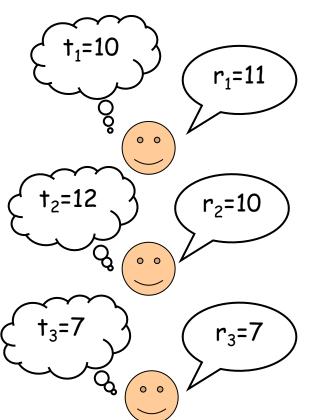
Combinatorial Auction

A single item auction



r_i: is the amount of money player i **bids**(in a sealed envelope) for the painting

t_i: is the **maximum** amount of money player i is willing to pay for the painting

If player i wins and has to pay p
its utility is u_i=t_i-p

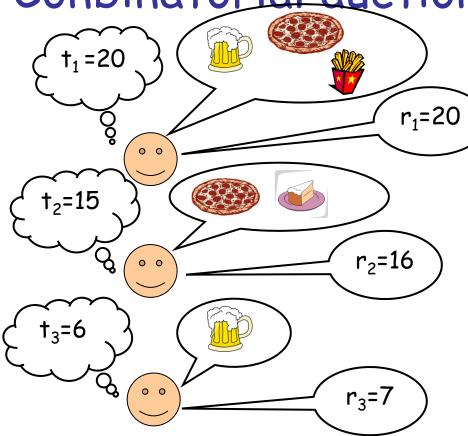
Social-choice function:

the winner should be the guy **having in mind** the highest value for the painting

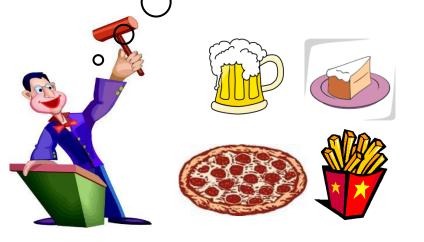
The mechanism tells to players:

- (1) How the item will be allocated (i.e., who will be the winner), depending on the received bids
- (2) The payment the winner has to return, as a function of the received bids

Conbinatorial auction



f(t): the set W∈F with the highest total value



Each player wants a bundle of objects

t_i: value player i is willing to pay for its bundle

if player i gets the bundle at price p his utility is $u_i=t_i-p$

the mechanism decides the set of winners and the corresponding payments

 $F=\{ W\subseteq \{1,...,N\} : winners in W are compatible \}$

Combinatorial Auction (CA) problem - single-minded case

Input:

- n buyers, m indivisible objects
- each buyer i:
 - Wants a subset S_i of the objects
 - has a value t_i for S_i

Solution:

- $W\subseteq\{1,...,n\}$, such that for every $i,j\in W$, with $i\neq j$, $S_i\cap S_j=\emptyset$
- Measure (to maximize):
 - Total value of W: $\sum_{i \in W} t_i$

CA game

- each buyer i is selfish
- Only buyer i knows t_i (while S_i is public)
- We want to compute a "good" solution w.r.t. the true values
- We do it by designing a mechanism
- Our mechanism:
 - Asks each buyer to report its value v_i
 - Computes a solution using an output algorithm $g(\cdot)$
 - takes payments p_i from buyer i using some payment function p

1

More formally

- Type of agent buyer i:
 - t_i: value of S_i
 - Intuition: t_i is the maximum value buyer i is willing to pay for S_i
- Buyer i's valuation of $W \in F$:
 - $v_i(t_i, W) = t_i$ if $i \in W$, 0 otherwise
- SCF: a good allocation of the objects w.r.t.
 the true values

How to design a truthful mechanism for the problem?

Notice that:

the (true) total value of a feasible W is:

$$\sum_{i \in W} t_i = \sum_i v_i(t_i, W)$$

the problem is utilitarian!

... VCG mechanisms apply

4

VCG mechanism

- M= <g(r), p(x)>:
 - g(r): $x^*=arg max_{x \in F} \sum_j v_j(r_j,x)$
 - p_i(r): for each i:

$$p_i(r) = \sum_{j \neq i} v_j(r_j, g(r_{-i})) - \sum_{j \neq i} v_j(r_j, x^*)$$

g(r) has to compute an optimal solution...

...can we do that?

Theorem

Approximating CA problem within a factor better than $m^{1/2-\epsilon}$ is NP-hard, for any fixed $\epsilon>0$.

