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Algorithmic Game Theory

Algorithmic Issues in Non-cooperative (i.e., 
strategic) Distributed Systems



Two Research Traditions

◼ Theory of Algorithms: computational issues
◼ What can be feasibly computed?

◼ How much does it take to compute a solution?

◼ Which is the quality of a computed solution?

◼ Game Theory: interaction between self-interested 
individuals
◼ What is the outcome of the interaction?

◼ Which social goals are compatible with selfishness? 



one of the foremost mathematicians 
of the 20th century

John von Neumann 

(1903-1957)

Games and Economic Behavior
(1944, with O. Morgenstern)



Different Assumptions

◼ Theory of Algorithms (in distributed systems): 
◼ Processors are obedient, faulty, or adversarial
◼ Large systems, limited computational resources

◼ Game Theory:
◼ Players are strategic (selfish)
◼ Small systems, unlimited computational resources



The Internet World

◼ Agents often autonomous (users)
◼ Users have their own individual goals

◼ Network components owned by providers

◼ Often involve “Internet” scales
◼ Massive systems

◼ Limited communication/computational
resources

 Both strategic and computational issues!



◼ Game Theory provides a bunch of tools useful for addressing 

computational problems in non-cooperative scenarios

◼ networks used by self-interested users

◼ Theory of algorithms sheds light on results of Game Theory

◼ for several results on the existence of equilibria/mechanisms 

we have that such an equilibium/mechanism cannot be 

found/implemented efficiently

Theory of 
Algorithms 

Game 
Theory

Algorithmic
Game Theory

+=



Basics of Game Theory:

games & equilibria



A game

◼ A game consists of: 
◼ A set of players
◼ A set of rules of encounter: Who should act when, 

and what are the possible actions (strategies)
◼ A specification of payoffs for each combination of 

strategies
◼ Game Theory attempts to predict the outcome of the 

game (solution) by taking into account the individual 
behavior of the players

an equilibrium!



A famous one-shot game: 
the Prisoner’s Dilemma

…the story of two strange and dangerous fellows…



A famous one-shot game: 
the Prisoner’s Dilemma

Prisoner I

Prisoner II

Don’t 
Implicate

Implicate

Don’t 
Implicate

2, 2 5, 1

Implicate 1, 5 4, 4

Strategy

Set

Strategy 
Set

Payoffs



Prisoner I’s decision

◼ Prisoner I’s decision:
◼ If II chooses Don’t Implicate then it is best to Implicate
◼ If II chooses Implicate then it is best to Implicate
◼ It is best to Implicate for I, regardless of what II does: 

Dominant Strategy

Prisoner I

Prisoner II

Don’t Implicate Implicate

Don’t Implicate 2, 2 5, 1

Implicate 1, 5 4, 4



Prisoner II’s decision

◼ Prisoner II’s decision:
◼ If I chooses Don’t Implicate then it is best to Implicate
◼ If I chooses Implicate then it is best to Implicate
◼ It is best to Implicate for II, regardless of what I does: 

Dominant Strategy

Prisoner I

Prisoner II

Don’t Implicate Implicate

Don’t Implicate 2, 2 5, 1

Implicate 1, 5 4, 4



Hence…

◼ It is best for both to implicate regardless of what the other one does
◼ Implicate is a Dominant Strategy for both
◼ (Implicate, Implicate) becomes the Dominant Strategy Equilibrium
◼ Note: If they might collude, then it’s beneficial for both to Not 

Implicate, but it’s not an equilibrium as both have incentive to deviate

Prisoner I

Prisoner II

Don’t 
Implicate

Implicate

Don’t 
Implicate

2, 2 5, 1

Implicate 1, 5 4, 4



A network game

two Internet Service Providers (ISP): 
ISP1 e ISP2

ISP1 wants to send traffic from s1 to t1

ISP2 wants to send traffic from s2 to t2

s1

s2

t1

t2

C S

(long) links have cost 1 
(for ISP owning the link)

C, S: peering points

Each ISPi can use two paths: the one passing through C o
the one passing through S



A network game
s1

s2

t1

t2

C S

C, S: peering points

throungh

S

through

C

throungh

S
2, 2 5, 1

through

C
1, 5 4, 4

Cost Matrix

ISP1

ISP2



Formal representation 
of a game: Normal Form

◼ N rational players

◼ Si =Strategy set of player i

◼ The strategy combination (s1, s2, …, sN) gives 
payoff (p1, p2, …, pN) to the N players 

