Chapter 11

Approximation
Algorithms

N
1l
J

uumm i {L

\
(\\ JON KlEINBERG EVA TARDOS
\

PEARSON Slides by Kevin Wayne.
“Addison Copyright @ 2005 Pearson-Addison Wesley.
Wesley All rights reserved.

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should T do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
= Solve problem to optimality.
« Solve problem in poly-time.
- Solve arbitrary instances of the problem.

p-approximation algorithm.
« Guaranteed fo run in poly-time.
« Guaranteed to solve arbitrary instance of the problem
« Guaranteed to find solution within ratio p of frue optimum.

Challenge. Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!

11.1 Load Balancing

Load Balancing

Input. m identical machines; n jobs, job j has processing time t;.
« Job j must run contiguously on one machine.

- A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machineiisL; =X c s, t;

Def. The makespan is the maximum load on any machine L = max; L..

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.
. Consider n jobs in some fixed order.

« Assign job j to machine whose load is smallest so far.

List-Scheduling(m, n, t;,t,,...,t)) {
for i =1 tom {
L, < 0 «— load on machine i

J(i) <« ¢ < Jjobsassigned to machine i

}

for j =1 to n {
i = argmin, L, «— machine i has smallest load
J(i) <« J(i) U {J} <« assign job jto machinei
L < L; + ty «— update load of machine i

}
return J(1), .., J(m)

Implementation. O(n log m) using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
« First worst-case analysis of an approximation algorithm.

» Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* = max; 1;.
Pf. Some machine must process the most time-consuming job. =

Lemma 2. The optimal makespan L* = 5. 1;.
Pf.
. The fotal processing time is ;1.
= One of m machines must do at least a 1/m fraction of total work. =«

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L; of bottleneck machine i.
. Let j be last job scheduled on machine i.
« When job j assigned to machine i, i had smallest load. Its load
before assignment isL;-t; = Lj-1; < Ly foralll<ks<m.

blue jobs scheduled before j

|
I N s

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L, of bottleneck machine i.

Let j be last job scheduled on machine i.

When job j assigned to machine i, i had smallest load. Its load
before assignment isL;-t; = Lj-1; < Ly foralll<ks<m.
Sum inequalities over all k and divide by m:

m(Li-TJ)s 2 Ly

~
I
IA

1
i j EEkLk
= 1
= 2k
Lemmal — < L*

Now L, = (L;-t;) + t; = 2L* .

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle

machine 3 idle

machine 4 idle

m =10 machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

v

list scheduling makespan = 19

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

10

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t,,t,,...,t)) {
Sort jobs so that t; 2 t,2 ... 2 t

n

for 1 =1 tom {

L.< 0 «— load on machine i
J(i) < ¢ «— jobs assigned to machine i

}

for j =1 ton {
i = argmin, L, «— machine i has smallest load
J(i) <« J(i) U {j} — assign job j fo machine i
L; < L; + t4 «— update load of machine i

}
return J(1), .., J(m)

1

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. «

Lemma 3. If there are more thanm jobs,L* = 2 t,,;.
Pf.
« Consider first m+1 jobs t, ..., t,.1.

. Since the t;'s are in descending order, each takes at least t,.; time.

« There are m+1 jobs and m machines, so by pigeonhole principle, at
least one machine gets two jobs.

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for List Scheduling.

12

Let '|'j be the last task assigned to the worst machine. Observe that
J>=m+1 Sobylemma3:

Tj <= tmer <= (1/2) L*
Now, repeat the same reasoning of List Scheduling, and get:

L,= (L;-t;)) + t; = sL*.
— H,z*

DO

< L* <

0 | —

Lemma 3
(by observation, can assume number of jobs >m)

13

Load Balancing: LPT Rule

Q. Isour 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex (At home): m machines, n = 2m+1 jobs, 2 jobs of length m+1, 2 of m
+2, ..., 2m-1 and one job of length m.

14

Bin Packing

Bin Packing.

Input: I = {a1, az,..,an}, ai<[01];

Solution: Partition B={B1,..,Bk} (Bins) of I into
k subsets of size at most 1;

Goal: Minimize k.

Thm. 1 Bin Packing is NP-hard.

Approximation algorithms ?

15

Bin Packing

1° STEP: Lower bound on the Optimum k*.

Since each bin can have at most load 1 >

Lemma 2. k*>= S where

S =2 ai (Liquid solution)

16

Bin Packing

Algorithm NEXT FIT:

1° item is assigned to Bin 1;
- Generic item i is assigned to the last used Bin if there is space
otherwise open a new Bin and put it inside.

