
Combinatorial Auction 



A single item auction 

t1=10 

t2=12 

t3=7 

r1=11 

r2=10 

Social-choice function: 
the winner should be the 
guy having in mind the 
highest value for the 

painting 

    The mechanism tells to players: 
(1) How the item will be allocated 

(i.e., who will be the winner), 
depending on the received bids 

(2) The payment the winner has to 
 return, as a function of the 

 received bids 

ti: is the maximum amount of money 
player i is willing to pay for the painting 

If player i wins and has to pay p 
its utility is ui=ti-p 

ri: is the amount of 
money player i bids 

(in a sealed 
envelope) for the 

painting 

r3=7 



Conbinatorial auction 
t1 =20  

t2=15 

t3=6 

f(t): the set WF 
with the highest 

total value 

the mechanism decides 
the set of winners and the 
corresponding payments 

Each player wants a bundle of objects 
 
ti: value player i is willing to pay for 
 its bundle 

if player i gets the bundle at price p 
his utility is ui=ti-p 

F={ W{1,…,N} : winners in W  
   are compatible} 

r1=20 

r2=16 

r3=7 



Combinatorial Auction (CA) 
problem – single-minded case 

 Input:  
 n buyers, m indivisible objects 

 each buyer i: 
 Wants a subset Si of the objects 

 has a value ti for Si 

 Solution:  
 W{1,…,n}, such that for every 

i,jW, with ij, SiSj= 

 Measure (to maximize):  

 Total value of W: iW ti 



CA game 

 each buyer i is selfish 

 Only buyer i knows ti (while Si is public) 
 We want to compute a “good” solution w.r.t. the 

true values  
 We do it by designing a mechanism 
 Our mechanism: 

 Asks each buyer to report its value vi 

 Computes a solution using an output algorithm g(٠) 
 takes payments pi  from buyer i using some payment 

function p 



More formally 
 
 Type of agent buyer i:  

 ti: value of Si 

 Intuition: ti is the maximum value buyer i is 
willing to pay for Si 

 Buyer i’s valuation of WF:  
 vi(ti,W)= ti if iW, 0 otherwise 

 SCF: a good allocation of the objects w.r.t. 
the true values  



How to design a truthful 
mechanism for the problem? 

Notice that:  
the (true) total value of a feasible W is: 

iW ti = i vi(ti,W) 

the problem is utilitarian! 

…VCG mechanisms apply 



VCG mechanism 

 M= <g(r), p(x)>: 

 g(r): x*=arg maxxF j vj(rj,x) 

 pi(r): for each i:  

pi (r)=j≠i vj(rj,g(r-i)) -j≠i vj(rj,x*) 

 

 
g(r) has to compute an  

optimal solution… 

…can we do that? 



Approximating CA problem within a factor better than 
m1/2- is NP-hard, for any fixed >0. 

Theorem 

proof 

Reduction from maximum independent set problem 



Maximum Independent Set (IS) 
problem 

 Input:  
 a graph G=(V,E) 

 Solution:  
 UV, such that no two 

vertices in U are 
jointed by an edge 

 Measure:  
 Cardinality of U 

Approximating IS problem within a factor better than 
n1- is NP-hard, for any fixed >0. 

Theorem (J. Håstad, 2002) 



the reduction 

CA instance has a solution of total value  k if and only if 
there is an IS of size  k 

G=(V,E) 
each edge is an object 
each node i is a buyer with: 
 Si: set of edges incident to i 
 ti=1 

since  m  n2 

A solution of value k for the instance of CA with OptCA/k m½- 
for some >0 

A solution of value k for the instance of IS and hence: 
would imply 

OptIS/k = OptCA/k m½-  n1-2 



How to design a truthful 
mechanism for the problem? 

Notice that:  
the (true) total value of a feasible W is: 

i vi(ti,W) 

the problem is utilitarian! 

…but a VCG mechanism is not computable  
in polynomial time! 

what can we do? 
…fortunately, our problem is one parameter! 



A problem is binary demand (BD) if 

1. ai‘s type is a single parameter ti 

2. ai‘s valuation is of the form: 

             vi(ti,o)= ti wi(o), 

 

       wi(o){0,1} work load for ai in o 

when wi(o)=1 we’ll say that ai is  
selected in o 



An algorithm g() for a maximization BD problem is 
monotone if  

 agent ai, and for every r-i=(r1,…,ri-1,ri+1,…,rN),  
wi(g(r-i,ri)) is of the form: 

Definition 

1 

Өi(r-i) ri 

Өi(r-i){+}: threshold 

payment from ai is: 
pi(r)= Өi(r-i) 



 Our goal: to design a mechanism 
satisfying: 

1. g(٠) is monotone 

2. Solution returned by g(٠) is a “good” 
solution, i.e. an approximated solution 

3. g(٠) and p(٠) computable in polynomial 
time 



A greedy m-approximation 
algorithm 

1. reorder (and rename) the bids such that 

 

 

2. W  ; X   

3. for i=1 to n do 
1. if SiX= then W  W{i}; X  XSi 

4. return W 

 

v1/|S1|  v2/|S2|  …  vn/|Sn| 



The algorithm g( ) is monotone 

Lemma 

proof 

It suffices to prove that, for any selected agent i, we have 
that i is still selected when it raises its bid 

Increasing vi can only move bidder i up in the greedy 
order, making it easier to win 

v1/|S1|  …  vi/|Si|        …          vn/|Sn| 



How much can bidder i decrease 
its bid before being non-

selected? 

Computing the payments 

…we have to compute for each selected bidder i  
its threshold value 



Computing payment pi 

v1/|S1|  …  vi/|Si|        …          vn/|Sn| 

Consider the greedy order without i 

index j 
Use the greedy algorithm to find 
the smallest index j (if any) such that: 
 1. j is selected 
 2. SjSi  pi= vj |Si|/|Sj| 

pi= 0 if j doesn’t exist 



Let OPT be an optimal solution for CA problem, and let 
W be the solution computed by the algorithm, then 

Lemma 

iW 

iOPT vi  m iW vi  

proof 

OPTi={jOPT : j i and SjSi} 

iW OPTi=OPT 

since 
it suffices to prove:   

jOPTi 

vj   m vi 

crucial observation 
for greedy order we have 

vi |Sj| 

iW 

jOPTi 
|Si| 

vj  



proof 

we can bound 
Cauchy–Schwarz  

inequality 

iW 

 
jOPTi 

vj   
jOPTi 

vi 
|Si| 

|Sj| 

 
jOPTi 

|Sj|  |OPTi|  
jOPTi 

|Sj| 

≤|Si| 
≤ m 

 m vi 

 |Si|m 

Si 

j1 j2 j3 

OPTi={j1 j2 j3} 

S S S 



Cauchy–Schwarz inequality 

yj=|Sj| 
xj=1 

n= |OPTi| for j=1,…,|OPTi| 

…in our case… 

1/2 1/2 