 S1S2 …  SN payoff matrix



Dominant Strategy 
Equilibrium

◼ Dominant Strategy Equilibrium: is a strategy 
combination s*= (s1

*, s2
*, …, sN

*), such that si
* is a 

dominant strategy for each i, namely, for any possible 
alternative strategy profile s= (s1, s2, …, si , …, sN):

◼ if pi is a utility, then pi (s1, s2,…, si
*,…, sN) ≥ pi (s1, s2,…, si,…, sN)

◼ if pi is a cost, then pi (s1, s2, …, si
*, …, sN) ≤ pi (s1, s2, …, si, …, sN)

◼ Dominant Strategy is the best response to any 
strategy of other players

◼ If a game has a DSE, then players will immediately 
converge to it 

◼ Of course, not all games (only very few in the 
practice!) have a dominant strategy equilibrium



A more relaxed solution concept: 
Nash Equilibrium [1951]

◼ Nash Equilibrium: is a strategy combination 
s*= (s1

*, s2
*, …, sN

*) such that for each i, si
* is a 

best response to (s1
*, …,si-1

*,si+1
*,…, sN

*), namely, 
for any possible alternative strategy si of player i
◼ if pi is a utility, then pi (s1

*, s2
*,…, si

*,…, sN
*) ≥ pi (s1

*, s2
*,…, si,…, sN

*) 

◼ if pi is a cost, then pi (s1
*, s2

*, …, si
*, …, sN

*) ≤ pi (s1
*, s2

*, …, si, …, sN
*)



Nash Equilibrium: The Battle of 
the Sexes (coordination game)

◼ (Stadium, Stadium) is a NE: Best responses to each other
◼ (Cinema, Cinema) is a NE: Best responses to each other

 but they are not Dominant Strategy Equilibria … are 
we really sure they will eventually go out 
together????

Man

Woman

Stadium Cinema

Stadium 6, 5 2, 2

Cinema 1, 1 5, 6



A similar game: routing 
congestion game

two traffic streams originated 
at node O need to be routed to 
the rest of the network

Costs without congestion: 
c(O,A)=1      c(O,B)=2

O

A B

Each stream can use two paths: the one passing through A o
the one passing through B

network

Costs with congestion: 
c(O,A)=5      c(O,B)=6

5                  6

1          2



A similar game: routing 
congestion game

O

A B

network

5                  6

1          2

throungh

A

through

B

throungh

A
5, 5 1, 2

through

B
2, 1 6, 6

Cost Matrix

stream 
1

stream 2



Nash Equilibrium

◼ In a NE no agent can unilaterally deviate from 
its strategy given  others’ strategies as fixed

◼ Agent has to deliberate about the strategies 
of the other agents

◼ If the game is played repeatedly and players 
converge to a solution, then it has to be a NE

◼ Dominant Strategy Equilibrium  Nash 
Equilibrium (but the converse is not true)



A big game theoretic issue: 
the existence of a NE

◼ Unfortunately, for pure strategies games 
(as those seen so far), it is easy to see 
that we cannot have a general result of 
existence

◼ In other words, there may be no, one, or 
many NE, depending on the game



A conflictual game: Matching pennies

 In any configuration, one of the players
prefers to change his strategy

 no NE!

Player I

Player II

Head Tail

Head 1,-1 -1,1

Tail -1,1 1,-1



On the existence of a NE (2)

◼ However, when a player can select his strategy 
randomly by using a probability distribution over his 
set of possible strategies (mixed strategy), then the 
following general result holds:

◼ Theorem (Nash, 1951): Any game with a finite set of 
players and a finite set of strategies has a NE of mixed 
strategies (i.e., the expected payoff cannot be 
improved by changing unilaterally the selected 
probability distribution).

◼ Head or Tail game: if each player sets 
p(Head)=p(Tail)=1/2, then the expected payoff of each 
player is 0, and this is a NE, since no player can improve 
on this by choosing a different randomization!



Three big computational issues 

1. Finding a NE, once it does exist
2. Establishing the quality of a NE, as 

compared to a cooperative system, i.e., a 
system in which agents can cooperate

3. In a repeated game, establishing 
whether and in how many steps the 
system will eventually converge to a NE



On the quality of a NE

◼ How inefficient is a NE in comparison to an ideal 
situation in which the players would strive to collaborate 
with the common goal of choosing the best outcome? 
Best outcome w.r.t. what?