Thm. 3 NEXT FIT is a 2-APX algorithm for B.P.
Proof.
The sum of items into 2 consecutive open bins is larger than 1.
So,
K(INEXT FIT)<2*S=2*XZ ai

From Lemma 2 = k* >= S, we get the thesis.

17

Bin Packing

Remark. The bound 2 for NEXT FIT is almost tight.
Consider instances such as:
4nitems: 1/2,1/n,1/2 ,1/n,..1/2, 1/n;

HomeWork: Analyze the apx ratio

18

Bin Packing

How to improve NEXT FIT ?
Two ideas:
- Order the Items w.r.t. non-increasing size

- For every new Item, try ALL open Bins before open a new one |
If there is a good one, choose the first Bin.

FIRST FIT DECREASING ALGORITHM : FFD

19

Bin Packing

Lemma 4. FFD is 1.5 apx algorithm for Bin Packing.
Proof.

Assume I = {al,..,an} is ordered (non-increasing size) and
Let's partition I into:

A ={ai|ai>2/3}; B={bi| 1/2 < bi<=2/3};
C={ci|1/3<ci<=1/2 }; D={di| di<=1/3}

Claim 1. IF there is at least one Bin with only D-items THEN

there is at most one bin (the last one) with load < 2/3.

In this case the 1.5 apx is proved:

2k1Sj(k-1)*Sj<S with Sj=(Load of Bin j)>2/3
From Lemma2: k*>=S

20

Apx Solution vs Optimal Solution

Opt Solution: k* Bins, B1, B2,....., Bk*

Apx Solution: k > k* Bins of Load = 2/3 (worst-case),

Facts:
- Free Space available in the Opt Solution is not larger then
(1/3) k*
- Load left from the Apx Solution is not smaller than
(2/3) (k-k*)

21

Bin Packing

- The apx solution: K bins with load at least 2/3 (forget the last
bin)

- worst-case: each bin has load = 2/3 - has free space 1/3

- The Liquid/optimal solution: it can use this free space and save bins:
k > k*

(free space) (1/3) k* must be>=(2/3) (k-k*) (the rest of liquid)

S0 k <= (3/2) k*

22

Bin Packing

So we can assume that NO BIN j exists that has ONLY D-items.
Claim 2. In this case, FFD finds the optimal solution.

Proof.

Wlog may consider the new instance in which all D-Items are discarded.
Since the number of bins is the same! So we can analyze the

New instance!

- A-Ttems cannot be matched with any other item (= optimal)

- no Bin can contain more than 2 Items (= optimal)

- B-Items are processed by first and they are matched with C-Items
(= optimal)

- Then the remaining C-items are matched among themselves

23

Euclidean-TSP

We consider a complete weighted graph 6(V,E,w) where
w : E > R*satisfies the A-Inequality : w(x,z) <= w(x,y)+w(y,z).

Euclidean-TSP = TSP restricted to Euclidean Graphs.
THM. Euclidean TSP is 2-Approximable

Proof.

Claim 1 (Lower Bound on the Optimum)

TSP(G) >= MST(6)
Proof of the Claim. A Tour (without one edge) is a spanning tree!

24

Euclidean TSP

Idea: Use any MST T and then ftransform it info a TOUR !l

TAKE any MST and start by any node. Follow the tree according
The

DEPTH FIRST SEARCH
- Every edge is used at most twice > 2 * MST (2-apx ok!)
- Transform into a tour:

Whenever you have to come back to a visited node you jump
to the next unvisited node and use A-Inequality .

25

GENERAL TSP: APX-HARDNESS

THM.
If there is a c-apx poly-time algorithm
for Min-TSP for some constant ¢, then P=NP.

Proof. The GAP technique.
Assume that a c-apx algorithm exists for TSP.

Strong Reduction from Hamiltonian Circuit fo TSP:

Given an (unweighted) graph &(V, E) we construct the following
complete weighted graph 6'(V,E',w):

wie) =1 ife€E and w(e) =1 + c n otherwise

26

TSP = APX HARDNESS

Claim 1: G admits an Hamiltonian Circuit iff 6’ admits a Tour of size n

Claim 2: If there is no H.C. then the minimum Tour
hassize > (n-1) + (1+cn) = n + cn = n (c+1)

We can use the c-apx alg. o DECIDE the existence of H.C. in 6:

- If H.C. exists then OPT Tour = nand ANY other Tour > (c+1)n.
So, c-apx algo must find the OPT Tour of size n. Say YES for HC

