Algoritmi Distribuiti e Reti Complesse (modulo II)

Luciano Gualà

guala@mat.uniroma2.it

www.mat.uniroma2.it/~guala

Algorithmic Game Theory

Algorithmic Issues in Non-cooperative (i.e., strategic) Distributed Systems

Two Research Traditions

- Theory of Algorithms: computational issues
 - What can be feasibly computed?
 - How much does it take to compute a solution?
 - Which is the quality of a computed solution?
 - Centralized or distributed computational models
- Game Theory: interaction between self-interested individuals
 - What is the outcome of the interaction?
 - Which social goals are compatible with selfishness?

one of the foremost mathematicians of the 20th century

John von Neumann (1903-1957)

Games and Economic Behavior (1944, with O. Morgenstern)

Different Assumptions

- Theory of Algorithms (in distributed systems):
 - Processors are obedient, faulty, or adversarial
 - Large systems, limited computational resources
- Game Theory:
 - Players are strategic (selfish)
 - Small systems, unlimited computational resources

The Internet World

- Agents often autonomous (users)
 - Users have their own individual goals
 - Network components owned by providers
- Often involve "Internet" scales
 - Massive systems
 - Limited communication/computational resources
- ⇒ Both strategic and computational issues!

- Game Theory provides a bunch of tools useful for addressing computational problems in non-cooperative scenarios
 - networks used by self-interested users
- Theory of algorithms sheds light on results of Game Theory
 - for several results on the existence of equilibria/mechanisms we have that such an equilibrium/mechanism cannot be found/implemented efficiently

Basics of Game Theory

- A game consists of:
 - A set of players
 - A set of rules of encounter: Who should act when, and what are the possible actions (strategies)
 - A specification of payoffs for each combination of strategies
 - A set of outcomes
- Game Theory attempts to predict the outcome of the game (solution) by taking into account the individual behavior of the players (agents)

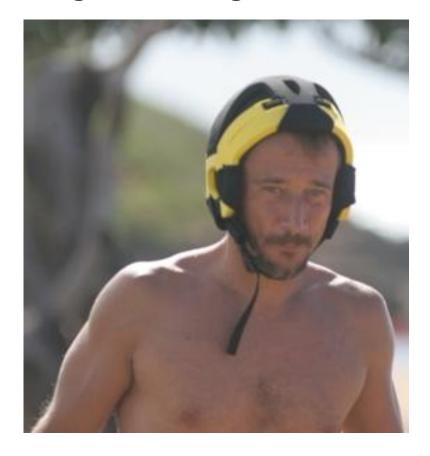
Equilibrium

- Among the possible outcomes of a game, equilibria play a fundamental role.
- Informally, an equilibrium is a strategy combination in which individuals are not willing to change their state.
- When a player does not want to change his state? In the Homo Economicus model, when he has selected a strategy that maximizes his individual payoff, knowing that other players are also doing the same.

