
SECOND PART:

Algorithmic Mechanism Design

Mechanism Design

Find correct rules/incentives

The implementation problem

◼ Imagine you are a planner who develops criteria for
social welfare, but you lack information about
preferences of individuals. Which social-choice
functions (i.e., aggregation of players’ preferences w.r.t.
to a certain outcome) can be implemented in such a
strategic distributed system?

◼ Why strategic setting?
◼ participants act rationally and selfishly

◼ Preferences of players (i.e., their opinion about a social status)
are private and can be used to manipulate the system

Designing a Mechanism

◼ Informally, designing a mechanism means to
define a game in which a desired outcome must
be reached (in equilibrium)

◼ However, games induced by mechanisms are
different from games in standard form:
◼ Players hold independent private values
◼ The payoff matrix is a function of these types

 Games with incomplete information

An example: auctions

t1=10

t2=12

t3=7

r1=11

r2=10

Social-choice function:
the winner should be the
guy having in mind the
highest value for the

painting

The mechanism tells to players:
(1) How the item will be allocated

(i.e., who will be the winner),
depending on the received bids

(2) The payment the winner has to
return, as a function of the
received bids

ti: is the maximum amount of money
player i is willing to pay for the painting

If player i wins and has to pay p
its utility is ui=ti-p

ri: is the amount of
money player i bids
(in a sealed
envelope) for the
painting

r3=7

Mechanism degree of
freedom

◼ The mechanism has to decide:
◼ The allocation of the item

◼ The payment by the winner

◼ …in a way that cannot be manipulated
◼ the mechanism designer wants to

obtain/compute a specific outcome
(defined in terms of the real and private
values held by the players)

A simple mechanism: no payment

t1=10

t2=12

t3=7

r1=+

r2=+

r3=+

…it doesn’t work…

?!?

The highest bid wins
and the price of the item

is 0

Another simple mechanism: pay your bid

t1=10

t2=12

t3=7

r1=9

r2=8

r3=6

Is it the right
choice?

Mechanism: The highest bid wins
and the winner will pay his bid

The winner
is player 1

and he’ll pay
9

Player i will bid ri< ti (in this way he is
guaranteed not to incur a negative utility)

…and so the winner could be the wrong one…

…it doesn’t work…

An elegant solution: Vickrey’s second price auction

t1=10

t2=12

t3=7

r1=10

r2=12

r3=7

every player has convenience
to declare the truth!

(we prove it in the next slide)

I know they
are not lying

The highest bid wins
and the winner will

pay the second
highest bid

The winner
is player 2

and he’ll pay
10

Theorem
In the Vickrey auction, for every player i, ri=ti is a dominant strategy

proof Fix i and ti, and look at strategies for player i. Let R= maxji {rj}

Case ti ≥ R (observe that R is unknown to player i)

declaring ri=ti gives utility ui= ti-R ≥ 0
(player wins if ti > R, while if ti = R then player can either win or
lose, depending on the tie-breaking rule, but its utility would be 0)

declaring any ri > R, ri≠ti, yields again utility ui= ti-R ≥ 0
(player wins)

declaring any ri < R yields ui=0 (player loses)

R ti

Theorem
In the Vickrey auction, for every player i, ri=ti is a dominant strategy

proof Fix i and ti, and look at strategies for player i. Let R= maxji {rj}

Case ti ≥ R (observe that R is unknown to player i)

declaring ri=ti gives utility ui= ti-R ≥ 0
(player wins if ti > R, while if ti = R then player can either win or
lose, depending on the tie-breaking rule, but its utility would be 0)

declaring any ri > R, ri≠ti, yields again utility ui= ti-R ≥ 0
(player wins)

Case ti < R
declaring ri=ti yields utility ui= 0 (player loses)

declaring any ri < R, ri≠ti, yields again utility ui= 0 (player loses)

declaring any ri > R yields ui= ti-R < 0 (player wins)

declaring any ri < R yields ui=0 (player loses)

 In all the cases, reporting a false type produces a not
better utility, and so telling the truth is a dominant strategy!

Rti

Vickrey auction
(minimization version)

t1=10

t2=12

t3=7

r1=10

r2=12

r3=7

I want to
allocate the job

to the true
cheapest machine

The cheapest bid wins
and the winner will

get the second
cheapest bid

The winner
is machine 3

and it will
receive 10

job to be
allocated

to
machines

ti: cost incurred by i if i does the job

if machine i is selected and receives
a payment of p its utility is p-ti

Mechanism Design Problem:
ingredients (1/2)

◼ N agents; each agent has some private information tiTi
(actually, the only private info) called type

◼ A set of feasible outcomes F
◼ For each vector of types t=(t1, t2, …, tN), a social-choice

function f(t)F specifies an output that should be
implemented (the problem is that types are unknown…)

◼ Each agent has a strategy space Si and performs a
strategic action; we restrict ourself to direct revelation
mechanisms, in which the action is reporting a value ri from
the type space (with possibly ri ti), i.e., Si = Ti