- If H.C. does not exist then the c-apx algorithm will find
a Tour of size at least (c+1)n. Say NO for HC

27

11.2 Center Selection

Center Selection Problem

Input. Set of nsites s, ..., s, and integer k > 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

@ center
B Site

29

Center Selection Problem

Input. Set of nsites sy, ..., s, and integer k > 0.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
. dist(x, y) = distance between x and y.
« dist(s;, C) = min . . dist(s;, ¢) = distance from s; to closest center.
« r(C) = max; dist(s;, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

« dist(x,x)=0 (identity)

« dist(x,y) = dist(y, x) (symmetry)

« dist(x,y) = dist(x, z) + dist(z, y) (triangle inequality)

30

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinitel

@ center
B Site

31

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the

covering radius each time by as much as possible.

Remark: arbitrarily bad!

I.I. u u : -
gh s ® EE N
guE greedy center 1 LI
| L
@ center

k = 2 centers B site

32

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Greedy-Center-Selection(k, n, s,,s,,...,8,;) {

cC=9

repeat k times {
Select a site s; with maximum dist(s;, C)
Add s; to C

} site farthest from any center

return C

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*)< 3 r(C).

« For each site c; in C, consider ball of radius % r(C) around it.
Exactly one ¢* in each ball; let ¢, be the site paired with ¢;*.
Consider any site s and its closest center ¢* in C*,
dist(s, C) = dist(s, ¢;) = dist(s, ¢*) + dist(c,*, ¢c,) = 2r(C*).
Thus r(C) = 2r(C*). = \ ~N 7

A-inequality < r(C*) since ¢;* is closest center

® C*
m Sites

34

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers aft sites, but is still
within a factor of 2 of best solution that is allowed to place centers
anywhere.

\

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.

35

11.4 The Pricing Method: Vertex Cover

Weighted Vertex Cover

Definition. Given a graph G = (V, E), a vertex cover is a set S C V such
that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph G with vertex weights, find a
vertex cover of minimum weight.

o o

weight =2 +2 + 4 weight = 11

37

Pricing Method

Pricing method. Each edge must be covered by some vertex.
Edge e = (i, j) pays price p, = O to use vertex i and j.

Fairness. Edges incident to vertex i should pay < w; in total.
oo

@ ®

Lemma. For any vertex cover S and any fair prices p,: >. p.

for each vertexi: Y p, =w,
e=(i.))

Pf. .
2 Pe =) X Pes pw o= wb)
cEE i€S e=(i,)) T i€S
each edge e covered by sum fairness inequalities

at least one node in S for each node in S

w(S).

38

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Weighted-Vertex-Cover-Approx (G, w) ({
foreach e in E E po=w
Pe = 0 e<(Z.)) el l
while (dedge i-j such that neither i nor j are tight)
select such an edge e
increase p_, as much as possible until i or j tight

}

S <« set of all tight nodes
return S

39

Pricing Method

Figure 11.8

d: tight

40

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.

« Algorithm terminates since at least one new node becomes tight

after each iteration of while loop.

« Let S = set of all tight nodes upon termination of algorithm. S is a

vertex cover: if some edge i-j is uncovered, then neither i nor j is

tight. But then while loop would not terminate.

. Let S* be optimal vertex cover. We show w(S) < 2w(S*).

W(S)= Ewi= E Epe = E Epe =2Epe
i€s i€S e=(i,j) i€V e=(i,)) =0
I I I
all nodes in S are tight SCV, each edge counted twice

prices = 0

< 2w(S%).
I

fairness lemma

41

11.6 LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; = O, find a minimum weight subset of nodes S such

that every edge is incident to at least one vertex in S.

10 (A 9

total weight = 55

43

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w; = O, find a minimum weight subset of nodes S such

that every edge is incident to at least one vertex in S.

Integer programming formulation.
« Model inclusion of each vertex i using a 0/1 variable x..

{ 0 if vertex i is not in vertex cover

i : .
1 1if vertex i 1s In vertex cover

Vertex covers in 1-1 correspondence with 0/1 assignments:
SZ{iEV:XiZI}

» Objective function: maximize Z; w; X;.

- Must take eitherior ji x;+x; = 1.

44

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min Y w;x,
i€V
s.t. X +X; > 1 (i,))eE
X; € {01} eV

l

Observation. If x* is optimal solution to (ILP), then S={i€V: x* =1}

is a min weight vertex cover.

