Combinatorial Auction

A single item auction

r₁=11

r₂=10

r₃=7

t₁=10

t₂=12

†₃=7

0 0

0 0

Social-choice function: the winner should be the guy having in mind the highest value for the painting

The mechanism tells to players: (1) How the item will be allocated (i.e., who will be the winner), depending on the received bids (2) The payment the winner has to return, as a function of the received bids

r_i: is the amount of money player i **bids** (in a sealed envelope) for the painting

t_i: is the **maximum** amount of money player i is willing to pay for the painting

> If player i wins and has to pay p its utility is u_i=t_i-p

Each player wants a bundle of objects

t_i: value player i is willing to pay for its bundle

if player i gets the bundle at price p his utility is $u_i = t_i - p$

the mechanism decides the set of winners and the corresponding payments

F={ W⊆{1,...,N} : winners in W are compatible} Combinatorial Auction (CA) problem – single-minded case

Input:

- n buyers, m indivisible objects
- each buyer i:
 - Wants a subset S_i of the objects
 - has a value t_i for S_i
- Solution:
 - $W \subseteq \{1, ..., n\}$, such that for every $i, j \in W$, with $i \neq j$, $S_i \cap S_j = \emptyset$
- Measure (to maximize):
 - Total value of W: $\Sigma_{i \in W} t_i$

CA game

- each buyer i is selfish
- Only buyer i knows t_i (while S_i is public)
- We want to compute a "good" solution w.r.t. the true values
- We do it by designing a mechanism
- Our mechanism:
 - Asks each buyer to report its value v_i
 - Computes a solution using an output algorithm $g(\cdot)$
 - takes payments p_i from buyer i using some payment function p

More formally

- Type of agent buyer i:
 - t_i: value of S_i
 - Intuition: t_i is the maximum value buyer i is willing to pay for S_i
- Buyer i's valuation of W∈F:
 - $v_i(t_i, W) = t_i \text{ if } i \in W, 0 \text{ otherwise}$
- SCF: a good allocation of the objects w.r.t. the true values

How to design a truthful mechanism for the problem?

Notice that: the (true) total value of a feasible W is:

$$\sum_{i \in W} \mathbf{t}_i = \sum_i \mathbf{v}_i(\mathbf{t}_i, W)$$

the problem is utilitarian!

...VCG mechanisms apply

VCG mechanism

$$M = \langle g(r), p(x) \rangle :$$

$$g(r): x^* = \arg \max_{x \in F} \sum_j v_j(r_j, x)$$

$$p_i(r): \text{ for each } i:$$

$$p_i(r) = \sum_{j \neq i} v_j(r_j, g(r_{-i})) - \sum_{j \neq i} v_j(r_j, x^*)$$

g(r) has to compute an optimal solution...

...can we do that?

Theorem

Approximating CA problem within a factor better than $m^{1/2-\epsilon}$ is NP-hard, for any fixed ϵ >0.

proof

Reduction from maximum independent set problem

Maximum Independent Set (IS) problem

- Input:
 - a graph G=(V,E)
- Solution:
 - U_CV, such that no two vertices in U are jointed by an edge
- Measure:
 - Cardinality of U

Theorem (J. Håstad, 2002)

Approximating IS problem within a factor better than $n^{1-\epsilon}$ is NP-hard, for any fixed ϵ >0.

the reduction

each edge is an object each node i is a buyer with: S_i: set of edges incident to i t_i=1

CA instance has a solution of total value $\geq k$ if and only if there is an IS of size $\geq k$

A solution of value k for the instance of CA with $Opt_{CA}/k \le m^{\frac{1}{2}-\epsilon}$ for some $\epsilon>0$ would imply

A solution of value k for the instance of IS and hence:

$$Opt_{IS}/k = Opt_{CA}/k \le m^{\frac{1}{2}-\epsilon} \le n^{1-2\epsilon}$$

since $m \le n^2$

How to design a truthful mechanism for the problem?