Example: the Vickrey Auction

◼ The set of feasible outcomes is given by all the bidders
◼ The social-choice function is to allocate to the bidder

with lowest true cost:

f(t)=arg mini (t1, t2, …, tN)

Mechanism Design Problem:
ingredients (2/2)

◼ For each feasible outcome xF, each agent makes a
valuation vi(ti,x) (in terms of some common currency),
expressing its preference about that output

◼ For each reported vector r, each agent receives a
payment pi(r) in terms of the common currency; payments
are used by the system to incentive agents to be
collaborative. Then, the utility of the agent if the outcome
for r is x(r) will be:

ui(ti,x(r)) = pi(r) - vi(ti,x(r))

Mechanism Design Problem:
the goal

Implement (according to a given equilibrium
concept) the social-choice function, i.e., provide a
mechanism M=<g(r), p(r)>, where:

◼ g(r) is an algorithm which computes an outcome
x=g(r) as a function of the reported types r

◼ p(r) is a payment scheme specifying a payment (to
each agent) w.r.t. the reported types r

such that x=g(r)=f(t) is provided in equilibrium
w.r.t. to the utilities of the agents.

Mechanism Design: a picture

System

Agent 1

Agent N

“I propose to
you the
following
mechanism
M=<g(r), p(r)>”

p1

pN

tN

t1
r1

rN

Private “types” Reported types

Payments

Output
which
should
implement
the social
choice
function in
equilibrium
w.r.t.
agents’
utilities

Each agent reports strategically to maximize its utility…

…which depends (also) on the payment…
…which is a function of the reported types!

Implementation with
dominant strategies

Def.: A mechanism M=<g(),p()> is an implementation
with dominant strategies if there exists a
reported type vector r*=(r1

*, r2
*, …, rN

*) such that
f(t)=g(r*) in dominant strategy equilibrium, i.e., for
each agent i and for each reported type vector
r =(r1, r2, …, rN), it holds:

ui(ti,(r-i,ri
*)) ≥ ui(ti,(r-i,ri))

Strategy-Proof Mechanisms

◼ If truth telling is the dominant strategy in a
mechanism then the mechanism is called
Strategy-Proof or truthful or incentive
compatible
 r*=t.
 Agents report their true types instead of

strategically manipulating it
 The algorithm of the mechanism runs on the

true input

Truthful Mechanism Design:
Economics Issues

QUESTION: How to design a truthful
mechanism? Or, in other words:

1. How to design g(r), and

2. How to define the payment scheme

in such a way that the underlying social-
choice function is implemented
truthfully? Under which conditions can
this be done?

Some examples

Multiunit auction
t1

ti

tN

f(t): the set XF
with the highest

total value

the mechanism decides
the set of k winners and the

corresponding payments

Each of N players wants an object

ti: value player i is willing to pay

if player i gets an object at price p
his utility is ui=ti-p

F={ X{1,…,N} : |X|=k }

...

k identical objects
(k < N)

Sponsored search auction
t1

ti

tN

f(t): the allocation
in F with the

highest expected
total value

the mechanism decides
the k winners and the

corresponding payments
if player i gets slot j at price p
his (expected) utility is ui= j(ti-p) F={ (x1,...,xk) : xi{1,...,N} }

k slots

1

2

k

j : prob user clicks on slot jplayers want a slot (higher is better)

ti: player i’s value per click

Public project
t1

ti

tN

the mechanism decides
whether to build and the
payments from citizens

ti: value of the bridge
for citizen i

if the bridge is built and
citizen i has to pay pi

his utility is ui=ti-pi

F={build, not-build}

C: cost of
the bridge

to build or
not to build?

f(t):
build only if

iti > C

Bilateral trade

tb

decides whether
to trade and payments

ts: value of the object

if trade
seller’s utility:

ps-ts

F={trade, no-trade}

f(t):
trade only if

tb > ts

tb: value of the object

Mechanism

rs rb

if trade
buyer’s utility:

tb-pb

ps
pb

seller

ts

buyer

Buying a path in a
network

decides the path
and the payments

te: cost of edge e

if edge e is selected
and receives a payment of pe

e’s utility:

pe-te

F: set of all paths
between s and t

f(t):
a shortest path
w.r.t. the true

edge costs

Mechanism

t5

t3

t6

t2

t4

t1

s

t

How to design truthful
mechanisms?

Some remarks

◼ we’ll describe results for minimization
problems (maximization problems are
similar)

◼ We have:
◼ for each xF, valuation function vi(ti,x)

represents a cost incurred by player i in the
solution x

◼ the social function f(t) maps the type
vector t into a solution x which minimizes
some measure of x

◼ payments are from the mechanism to agents

◼ Utilitarian Problems: A problem is
utilitarian if its objective function is
such that f(t) = arg minxF i vi(ti,x)

notice: the auction problem is utilitarian

…for utilitarian problems there is a class
of truthful mechanisms…

Vickrey-Clarke-Groves (VCG)
Mechanisms

◼ A VCG-mechanism is (the only) strategy-proof
mechanism for utilitarian problems:
◼ Algorithm g(r) computes:

x = arg minyFi vi(ri,y)
◼ Payment function for player i:

pi (r) = hi(r-i) -j≠i vj(rj,g(r))

where hi(r-i) is an arbitrary function of the
reported types of players other than player i.