45

Integer Programming

INTEGER-PROGRAMMING. Given integers g;; and b;, find integers x; that
satisfy:

n
max c'x Ea,-jxj > bl- l<i<m
j=1
s.t. Ax = b X, = 0 e feis
X integral _ ‘
X; integral 1< j=<n

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.

\

even if all coefficients are 0/1 and
at most two variables per inequality

46

Linear Programming

Linear programming. Max/min linear objective function subject to
linear inequalities.
. InpUT: in‘l‘eger's Cj’ bi' Gij .

« Output: real numbers x;.

(P) max c'x n
s.t. Ax

X

v
S
1
H
\%|
L
&p
S
.
v
S
(U
IA
IA
S

v
=
s
v
=
[
IA

~
A
S

Linear. No x?, xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

47

LP geometry in 2D.

LP Feasible Region

The region satisfying the inequalities
X1 > O, Xy >0
X1+ 2%, 26
2X1+ x, 26

48

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min Y w;x,
i€V
S.t. X;+X; = 1 (,))eE

X, 0 ieVr

1

v

Observation. Optimal value of (LP) is < optimal value of (ILP).
Pf. LP has fewer constraints.

(N[

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover? 3

A. Solve LP and round fractional values.

(N[

49

Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), thenS={i€V :x*,=3}isa
vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

« Consider an edge (i, j) € E.
- Since x*; +x*; = 1, either x*; =3 or x*;=z3 = (i,) covered.

J

Pf. [S has desired cost]
» Let S* be optimal vertex cover. Then

R Ewix;k = %Ewi
i € §* i€S iES

T I

LP is a relaxation x* = 3

50

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If P = NP, then no p-approximation
for p < 1.3207, even with unit weights.

10v5 - 21

Open research problem. Close the gap.

51

*11.7 Load Balancing Reloaded

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
- Job j must run contiguously on an authorized machine in M; € M.

- Job j has processing time t;.
« Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machineiisL;=X;c s, t;

Def. The makespan is the maximum load on any machine = max; L;.

Generalized load balancing. Assign each job to an authorized machine
to minimize makespan.

53

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x;; = time machine i spends processing job j.

LP relaxation.

54

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* = L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* = max; t;.
Pf. Some machine must process the most time-consuming job. =

55

Generalized Load Balancing: Structure of LP Solution
Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge
from machine i to job j if x;;> 0. Then 6(x) is acyclic.

p d d can transform x into another LP solution where
f- (eferre) G(x) is acyclic if LP solver doesn't return such an x

5 o

OO O OO O

G(x) acyclic O . G(x) cyclic
job

machine

56

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root
forest 6(x) at some arbitrary machine node r.

« If job jis aleaf node, assign j to its parent machine i.

« If job jis not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job jis assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =«

() Job

machine ; 2

57

Generalized Load Balancing: Analysis

Lemma 5. If job jis a leaf node and machine i = parent(j), then x;; = t,.
Pf. Sinceiis aleaf, x;; = O for all j = parent(i). LP constraint
guarantees ; x;; = T;. =

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). =

Ij\
LN
’
, N
N
4 N
’
\

Each internal job node is
assigned to an arbitrary child.

() Job

machine ; ;

58

Generalized Load Balancing: Analysis

Theorem. Rounded solution is a 2-approximation.

Pf.

« Let J(i) be the jobs assigned to machine i.
« By Lemma 6, the load L; on machine i has two components:

- leaf nodes

> [, = > Ajj
JE J@) JE J@)
j is a leaf j is a leaf

Lemma 2

l

tparent(i) < L*

- parent(i)

« Thus, the overall load L, < 2L*.

LP Lemmal (LP is a relaxation)
< L < L*

1

optimal value of LP

< Exij
e J

59

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

Jobs

OO0 Machines

le-j = ; foralljE€J Supply = #;(j L

l

Y>x; s L forallieM

J L

x;; = 0 forallj€EJandiE M, t v)Demand = 2,4
X;j = 0 foralljEJandi¢ M, .

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

60

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an
edge from machine i to job j if x;; > 0. We can find another solution (x’,

L) such that 6(x") is acyclic.

Pf. Let C be a cycle in G(x).
. Augmem- flow a|on9 the CYCIZ C. +— flow conservation maintained
« At least one edge from C is removed (and none are added).
« Repeat until 6(x") is acyclic.

30_3 30_3
6 6
LK pe (< pe
: 5 5

4@13 4 (Or4

augment along C

G(x) . G(x")

61

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job j takes t;; time if processed on machine i.
« 2-approximation algorithm via LP rounding.
« No 3/2-approximation algorithm unless P = NP.

