
SECOND PART:

Algorithmic Mechanism Design



Mechanism Design

Find correct rules/incentives



The implementation problem

◼ Imagine you are a planner who develops criteria for 
social welfare, but you lack information about 
preferences of individuals. Which social-choice 
functions (i.e., aggregation of players’ preferences w.r.t. 
to a certain outcome) can be implemented in such a 
strategic distributed system? 

◼ Why strategic setting?
◼ participants act rationally and selfishly

◼ Preferences of players (i.e., their opinion about a social status) 
are private and can be used to manipulate the system



Designing a Mechanism

◼ Informally, designing a mechanism means to 
define a game in which a desired outcome must 
be reached (in equilibrium)

◼ However, games induced by mechanisms are 
different from games in standard form:
◼ Players hold independent private values
◼ The payoff matrix is a function of these types

 Games with incomplete information



An example: auctions

t1=10

t2=12

t3=7

r1=11

r2=10

Social-choice function: 
the winner should be the 
guy having in mind the 
highest value for the 

painting

The mechanism tells to players:
(1) How the item will be allocated 

(i.e., who will be the winner), 
depending on the received bids

(2) The payment the winner has to 
return, as a function of the 
received bids

ti: is the maximum amount of money
player i is willing to pay for the painting

If player i wins and has to pay p
its utility is ui=ti-p

ri: is the amount of 
money player i bids 
(in a sealed 
envelope) for the 
painting

r3=7



Mechanism degree of 
freedom

◼ The mechanism has to decide:
◼ The allocation of the item

◼ The payment by the winner

◼ …in a way that cannot be manipulated
◼ the mechanism designer wants to 

obtain/compute a specific outcome 
(defined in terms of the real and private
values held by the players)



A simple mechanism: no payment

t1=10

t2=12

t3=7

r1=+

r2=+

r3=+

…it doesn’t work…

?!?

The highest bid wins
and the price of the item

is 0



Another simple mechanism: pay your bid

t1=10

t2=12

t3=7

r1=9

r2=8

r3=6

Is it the right 
choice?

Mechanism: The highest bid wins
and the winner will pay his bid

The winner 
is player 1 

and he’ll pay 
9

Player i will bid ri< ti (in this way he is 
guaranteed not to incur a negative utility)

…and so the winner could be the wrong one…

…it doesn’t work…



An elegant solution: Vickrey’s second price auction

t1=10

t2=12

t3=7

r1=10

r2=12

r3=7

every player has convenience 
to declare the truth!

(we prove it in the next slide)

I know they 
are not lying

The highest bid wins
and the winner will

pay the second
highest bid

The winner 
is player 2 

and he’ll pay 
10



Theorem
In the Vickrey auction, for every player i, ri=ti is a dominant strategy

proof Fix i and ti, and look at strategies for player i. Let R= maxji {rj}

Case ti ≥ R (observe that R is unknown to player i)

declaring ri=ti gives utility ui= ti-R ≥ 0 
(player wins if ti > R, while if ti = R then player can either win or
lose, depending on the tie-breaking rule, but its utility would be 0)

declaring any ri > R, ri≠ti, yields again utility ui= ti-R ≥ 0  
(player wins) 

declaring any ri < R yields ui=0 (player loses)

R ti



Theorem
In the Vickrey auction, for every player i, ri=ti is a dominant strategy

proof Fix i and ti, and look at strategies for player i. Let R= maxji {rj}

Case ti ≥ R (observe that R is unknown to player i)

declaring ri=ti gives utility ui= ti-R ≥ 0 
(player wins if ti > R, while if ti = R then player can either win or
lose, depending on the tie-breaking rule, but its utility would be 0)

declaring any ri > R, ri≠ti, yields again utility ui= ti-R ≥ 0  
(player wins) 

Case ti < R
declaring ri=ti yields utility ui= 0 (player loses) 

declaring any ri < R, ri≠ti, yields again utility ui= 0 (player loses) 

declaring any ri > R yields ui= ti-R < 0 (player wins) 

declaring any ri < R yields ui=0 (player loses)

 In all the cases, reporting a false type produces a not 
better utility, and so telling the truth is a dominant strategy!