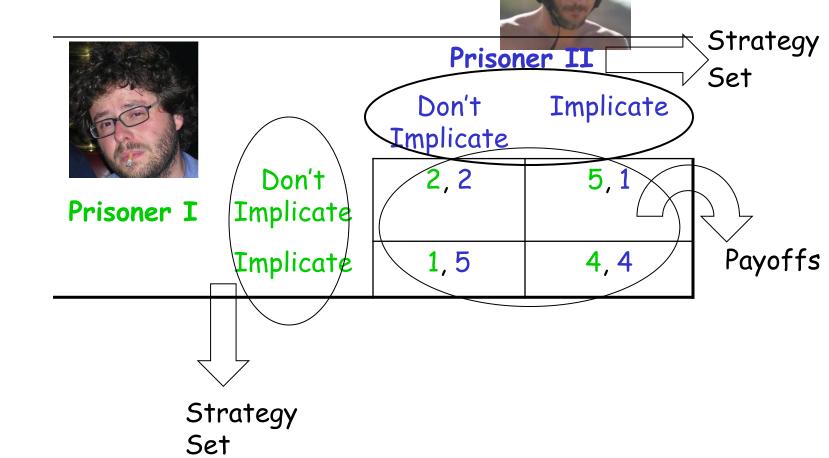
FIRST PART: (Nash) Equilibria

A famous one-shot game: the Prisoner's Dilemma

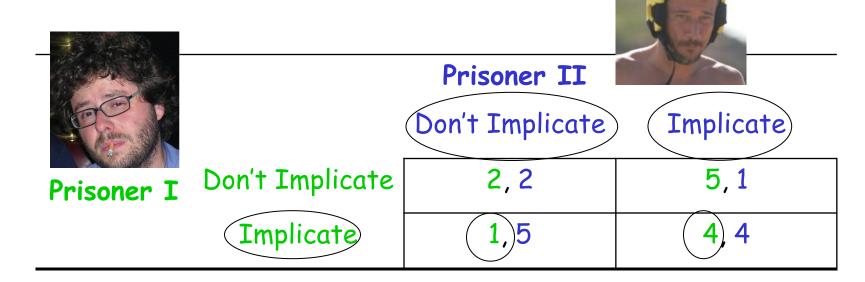
...the story of two strange and dangerous fellows...



A famous one-shot game: the Prisoner's Dilemma



Prisoner I's decision



Prisoner I's decision:

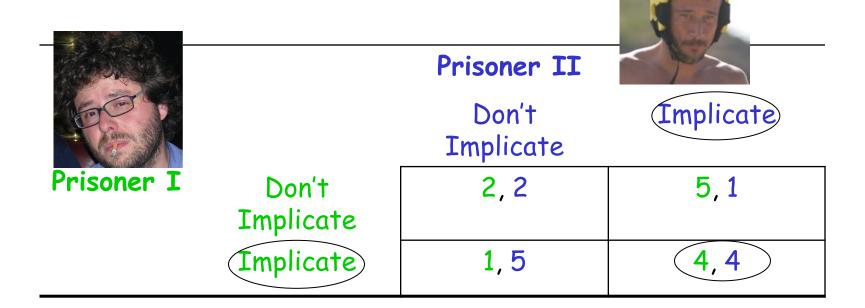
- If II chooses Don't Implicate then it is best to Implicate
- If II chooses Implicate then it is best to Implicate
- It is best to Implicate for I, regardless of what II does: Dominant Strategy

Prisoner II's decision

Prisoner II's decision:

- If I chooses Don't Implicate then it is best to Implicate
- If I chooses Implicate then it is best to Implicate
- It is best to Implicate for II, regardless of what I does: Dominant Strategy

Hence...



- It is best for both to implicate regardless of what the other one does
- Implicate is a Dominant Strategy for both
- (Implicate, Implicate) becomes the Dominant Strategy Equilibrium
- Note: If they might collude, then it's beneficial for both to Not Implicate, but it's not an equilibrium as both have incentive to deviate

A network game

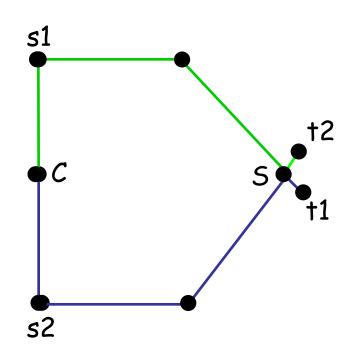
C, S: peering points

two Internet Service Providers (ISP): ISP1 e ISP2

ISP1 wants to send traffic from s1 to t1

ISP2 wants to send traffic from s2 to t2

(long) links have cost 1 (for ISP owning the link)



Each ISPi can use two paths: the one passing through $\mathcal C$ o the one passing through $\mathcal S$

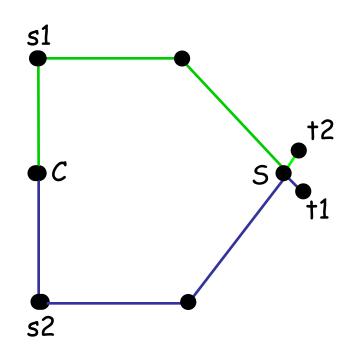
A network game

C, S: peering points

Cost Matrix

T		
	μ	
_		_

_		throungh S	through C
ISP1	throungh S	2,2	5, 1
	through C	1, 5	4, 4



Formal representation of a game: Normal Form

- N rational players
- S_i = Strategy set of player i
- The strategy combination $(s_1, s_2, ..., s_N)$ gives payoff $(p_1, p_2, ..., p_N)$ to the N players
 - \Rightarrow $S_1 \times S_2 \times ... \times S_N$ payoff matrix