◼ we need a social-choice function C mapping strategy 
profiles into real numbers
◼ C measures the overall quality of an outcome S

◼ e.g. C(S): sum of all players’ costs/utilities



A worst-case perspective: 
the Price of Anarchy (PoA)

◼ Definition (Koutsopias & Papadimitriou, 1999): Given a 
game G and a social-choice function C, let S be the set of 
all NE. If the payoff represents a cost (resp., a utility) 
for a player, let OPT be the outcome of G minimizing
(resp., maximizing) C. Then, the Price of Anarchy (PoA) of 
G w.r.t. C is
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The price of stability (PoS)

◼ Definition (Schulz & Moses, 2003): Given a game G and 
a social-choice function C, let S be the set of all 
NE. If the payoff represents a cost (resp., a 
utility) for a player, let OPT be the outcome of G 
minimizing (resp., maximizing) C. Then, the Price 
of Stability (PoS) of G w.r.t. C is:

Ss
CPoS
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Some remarks

◼ PoA and PoS are
◼  1 for minimization problems
◼  1 for maximization problems

◼ PoA and PoS are small when they are close to 1
◼ PoS is at least as close to 1 than PoA 
◼ In a game with a unique equilibrium PoA=PoS
◼ PoA is similar to the concept of approximation ratio of 

a heuristic
◼ a bound on the PoS provides a significantly weaker 

guarantee than a bound on the PoA
◼ Why to study the PoS?

◼ sometimes a nontrivial bound is possible only for PoS
◼ PoS quantifies the necessary degradation in quality under the 

game-theoretic constraint of stability



An example: Selfih Routing 



Which way?
The fastest one!



Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!



Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

Which way?
The fastest one!

How bad will the 

traffic be today?



A large network can be modelled by using game theory

players users
strategies paths over which users

can route their traffic

Non-atomic Selfish Routing:
• there is a large number of (selfish) users
• every user controls a tiny fraction of the traffic
• each edge has a cost function measuring the travel time

as function of amount of traffic on the edge
• every user tries to minimize his travel time
• social-choice function (to minimize): average travel

time incurred by players

selfish routing



Latency is 
fixed

Latency depends on 
the congestion (x is 
the fraction of flow 

using the edge)

s t

1)( =x

Example: Pigou’s game [1920]

▪What is the NE of this game? 
▪Trivial: all the fraction of flow tends to travel on the upper edge 

the cost of the flow is 1·1 +0·1 =1
▪How bad is this NE? 
▪The optimal solution is the minimum of C(x)=x·x +(1-x)·1  C ’(x)=2x-1 
 OPT=1/2  C(OPT)=1/2·1/2+(1-1/2)·1=0.75

xx =)(One unit
of traffic

ratio between 
the two costs 

= 1/0.75 = 4/3
(NE vs Opt)



Do we have to take into 
account selfish behaviour of 
the users when we design a 

network? 



The Braess’s paradox

s t

x

x

1

1

1

One unit
of traffic average 

travel time 
= 2

is it a NE?

…no!



The Braess’s paradox

s t

x

x

1

1

One unit
of traffic

the only NE

Notice: this  
is also the 

optimal 
outcome.

1/2

1/2

average 
travel time 

= 1.5



The Braess’s paradox

One unit
of traffic

the only NE

average 
travel time 

= 2

s t

x

x

1

1

01

To reduce the 
traffic, I will 
build a new 

road.



The Braess’s paradox

One unit
of traffic

the only NE

Notice:
- the optimal 
outcome as before:
- ½ up& ½ down
- average travel 
time of 1.5 

average 
travel time 

= 2

s t

x

x

1

1

01

ratio between 
the two costs 

= 2/1.5 = 4/3

4/3 as in the 
Pigou’s example

(NE vs Opt)



The Price of Anarchy of the Selfish Routing Game with 
linear latency function is at most 4/3

Theorem (Roughgarden&Tardos 2000)



There are n countries. Each country faces the choice 
of either passing legislation to control pollution or not.
Assume that pollution control has a cost of 3 for the 
country, but each country that pollutes adds 1 of all 
countries (in term of added health costs).
The cost of controlling pollution is 3.

Pollution game

...notice that the cost of controlling pollution 
is considerably larger than the cost a country 

pays for being socially irresponsible… 

can we bound the PoA?
And the PoS?



There are n players. Each player wants to send 
information along a shared channel of known maximum 
capacity 1. Player i’s strategy is to send xi units of flow 
along the channel, for some xi[0,1].
Each player would like to have a large fraction of the 
bandwidth but the quality of the channel deteriorates as 
the total assigned bandwidth increases. More precisely, 
the value of a player i is  xi(1- jxj).

Tragedy of commons

can we bound the PoA?
And the PoS?