◼ What about non-utilitarian problems? Strategy-
proof mechanisms are known only when the type is
a single parameter.

Theorem
VCG-mechanisms are truthful for utilitarian problems

proof

Fix i, r-i, ti. Let ř=(r-i,ti) and consider a strategy riti

x=g(r-i,ti) =g(ř) x’=g(r-i,ri)

ui(ti, (r-i,ti)) =

ui(ti, (r-i,ri)) =

[hi(r-i) - jivj(rj,x)] - vi(ti,x)

[hi(r-i) - jivj(rj,x’)] - vi(ti,x’)

= hi(r-i)

= hi(r-i)

- jvj(řj,x)

- jvj(řj,x’)

but x is an optimal solution w.r.t. ř =(r-i,ti), i.e.,

x = arg minyF i vi(ř,y)

jvj(řj,x) ≤ jvj(řj,x’) ui(ti, (r-i,ti)) ui(ti, (r-i,ri)).

How to define hi(r-i)?

notice: not all functions make sense

what happens if we set hi(r-i)=0
in the Vickrey auction?

The Clarke payments

◼ This is a special VCG-mechanism in which

hi(r-i)= j≠i vj(rj,g(r-i))

 pi(r) = j≠i vj(rj,g(r-i)) -j≠i vj(rj, g(r))

◼ With Clarke payments, one can prove that
agents’ utility are always non-negative

 agents are interested in playing the game

solution minimizing the sum
of valuations when i doesn’t play

Clarke mechanism for the Vickrey
auction (minimization version)

◼ The VCG-mechanism is:

◼ x=g(r):=arg minxF i vi(ri,x)

◼ allocate to the bidder with lowest reported cost

◼ pi = v (r ,g(r-i)) - v (r ,x)

…pay the winner the second lowest offer,
and pay 0 the losers

ji j jj jji

Mechanism Design:
Algorithmic Issues

QUESTION: What is the time complexity of
the mechanism? Or, in other words:

◼ What is the time complexity of g(r)?

◼ What is the time complexity to calculate
the N payment functions?

◼ What does it happen if it is NP-hard to
compute the underlying social-choice
function?

Algorithmic mechanism design
for graph problems

◼ Following the Internet model, we assume that
each agent owns a single edge of a graph
G=(V,E), and establishes the cost for using it

 The agent’s type is the true weight of the edge
◼ Classic optimization problems on G become

mechanism design optimization problems!
◼ Many basic network design problems have been

faced: shortest path (SP), single-source shortest
paths tree (SPT), minimum spanning tree (MST),
minimum Steiner tree, and many others

Summary of main results

Centralized
algorithm

Selfish-edge
mechanism

SP O(m+n log n) O(m+n log n)

SPT O(m+n log n) O(m+n log n)

MST O(m (m,n)) O(m (m,n))

 For all these basic problems, the time
complexity of the mechanism equals that of the
canonical centralized algorithm!

	Diapositiva 1
	Diapositiva 2: Mechanism Design
	Diapositiva 3: The implementation problem
	Diapositiva 4: Designing a Mechanism
	Diapositiva 5: An example: auctions
	Diapositiva 6: Mechanism degree of freedom
	Diapositiva 7: A simple mechanism: no payment
	Diapositiva 8: Another simple mechanism: pay your bid
	Diapositiva 9: An elegant solution: Vickrey’s second price auction
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12: Vickrey auction (minimization version)
	Diapositiva 13: Mechanism Design Problem: ingredients (1/2)
	Diapositiva 14: Example: the Vickrey Auction
	Diapositiva 15: Mechanism Design Problem: ingredients (2/2)
	Diapositiva 16: Mechanism Design Problem: the goal
	Diapositiva 17: Mechanism Design: a picture
	Diapositiva 18: Implementation with dominant strategies
	Diapositiva 19: Strategy-Proof Mechanisms
	Diapositiva 20: Truthful Mechanism Design: Economics Issues
	Diapositiva 21: Some examples
	Diapositiva 22: Multiunit auction
	Diapositiva 23: Sponsored search auction
	Diapositiva 24: Public project
	Diapositiva 25: Bilateral trade
	Diapositiva 26: Buying a path in a network
	Diapositiva 27: How to design truthful mechanisms?
	Diapositiva 28: Some remarks
	Diapositiva 29
	Diapositiva 30: Vickrey-Clarke-Groves (VCG) Mechanisms
	Diapositiva 31
	Diapositiva 32: How to define hi(r-i)?
	Diapositiva 33: The Clarke payments
	Diapositiva 34: Clarke mechanism for the Vickrey auction (minimization version)
	Diapositiva 35: Mechanism Design: Algorithmic Issues
	Diapositiva 36: Algorithmic mechanism design for graph problems
	Diapositiva 37: Summary of main results