Dominant Strategy Equilibrium

- Dominant Strategy Equilibrium: is a strategy combination $s^* = (s_1^*, s_2^*, ..., s_N^*)$, such that s_i^* is a dominant strategy for each i, namely, for any possible alternative strategy profile $s = (s_1, s_2, ..., s_i, ..., s_N)$:
 - if p_i is a utility, then $p_i(s_1, s_2, ..., s_i^*, ..., s_N) \ge p_i(s_1, s_2, ..., s_i, ..., s_N)$
 - if p_i is a cost, then $p_i(s_1, s_2, ..., s_i^*, ..., s_N) \le p_i(s_1, s_2, ..., s_i, ..., s_N)$
- Dominant Strategy is the best response to any strategy of other players
- If a game has a DSE, then players will immediately converge to it
- Of course, not all games (only very few in the practice!) have a dominant strategy equilibrium

A more relaxed solution concept: Nash Equilibrium [1951]

- Nash Equilibrium: is a strategy combination $s^* = (s_1^*, s_2^*, ..., s_N^*)$ such that for each i, s_i^* is a best response to $(s_1^*, ..., s_{i-1}^*, s_{i+1}^*, ..., s_N^*)$, namely, for any possible alternative strategy s_i of player i
 - if p_i is a utility, then $p_i(s_1^*, s_2^*, ..., s_i^*, ..., s_N^*) \ge p_i(s_1^*, s_2^*, ..., s_i^*, ..., s_N^*)$
 - if p_i is a cost, then $p_i(s_1^*, s_2^*, ..., s_i^*, ..., s_N^*) \le p_i(s_1^*, s_2^*, ..., s_i^*, ..., s_N^*)$

Nash Equilibrium

- In a NE no agent can unilaterally deviate from its strategy given others' strategies as fixed
- Agent has to deliberate about the strategies of the other agents
- If the game is played repeatedly and players converge to a solution, then it has to be a NE
- Dominant Strategy Equilibrium ⇒ Nash Equilibrium (but the converse is not true)

Nash Equilibrium: The Battle of the Sexes (coordination game)

		Woman	
		Stadium	Cinema
Man	Stadium	6,5	2,2
	Cinema	1, 1	5,6

- (Stadium, Stadium) is a NE: Best responses to each other
- (Cinema, Cinema) is a NE: Best responses to each other
- But they are not Dominant Strategy Equilibria ... are we really sure they will eventually go out together????

A similar game: routing congestion game

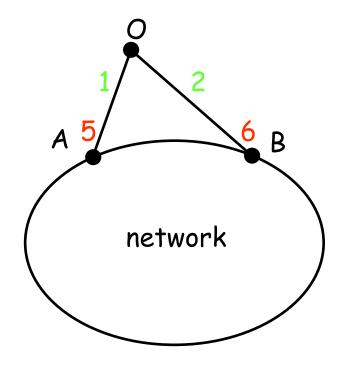
two traffic streams originated at node O need to be routed to the rest of the network

Costs without congestion:

$$c(O,A)=1$$
 $c(O,B)=2$

Costs with congestion:

$$c(O,A)=5$$
 $c(O,B)=6$



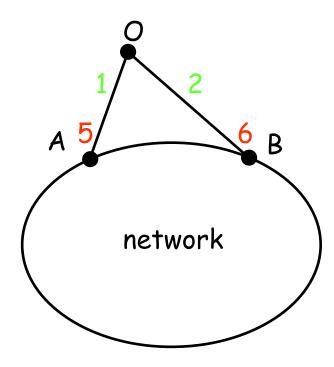
Each stream can use two paths: the one passing through A o the one passing through B

A similar game: routing congestion game

Cost Matrix

stream 2

_		throungh A	through B
stream 1	throungh A	5,5	1, 2
	through B	2,1	6,6



A big game theoretic issue: the existence of a NE

- Unfortunately, for pure strategies games (as those seen so far), it is easy to see that we cannot have a general result of existence
- In other words, there may be no, one, or many NE, depending on the game

A conflictual game: Head or Tail

		Player II	
		Head	Tail
Player I	Head	1,-1	-1,1
	Tail	-1,1	1,-1

- Player I (row) prefers to do what Player II does, while Player II prefer to do the opposite of what Player I does!
- ⇒ In any configuration, one of the players prefers to change his strategy, and so on and so forth...thus, there are no NE!