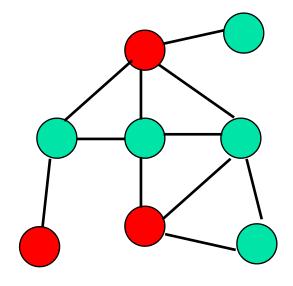
proof

Reduction from maximum independent set problem

Maximum Independent Set (IS) problem

Input:

- a graph G=(V,E)
- Solution:
 - U_⊆V, such that no two vertices in U are jointed by an edge
- Measure:
 - Cardinality of U



Theorem (J. Håstad, 2002)

Approximating IS problem within a factor better than $n^{1-\epsilon}$ is NP-hard, for any fixed $\epsilon>0$.

G=(V,E)

the reduction

each edge is an object
each node i is a buyer with:
S_i: set of edges incident to i
t_i=1

CA instance has a solution of total value $\geq k$ if and only if there is an IS of size $\geq k$

A solution of value k for the instance of CA with $Opt_{CA}/k \le m^{\frac{1}{2}-\epsilon}$ for some $\epsilon>0$ would imply

A solution of value k for the instance of IS and hence:

$$Opt_{IS}/k = Opt_{CA}/k \le m^{\frac{1}{2}-\epsilon} \le n^{1-2\epsilon}$$
 since $m \le n^2$

How to design a truthful mechanism for the problem?

Notice that:

the (true) total value of a feasible W is:

$$\sum_{i} v_{i}(t_{i},W)$$

the problem is utilitarian!

...but a VCG mechanism is not computable in polynomial time!

what can we do?

...fortunately, our problem is one parameter!

4

A problem is binary demand (BD) if

- 1. a_i 's type is a single parameter $t_i \in \Re$
- 2. a_i 's valuation is of the form: $v_i(t_i,0) = t_i w_i(0)$,

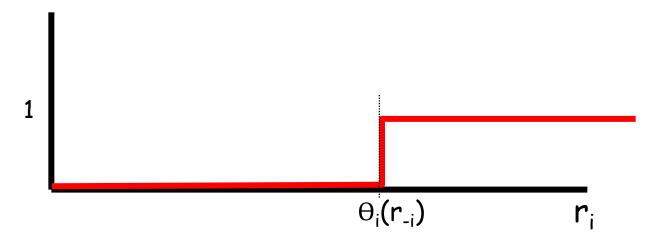
$$w_i(o) \in \{0,1\}$$
 work load for a_i in o

when $w_i(o)=1$ we'll say that a_i is selected in o

Definition

An algorithm g() for a maximization BD problem is monotone if

 \forall agent a_i , and for every $r_{-i}=(r_1,...,r_{i-1},r_{i+1},...,r_N)$, $w_i(g(r_{-i},r_i))$ is of the form:



$$\Theta_{i}(r_{-i}) \in \Re \cup \{+\infty\}$$
: threshold

payment from
$$a_i$$
 is:
 $p_i(r) = \theta_i(r_{-i})$

4

- Our goal: to design a mechanism satisfying:
 - 1. $g(\cdot)$ is monotone
 - Solution returned by $g(\cdot)$ is a "good" solution, i.e. an approximated solution
 - 3. $g(\cdot)$ and $p(\cdot)$ computable in polynomial time

A greedy $\sqrt{m-approximation}$ algorithm

1. reorder (and rename) the bids such that

$$|v_1/\sqrt{|S_1|} \ge |v_2/\sqrt{|S_2|} \ge ... \ge |v_n/\sqrt{|S_n|}$$

- 2. $W \leftarrow \varnothing$; $X \leftarrow \varnothing$ 3. for i=1 to n do
- - if $S_i \cap X = \emptyset$ then $W \leftarrow W \cup \{i\}$; $X \leftarrow X \cup S_i$
- return W

Lemma

The algorithm g() is monotone

proof

It suffices to prove that, for any selected agent i, we have that i is still selected when it raises its bid

$$|\mathbf{v}_1/\sqrt{|\mathbf{S}_1|} \ge ... \ge |\mathbf{v}_i/\sqrt{|\mathbf{S}_i|} \ge ... \ge |\mathbf{v}_n/\sqrt{|\mathbf{S}_n|}|$$

Increasing v_i can only move bidder i up in the greedy order, making it easier to win

Computing the payments

...we have to compute for each selected bidder i its threshold value

How much can bidder i decrease its bid before being non-selected?

