
Combinatorial Auction

A single item auction

t1=10

t2=12

t3=7

r1=11

r2=10

Social-choice function:
the winner should be the
guy having in mind the
highest value for the

painting

 The mechanism tells to players:
(1) How the item will be allocated

(i.e., who will be the winner),
depending on the received bids

(2) The payment the winner has to
 return, as a function of the

 received bids

ti: is the maximum amount of money
player i is willing to pay for the painting

If player i wins and has to pay p
its utility is ui=ti-p

ri: is the amount of
money player i bids

(in a sealed
envelope) for the

painting

r3=7

Conbinatorial auction
t1 =20

t2=15

t3=6

f(t): the set WF
with the highest

total value

the mechanism decides
the set of winners and the
corresponding payments

Each player wants a bundle of objects

ti: value player i is willing to pay for
 its bundle

if player i gets the bundle at price p
his utility is ui=ti-p

F={ W{1,…,N} : winners in W
 are compatible}

r1=20

r2=16

r3=7

Combinatorial Auction (CA)
problem – single-minded case

 Input:
 n buyers, m indivisible objects

 each buyer i:
 Wants a subset Si of the objects

 has a value ti for Si

 Solution:
 W{1,…,n}, such that for every

i,jW, with ij, SiSj=

 Measure (to maximize):

 Total value of W: iW ti

CA game

 each buyer i is selfish

 Only buyer i knows ti (while Si is public)
 We want to compute a “good” solution w.r.t. the

true values
 We do it by designing a mechanism
 Our mechanism:

 Asks each buyer to report its value vi

 Computes a solution using an output algorithm g(٠)
 takes payments pi from buyer i using some payment

function p

More formally

 Type of agent buyer i:

 ti: value of Si

 Intuition: ti is the maximum value buyer i is
willing to pay for Si

 Buyer i’s valuation of WF:
 vi(ti,W)= ti if iW, 0 otherwise

 SCF: a good allocation of the objects w.r.t.
the true values

How to design a truthful
mechanism for the problem?

Notice that:
the (true) total value of a feasible W is:

iW ti = i vi(ti,W)

the problem is utilitarian!

…VCG mechanisms apply

VCG mechanism

 M= <g(r), p(x)>:

 g(r): x*=arg maxxF j vj(rj,x)

 pi(r): for each i:

pi (r)=j≠i vj(rj,g(r-i)) -j≠i vj(rj,x*)

g(r) has to compute an

optimal solution…

…can we do that?

Approximating CA problem within a factor better than
m1/2- is NP-hard, for any fixed >0.

Theorem

proof

Reduction from maximum independent set problem

Maximum Independent Set (IS)
problem

 Input:
 a graph G=(V,E)

 Solution:
 UV, such that no two

vertices in U are
jointed by an edge

 Measure:
 Cardinality of U

Approximating IS problem within a factor better than
n1- is NP-hard, for any fixed >0.

Theorem (J. Håstad, 2002)

the reduction

CA instance has a solution of total value k if and only if
there is an IS of size k

G=(V,E)
each edge is an object
each node i is a buyer with:
 Si: set of edges incident to i
 ti=1

since m n2

A solution of value k for the instance of CA with OptCA/k m½-
for some >0

A solution of value k for the instance of IS and hence:
would imply

OptIS/k = OptCA/k m½- n1-2

How to design a truthful
mechanism for the problem?

Notice that:
the (true) total value of a feasible W is:

i vi(ti,W)

the problem is utilitarian!

…but a VCG mechanism is not computable
in polynomial time!

what can we do?
…fortunately, our problem is one parameter!

A problem is binary demand (BD) if

1. ai‘s type is a single parameter ti

2. ai‘s valuation is of the form:

 vi(ti,o)= ti wi(o),

 wi(o){0,1} work load for ai in o

when wi(o)=1 we’ll say that ai is
selected in o

An algorithm g() for a maximization BD problem is
monotone if

 agent ai, and for every r-i=(r1,…,ri-1,ri+1,…,rN),
wi(g(r-i,ri)) is of the form:

Definition

1

Өi(r-i) ri

Өi(r-i){+}: threshold

payment from ai is:
pi(r)= Өi(r-i)

 Our goal: to design a mechanism
satisfying:

1. g(٠) is monotone

2. Solution returned by g(٠) is a “good”
solution, i.e. an approximated solution

3. g(٠) and p(٠) computable in polynomial
time

A greedy m-approximation
algorithm

1. reorder (and rename) the bids such that

2. W ; X

3. for i=1 to n do
1. if SiX= then W W{i}; X XSi

4. return W

v1/|S1| v2/|S2| … vn/|Sn|

The algorithm g() is monotone

Lemma

proof

It suffices to prove that, for any selected agent i, we have
that i is still selected when it raises its bid

Increasing vi can only move bidder i up in the greedy
order, making it easier to win

v1/|S1| … vi/|Si| … vn/|Sn|

How much can bidder i decrease
its bid before being non-

selected?

Computing the payments

…we have to compute for each selected bidder i
its threshold value

Computing payment pi

v1/|S1| … vi/|Si| … vn/|Sn|

Consider the greedy order without i

index j
Use the greedy algorithm to find
the smallest index j (if any) such that:
 1. j is selected
 2. SjSi pi= vj |Si|/|Sj|

pi= 0 if j doesn’t exist

Let OPT be an optimal solution for CA problem, and let
W be the solution computed by the algorithm, then

Lemma

iW

iOPT vi m iW vi

proof

OPTi={jOPT : j i and SjSi}

iW OPTi=OPT

since
it suffices to prove:

jOPTi

vj m vi

crucial observation
for greedy order we have

vi |Sj|

iW

jOPTi
|Si|

vj

proof

we can bound
Cauchy–Schwarz

inequality

iW

jOPTi

vj
jOPTi

vi
|Si|

|Sj|

jOPTi

|Sj| |OPTi|
jOPTi

|Sj|

≤|Si|
≤ m

 m vi

 |Si|m

Si

j1 j2 j3

OPTi={j1 j2 j3}

S S S

Cauchy–Schwarz inequality

yj=|Sj|
xj=1

n= |OPTi| for j=1,…,|OPTi|

…in our case…

1/2 1/2