On the existence of a NE (2)

- However, when a player can select his strategy randomly by using a probability distribution over his set of possible strategies (mixed strategy), then the following general result holds:
- Theorem (Nash, 1951): Any game with a finite set of players and a finite set of strategies has a NE of mixed strategies (i.e., the expected payoff cannot be improved by changing unilaterally the selected probability distribution).
- Head or Tail game: if each player sets p(Head)=p(Tail)=1/2, then the expected payoff of each player is 0, and this is a NE, since no player can improve on this by choosing a different randomization!

Three big computational issues

- 1. Finding a NE, once it does exist
- 2. Establishing the quality of a NE, as compared to a cooperative system, i.e., a system in which agents can cooperate
- 3. In a repeated game, establishing whether and in how many steps the system will eventually converge to a NE

On the quality of a NE

- How inefficient is a NE in comparison to an idealized situation in which the players would strive to collaborate with the common goal of choosing the best outcome? Best outcome w.r.t. what?
- we need a social-choice function C mapping strategy profiles into real numbers
 - C measures the overall quality of an outcome S
 - e.g. C(S): sum of all players' costs/utilities

A worst-case perspective: the Price of Anarchy (PoA)

Definition (Koutsopias & Papadimitriou, 1999): Given a game G and a social-choice function C, let S be the set of all NE. If the payoff represents a cost (resp., a utility) for a player, let OPT be the outcome of G minimizing (resp., maximizing) C. Then, the Price of Anarchy (PoA) of G w.r.t. C is

$$\mathsf{PoA}_{G}(C) = \sup_{s \in S} \frac{C(s)}{C(\mathsf{OPT})} \left(\mathsf{resp., inf}_{s \in S} \, \frac{C(s)}{C(\mathsf{OPT})} \right)$$

The price of stability (PoS)

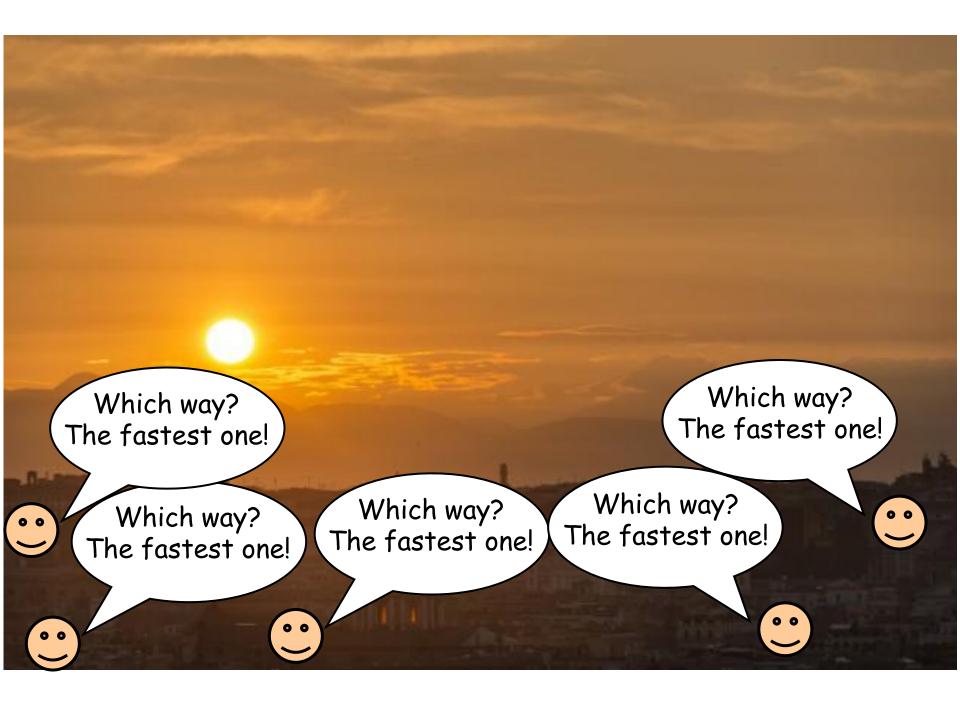
Definition (schulz & Moses, 2003): Given a game G and a social-choice function C, let S be the set of all NE. If the payoff represents a cost (resp., a utility) for a player, let OPT be the outcome of G minimizing (resp., maximizing) C. Then, the Price of Stability (PoS) of G w.r.t. C is:

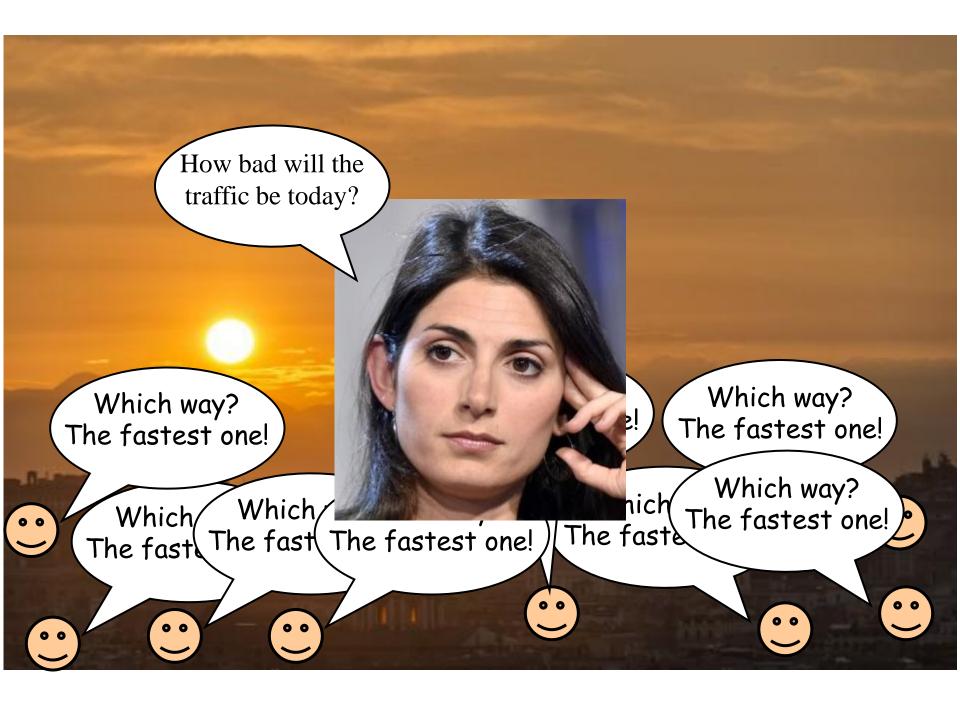
$$PoS_{G}(C) = \inf_{s \in S} \frac{C(s)}{C(OPT)} \left(\text{resp.,} \sup_{s \in S} \frac{C(s)}{C(OPT)} \right)$$

Some remarks

- PoA and PoS are
 - ≥ 1 for minimization problems
 - ≤ 1 for maximization problems
- PoA and PoS are small when they are close to 1
- PoS is at least as close to 1 than PoA
- In a game with a unique equilibrium PoA=PoS
- PoA is similar to the concept of approximation ratio of a heuristic
- a bound on the PoS provides a significantly weaker guarantee than a bound on the PoA
- Why to study the PoS?
 - sometimes a nontrivial bound is possible only for PoS
 - PoS quantifies the necessary degradation in quality under the game-theoretic constraint of stability

An example: Selfih Routing





selfish routing

A large network can be modelled by using game theory

players

strategies

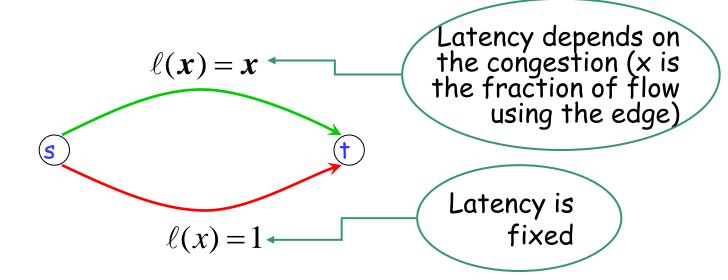
paths over which users

can route their traffic

Non-atomic Selfish Routing:

- there is a large number of (selfish) users
- · every user controls a tiny fraction of the traffic
- each edge has a cost function measuring the travel time as function of amount of traffic on the edge
- · every user tries to minimize his travel time
- social-choice function (to minimize): average travel time incurred by players

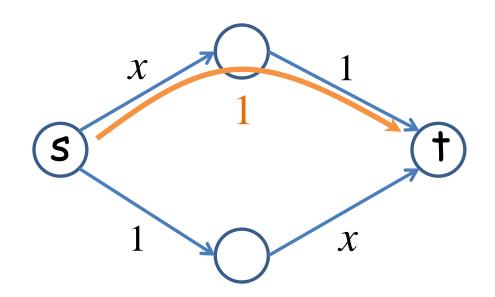
Example: Pigou's game [1920]



- What is the NE of this game?
- Trivial: all the fraction of flow tends to travel on the upper edge \Rightarrow the cost of the flow is $1\cdot 1 + 0\cdot 1 = 1$
- How bad is this NE?
- The optimal solution is the minimum of $C(x)=x \cdot x + (1-x) \cdot 1 \Rightarrow C'(x)=2x-1 \Rightarrow OPT=1/2 \Rightarrow C(OPT)=1/2 \cdot 1/2 + (1-1/2) \cdot 1=0.75$

Do we have to take into account selfish behaviour of the users when we design a network?

One unit of traffic

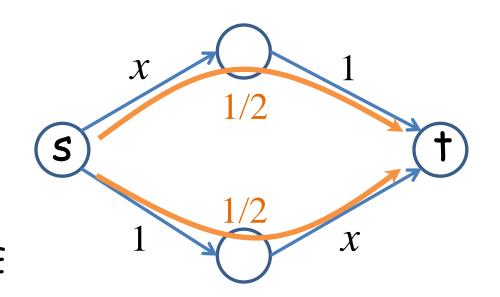


average = 2 travel time

is it a NE?

...no!

One unit of traffic



average = 1.5

Notice: this is also the optimal outcome.

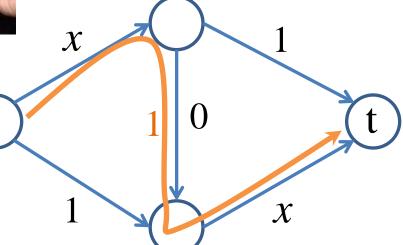
the only NE

To reduce the traffic, I will build a new road.

average travel time = 2

One unit of traffic

the only NE



One unit of traffic

 $\frac{x}{s}$

the only NE

average travel time = 2

Notice:

- the optimal outcome as before:
- $-\frac{1}{2}$ up& $\frac{1}{2}$ down
- average travel time of 1.5

4/3 as in the Pigou's example

ratio between the two costs (NE vs Opt)

= 2/1.5 = **4/3**

Theorem (Roughgarden&Tardos 2000)

The Price of Anarchy of the Selfish Routing Game with linear latency function is at most 4/3

Pollution game

There are *n* countries. Each country faces the choice of either passing legislation to control pollution or not. Assume that pollution control has a cost of 3 for the country, but each country that pollutes adds 1 of all countries (in term of added health costs). The cost of controlling pollution is 3.

...notice that the cost of controlling pollution is considerably larger than the cost a country pays for being socially irresponsible...

can we bound the PoA?

And the PoS?

Tragedy of commons

There are n players. Each player wants to send information along a shared channel of known maximum capacity 1. Player i's strategy is to send x_i units of flow along the channel, for some $x_i \in [0,1]$. Each player would like to have a large fraction of the bandwidth but the quality of the channel deteriorates as the total assigned bandwidth increases. More precisely, the value of a player i is $x_i(1-\Sigma_i x_i)$.

can we bound the PoA?

And the PoS?