Computing payment pi

Consider the greedy order without i

$$|v_1/\sqrt{|S_1|} \ge ... \ge |v_i/\sqrt{|S_i|} \ge ... \ge |v_n/\sqrt{|S_n|}$$

Use the greedy algorithm to find index j

the smallest index j (if any) such that:

1. j is selected

2.
$$S_j \cap S_i \neq \emptyset$$

$$p_i = v_j \sqrt{|S_i|}/\sqrt{|S_j|}$$

 $p_i = 0$ if j doesn't exist

Lemma

Let OPT be an optimal solution for CA problem, and let W be the solution computed by the algorithm, then

$$\sum\nolimits_{i \in \text{OPT}} v_i \leq \sqrt{m} \; \sum\nolimits_{i \in \text{W}} v_i$$

proof

$$\forall i \in W$$
 $OPT_i = \{j \in OPT : j \ge i \text{ and } S_j \cap S_i \ne \emptyset\}$

since
$$\bigcup_{i \in W} \text{OPT}_i = \text{OPT} \qquad \text{it suffices to prove: } \sum_{j \in \text{OPT}_i} v_j \leq \sqrt{m} \ v_i \qquad \forall i \in W$$

$$\sum_{j \in OPT} v_j \leq \sum_{i \in W} \sum_{j \in OPT_i} v_j \leq \sum_{i \in W} \sqrt{m} \ v_i \leq \sqrt{m} \sum_{i \in W} v_i$$

Lemma

Let OPT be an optimal solution for CA problem, and let W be the solution computed by the algorithm, then

$$\sum_{i \in \mathsf{OPT}} v_i \leq \sqrt{m} \; \sum_{i \in \mathsf{W}} v_i$$

proof

$$\forall i \in W$$
 $OPT_i = \{j \in OPT : j \ge i \text{ and } S_j \cap S_i \ne \emptyset\}$

since
$$\bigcup_{i \in W} \mathsf{OPT}_i = \mathsf{OPT} \qquad \text{it suffices to prove: } \sum_{j \in \mathsf{OPT}_i} \mathsf{v}_j \leq \sqrt{m} \ \mathsf{v}_i \qquad \forall i \in W$$

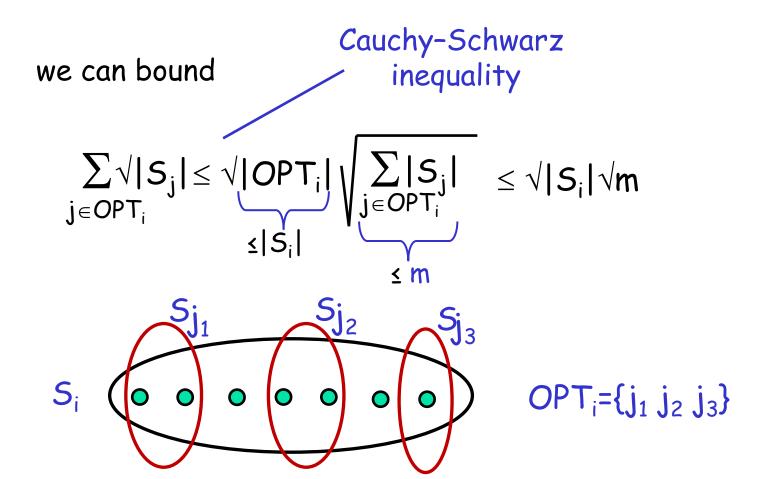
crucial observation for greedy order we have

$$v_{j} \le \frac{v_{i} \sqrt{|S_{j}|}}{\sqrt{|S_{i}|}}$$
 $\forall j \in OPT_{i}$

proof

$$\forall i \in W$$

$$\sum_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \sum_{j \in OPT_i} \sqrt{|S_j|} \leq \sqrt{m} \ v_i$$



Cauchy-Schwarz inequality

$$\left(\sum_{i=1}^{n} x_i y_i\right) \leq \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} \left(\sum_{i=1}^{n} y_i^2\right)^{1/2}.$$

...in our case...

n=
$$|OPT_i|$$
 $x_j=1$
 $y_j=\sqrt{|S_j|}$ for j=1,..., $|OPT_i|$