle

A block b is valid if h(b) is sufficiently close to 0.

h: pre-agreed upon hash function

 (currently, SHA-256)
the leading l bits of h(b) should all

be 0, where l is a parameter

a block contains:

 transactions, the hash of the previous block, the nonce

has to be set properly set in order

to make the block valid

parameter l chosen to keep the rate of valid block creation roughly

every ten minutes

Block Rewards and Bitcoin Mining

Bitcoin mining: the process of finding new valid blocks.

A miner:

-chooses a subset of the transactions;

-inserts the hash of the current last block;

-arbitrarily set the bits in the nonce (and hope that the resulting

block is valid).

the accepted belief is that there is no

algorithm for finding a valid block that

is smarter or faster than random

guessing or exhaustive search

h is a cryptographic hash function

Block Rewards and Bitcoin Mining

The reward that a miner gets for adding a new (valid) block to the

blockchain has two ingredients:

1. A flat reward that does not depend on the contents of the block
(When Bitcoin debuted this reward was 50 BTC, but the protocol dictates

that this amount gets cut in half every four years. Currently, it is 12.5.)

2. The sum of the transaction fees of the transactions in the block
(Currently, transaction fees are non-zero but typically constitute only a few

percent of the overall reward.)

remark: create a new block is the only way that new money gets printed

the miner gets the new mined BTCs as special transaction inserted into

the mined block

Forks

When a new valid block has been found:

-the miner is supposed to immediately broadcast it across the entire

network, so that it gets appended to the blockchain;

-If someone else announces a new valid block first, then the miner

restarts this procedure, now using only transactions not already

authorized by the new block, and using the hash of the new block.

when two miners solve a block at roughly the same time:

 b1 b2 b3

 b4

fork

 b4
 ’

Forks

Intended behavior when there is a fork:

-a user should regard the longest branch as the valid one;

-break ties according to the block that it heard about first.

 b1 b2 b3

 b4
fork

 b4
 ’

 b5

“orphaned” block

robustness

Bitcoin Mining Protocol:

- work on the next block to be added to the longest chain

- announce the solved block as soon as you get it

Does a miner have

convenience to follow the

protocol?

The Double-Spend Attack

Idea: miners deliberately create forks.

 b1 b2

 b3 b4 b5

Assumption: Bob only ships the purchased goods to Alice once another block b2

has been appended to b1.

 b0

: fraction of the computational

 power controlled by Alice

probability of success: 3

The Double-Spend Attack

Idea: miners deliberately create forks.

 b1 b2

 b3 b4 b5

Assumption: Bob only ships the purchased goods to Alice once k other blocks

have been appended to b1.

 b0

: fraction of the computational

 power controlled by Alice

probability of success: k+2

The 51% Attack

 b1 b2

 b4 b5 b7

if Alice controls > 50% of the computational power

 b0

remark:

Bitcoin is not intended to function when a

single entity controls more than 50% of the

computational power

 b3 b6 b9

 b8 b10 b11

selfish mining

I. Eyal and E. Gun Sirer, Majority is not enough: Bitcoin mining is vulnerable,
 Financial Cryptography 2014

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

wasted work!

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks
wasted work!

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

idea: selfishly decide when to announce solved blocks

A

B

A

B

A

A

B

B

B

B

x

1-x

idea: selfishly decide when to announce solved blocks

A

B

A

B

A

A

B

B

B

B

x

1-x

idea: selfishly decide when to announce solved blocks

A

B

A

B

A

A

B

B

B

B

x

1-x

idea: selfishly decide when to announce solved blocks

A

B

A

B

A

A

B

B

B

B

x

1-x

wasted work!

wasted work!

idea: selfishly decide when to announce solved blocks

A

B

A

B

A

A

B

B

B

B

x

1-x

Convenient if:
- 1/3 of the total computational

power

- x1/2 & 1/4 of the total

computational power

Thank you for
your attention!