Rti



Vickrey auction 
(minimization version)

t1=10

t2=12

t3=7

r1=10

r2=12

r3=7

I want to 
allocate the job 

to the true 
cheapest machine

The cheapest bid wins
and the winner will

get the second
cheapest bid

The winner 
is machine 3 

and it will 
receive 10

job to be 
allocated 

to 
machines

ti: cost incurred by i if i does the job

if machine i is selected and receives 
a payment of p its utility is p-ti



Mechanism Design Problem: 
ingredients (1/2)

◼ N agents; each agent has some private information tiTi
(actually, the only private info) called type

◼ A set of feasible outcomes F
◼ For each vector of types t=(t1, t2, …, tN), a social-choice 

function f(t)F specifies an output that should be 
implemented (the problem is that types are unknown…)

◼ Each agent has a strategy space Si and performs a 
strategic action; we restrict ourself to direct revelation 
mechanisms, in which the action is reporting a value ri from 
the type space (with possibly ri  ti), i.e., Si = Ti



Example: the Vickrey Auction

◼ The set of feasible outcomes is given by all the bidders
◼ The social-choice function is to allocate to the bidder 

with lowest true cost:

f(t)=arg mini (t1, t2, …, tN)



Mechanism Design Problem: 
ingredients (2/2)

◼ For each feasible outcome xF, each agent makes a 
valuation vi(ti,x) (in terms of some common currency), 
expressing its preference about that output

◼ For each reported vector r, each agent receives a 
payment pi(r) in terms of the common currency; payments 
are used by the system to incentive agents to be 
collaborative. Then, the utility of the agent if the outcome 
for r is x(r) will be:

ui(ti,x(r)) = pi(r) - vi(ti,x(r))



Mechanism Design Problem: 
the goal

Implement (according to a given equilibrium 
concept) the social-choice function, i.e., provide a 
mechanism M=<g(r), p(r)>, where:

◼ g(r) is an algorithm which computes an outcome 
x=g(r) as a function of the reported types r

◼ p(r) is a payment scheme specifying a payment (to 
each agent) w.r.t. the reported types r

such that x=g(r)=f(t) is provided in equilibrium 
w.r.t. to the utilities of the agents.



Mechanism Design: a picture

System

Agent 1  

Agent N  

“I propose to 
you the 
following 
mechanism
M=<g(r), p(r)>”

p1

pN

tN

t1
r1

rN

Private “types” Reported types

Payments

Output 
which 
should 
implement 
the social 
choice 
function in 
equilibrium 
w.r.t. 
agents’ 
utilities

Each agent reports strategically to maximize its utility…

…which depends (also) on the payment… 
…which is a function of the reported types!



Implementation with 
dominant strategies

Def.: A mechanism M=<g(),p()> is an implementation 
with dominant strategies if there exists a 
reported type vector r*=(r1

*, r2
*, …, rN

*) such that 
f(t)=g(r*) in dominant strategy equilibrium, i.e., for 
each agent i and for each reported type vector      
r =(r1, r2, …, rN), it holds:

ui(ti,(r-i,ri
*)) ≥ ui(ti,(r-i,ri))



Strategy-Proof Mechanisms

◼ If truth telling is the dominant strategy in a 
mechanism then the mechanism is called 
Strategy-Proof or truthful or incentive 
compatible
 r*=t.
 Agents report their true types instead of 

strategically manipulating it
 The algorithm of the mechanism runs on the 

true input



Truthful Mechanism Design: 
Economics Issues

QUESTION: How to design a truthful 
mechanism? Or, in other words:

1. How to design g(r), and

2. How to define the payment scheme

in such a way that the underlying social-
choice function is implemented 
truthfully? Under which conditions can 
this be done?



Some examples



Multiunit auction
t1

ti

tN

f(t): the set XF 
with the highest 

total value

the mechanism decides
the set of k winners and the

corresponding payments

Each of N players wants an object

ti: value player i is willing to pay

if player i gets an object at price p
his utility is ui=ti-p

F={ X{1,…,N} : |X|=k }

...

k identical objects
(k < N)



Sponsored search auction
t1

ti

tN

f(t): the allocation 
in F with the 

highest expected 
total value

the mechanism decides
the k winners and the

corresponding payments
if player i gets slot j at price p
his (expected) utility is ui= j(ti-p) F={ (x1,...,xk) : xi{1,...,N} }

k slots

1

2

k

j : prob user clicks on slot jplayers want a slot (higher is better)

ti: player i’s value per click



Public project
t1

ti

tN

the mechanism decides
whether to build and the
payments from citizens

ti: value of the bridge 
for citizen i

if the bridge is built and 
citizen i has to pay pi

his utility is ui=ti-pi

F={build, not-build}

C: cost of 
the bridge

to build or
not to build?

f(t): 
build only if 

iti > C



Bilateral trade

tb

decides whether 
to trade and payments

ts: value of the object

if trade
seller’s utility:

ps-ts

F={trade, no-trade}

f(t): 
trade only if 

tb > ts

tb: value of the object

Mechanism

rs rb

if trade
buyer’s utility:

tb-pb

ps
pb

seller

ts

buyer



Buying a path in a 
network

decides the path
and the payments

te: cost of edge e

if edge e is selected
and receives a payment of pe

e’s utility:

pe-te

F: set of all paths 
between s and t

f(t): 
a shortest path 
w.r.t. the true 

edge costs

Mechanism

t5

t3

t6

t2

t4

t1

s

t



How to design truthful 
mechanisms?