Notice that: the (true) total value of a feasible W is:

 $\sum_{i} v_{i}(t_{i}, W)$

the problem is utilitarian!

...but a VCG mechanism is not computable in polynomial time!

what can we do?

...fortunately, our problem is one parameter!

A problem is binary demand (BD) if

- 1. a_i 's type is a single parameter $t_i \in \Re$
- 2. a_i 's valuation is of the form:

$$v_i(t_i,o) = t_i w_i(o),$$

$w_i(o) \in \{0,1\}$ work load for a_i in o

Definition

An algorithm g() for a maximization BD problem is monotone if

 \forall agent a_i , and for every $r_{-i}=(r_1,...,r_{i-1},r_{i+1},...,r_N)$, $w_i(g(r_{-i},r_i))$ is of the form:

 $\Theta_i(\mathbf{r}_i) \in \mathfrak{R} \cup \{+\infty\}$: threshold

payment from a_i is: $p_i(r) = \Theta_i(r_{-i})$

Our goal: to design a mechanism satisfying:

- 1. $g(\cdot)$ is monotone
- Solution returned by g(·) is a "good" solution, i.e. an approximated solution
- 3. $g(\cdot)$ and $p(\cdot)$ computable in polynomial time

A greedy \sqrt{m} -approximation algorithm

- reorder (and rename) the bids such that $\mathbf{v}_1/\sqrt{|\mathbf{S}_1|} \ge \mathbf{v}_2/\sqrt{|\mathbf{S}_2|} \ge ... \ge \mathbf{v}_n/\sqrt{|\mathbf{S}_n|}$

- W ← Ø; X ← Ø
 for i=1 to n do

 if S_i∩X=Ø then W ← W∪{i}; X ← X∪S_i
 return W

Lemma

The algorithm g() is monotone

proof

It suffices to prove that, for any selected agent i, we have that i is still selected when it raises its bid

$$v_1/\sqrt{|S_1|} \ge ... \ge v_i/\sqrt{|S_i|} \ge ... \ge v_n/\sqrt{|S_n|}$$

Increasing v_i can only move bidder i up in the greedy order, making it easier to win

Computing the payments

...we have to compute for each selected bidder i its threshold value

How much can bidder i decrease its bid before being nonselected?

Computing payment p_i

Consider the greedy order without i

tł

$$v_{1}/\sqrt{|S_{1}|} \ge ... \ge v_{i}/\sqrt{|S_{i}|} \ge ... \ge v_{n}/\sqrt{|S_{n}|}$$
se the greedy algorithm to find
index j
index j
index j
index j
index j
index j
p_{i} = v_{j} \sqrt{|S_{i}|}/\sqrt{|S_{j}|}
$$p_{i} = 0 \text{ if } j \text{ doesn't exist}$$

Lemma

Let OPT be an optimal solution for CA problem, and let W be the solution computed by the algorithm, then

$$\sum_{i \in OPT} \mathbf{v}_i \leq \sqrt{m} \sum_{i \in W} \mathbf{v}_i$$

proof

$$\forall i \in W \qquad OPT_i = \{j \in OPT : j \ge i \text{ and } S_j \cap S_i \neq \emptyset\}$$

since $\bigcup_{i \in W} OPT_i = OPT$ it suffices to prove: $\sum_{j \in OPT_i} v_j \le \sqrt{m} v_i$ $\forall i \in W$

crucial observation for greedy order we have

$$v_{j} \leq \frac{v_{i} \sqrt{|S_{j}|}}{\sqrt{|S_{i}|}} \quad \forall j \in OPT_{i}$$

proof ∀i∈W

$$\sum_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \sum_{j \in OPT_i} \sqrt{|S_j|} \leq \sqrt{m} v_i$$

Cauchy-Schwarz inequality

...in our case...

n= |OPT_i|

$$x_j = 1$$

 $y_j = \sqrt{|S_j|}$ for $j = 1, ..., |OPT_i|$