62

11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant ¢ > 0.
« Load balancing. [Hochbaum-Shmoys 1987]

= Euclidean TSP. [Arora 1996]
Consequence. PTAS produces arbitrarily high quality solution, but trades

off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

64

Knapsack Problem

Knapsack problem.

Given n objects and a "knapsack."

Item i has value v; > 0 and weighs w; > Q. ~— we'llassumew; < W
Knapsack can carry weight up to W.

Goal: fill knapsack so as to maximize total value.

Exi (3,4 has value 40

1 1 1
2 6 2
w=il 3 18 5
4 22 6
5 28 7

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w;, nonnegative
values v;, a weight limit W, and a target value V, is there a subset S C X
such that:

Yw, = W

Evi > V

SUBSET-SUM: Given a finite set X, nonnegative values u;, and an integer
U, is there a subset S C X whose elements sum to exactly U?

Claim. SUBSET-SUM = » KNAPSACK.
Pf. Given instance (uy, ..., u,, U) of SUBSET-SUM, create KNAPSACK
instance:

=
I
S
I
<
\g|
=
IA
S

<
I
S
I
S
N\
=
v
-

66

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
= Case 1: OPT does not select item i.

- OPT selects best of 1, ..., i-1 using up to weight limit w
= Case 2: OPT selects item i.

- new weight limit = w - w;

- OPT selects best of 1, ..., i-1 using up to weight limit w - w;

0 if 1=0
OPT(i,w)={ OPT(i—1,w) if W, > w
| max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise

Running time. O(n W).
. W = weight limit.
« Not polynomial in input size!

67

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value
exactly v.

= Case 1: OPT does not select item i.

- OPT selects best of 1, ..., i-1 that achieves exactly value v
= Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v;

- OPT selects best of 1, ..., i-1 that achieves exactly value v
(0 if v=0
o0 if 1=0,v>0
OPT(i,v)= , ,
OPT(i—-1,v) it v,>v
| min{ OPT(i-1,v), w;+ OPT(i-1,v-v;)} otherwise

x
V¥ 21 Vg

Running time. O(h V*) = O(n? v,y
« V* = optimal value = maximum v such that OPT(n, v) = W.
« Not polynomial in input size!

68

Knapsack: FPTAS

Intuition for approximation algorithm.
« Round all values up to lie in smaller range.

« Run dynamic programming algorithm on rounded instance.
« Return optimal items in rounded instance.

1 934,221 1 1 1 1

2 5,956,342 2 2 6 2

3 17,810,013 5 — 3 18 5

4 21,217,800 6 4 22 6

5 27,343,199 7 5 28 7
W= 11 W= 11

original instance rounded instance

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: =[&} 0, ¥ =[&}

0
- Vo« = largest value in original instance
- ¢ = precision parameter
-0 = scaling factor=ev,, /n

Observation. Optimal solution to problems with V or V are equivalent.

Intuition. V close to v so optimal solution using Vis nearly optimal;
V small and integral so dynamic programming algorithm is fast.

Running time. O(n3 / ¢).
. Dynamic program II running time is O(n” 9,), where

e = %] <[]
Viax = A = |~
0 €

70

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: v, = [&] 0

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then 1+&)Y v, = Y v,

ies ie S*

Pf. Let S* be any feasible solution satisfying weight constraint.

— always round up
Vo= 2
ie S* ie §*
_ solve rounded instance optimall
< E v, P Y
ies
< 2 (v, + 0) never round up by more than 6
ies
< Yv. + nb ISl =n
=N DP alg can take v,

iesS

Extra Slides

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.

Pf. NUMBER-PARTITIONING = , LOAD-BALANCE.
\

NP-complete by Exercise 8.26

a b C d
e f g
\— /)
length of job f
machine 1 a d f
machine 2 b C e g

yes

0 Time L

v

73

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no p-approximation algorithm for
metric k-center problem for any p < 2.

Pf. We show how we could use a (2 - €) approximation algorithm for k-
center to solve DOMINATING-SET in poly-time.

Let G = (V, E), k be an instance of DOMINATING-SET. «— see Exercise 8.29
Construct instance G' of k-center with sites V and distances
-d(u,v)=2if (u,v)EE
-d(u,v)=1if (u,v)EE
Note that G' satisfies the triangle inequality.
Claim: G has dominating set of size k iff there exists k centers C*
with r(C*) = 1.
Thus, if G has a dominating set of size k, a (2 - ¢)-approximation
algorithm on G' must find a solution C* with r(C*) = 1 since it cannot
use any edge of distance 2.

74