Some remarks

◼ we’ll describe results for minimization 
problems (maximization problems are 
similar)

◼ We have:
◼ for each xF, valuation function vi(ti,x) 

represents a cost incurred by player i in the 
solution x

◼ the social function f(t) maps the type 
vector t into a solution x which minimizes
some measure of x

◼ payments are from the mechanism to agents



◼ Utilitarian Problems: A problem is 
utilitarian if its objective function is 
such that f(t) = arg minxF i vi(ti,x)

notice: the auction problem is utilitarian

…for utilitarian problems there is a class
of truthful mechanisms…



Vickrey-Clarke-Groves (VCG) 
Mechanisms

◼ A VCG-mechanism is (the only) strategy-proof 
mechanism for utilitarian problems:
◼ Algorithm g(r) computes:

x = arg minyFi vi(ri,y)
◼ Payment function for player i:

pi (r) = hi(r-i) -j≠i vj(rj,g(r))

where hi(r-i) is an arbitrary function of the 
reported types of players other than player i.

◼ What about non-utilitarian problems? Strategy-
proof mechanisms are known only when the type is 
a single parameter.



Theorem
VCG-mechanisms are truthful for utilitarian problems

proof

Fix i, r-i, ti. Let ř=(r-i,ti) and consider a strategy riti

x=g(r-i,ti) =g(ř)        x’=g(r-i,ri)

ui(ti, (r-i,ti)) =

ui(ti, (r-i,ri)) =

[hi(r-i) - jivj(rj,x)] - vi(ti,x)

[hi(r-i) - jivj(rj,x’)] - vi(ti,x’)

= hi(r-i)

= hi(r-i)

- jvj(řj,x)

- jvj(řj,x’)

but x is an optimal solution w.r.t. ř =(r-i,ti), i.e., 

x = arg minyF i vi(ř,y)

jvj(řj,x)  ≤ jvj(řj,x’) ui(ti, (r-i,ti))  ui(ti, (r-i,ri)).



How to define hi(r-i)?

notice: not all functions make sense

what happens if we set hi(r-i)=0 
in the Vickrey auction?



The Clarke payments

◼ This is a special VCG-mechanism in which

hi(r-i)= j≠i vj(rj,g(r-i))  

 pi(r) = j≠i vj(rj,g(r-i)) -j≠i vj(rj, g(r))

◼ With Clarke payments, one can prove that 
agents’ utility are always non-negative

 agents are interested in playing the game 

solution minimizing the sum
of valuations when i doesn’t play



Clarke mechanism for the Vickrey 
auction (minimization version)

◼ The VCG-mechanism is:

◼ x=g(r):=arg minxF i vi(ri,x) 

◼ allocate to the bidder with lowest reported cost

◼ pi =  v (r ,g(r-i)) - v (r ,x)

…pay the winner the second lowest offer, 
and pay 0 the losers

ji j jj jji



Mechanism Design: 
Algorithmic Issues

QUESTION: What is the time complexity of 
the mechanism? Or, in other words:

◼ What is the time complexity of g(r)?

◼ What is the time complexity to calculate 
the N payment functions? 

◼ What does it happen if it is NP-hard to 
compute the underlying social-choice 
function?



Algorithmic mechanism design 
for graph problems

◼ Following the Internet model, we assume that 
each agent owns a single edge of a graph 
G=(V,E), and establishes the cost for using it 

 The agent’s type is the true weight of the edge
◼ Classic optimization problems on G become 

mechanism design optimization problems!
◼ Many basic network design problems have been 

faced: shortest path (SP), single-source shortest 
paths tree (SPT), minimum spanning tree (MST), 
minimum Steiner tree, and many others



Summary of main results

Centralized 
algorithm

Selfish-edge 
mechanism

SP O(m+n log n) O(m+n log n)

SPT O(m+n log n) O(m+n log n)

MST O(m (m,n)) O(m (m,n))

 For all these basic problems, the time 
complexity of the mechanism equals that of the 
canonical centralized algorithm!
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