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Google

0 Google is the leading search and online
advertising company - founded by Larry Page and
Sergey Brin (Ph.D. students at Stanford
University)

o “googol” or 10100 js the mathematical term
Google was named after

0 Google’s success in search is largely based on its
PageRank™ algorithm

o Gartner reckons that Google now make use of
more than 1 million servers, spitting out search
results, images, videos, emails and ads

o Google reports that it spends some 200 to 250
million US dollars a year on IT equipment.



Matrices

o A Matrix is a rectangular array of numbers

4 CHRCERCERNY 1 2 3
Ay, Ay, Ay 4 5 6
O a; is the element of matrix A in row i and column ]

O A is said to be a n x m matrix if it has n rows and m
columns

O A square matrix is a n x n matrix

o The transpose AT of a matrix A is the matrix obtained by
exchanging the rows and the columns

T T
a, 4y a, Ay 1 4

T T T
A = a, dy = a, dy = 25

T T
ay  dj di; Ay




Exercise

o What is the size of these matrices

I 0 -1 -2 3]
[210 g ‘163]. 1 A={1 0 -1 -2
B 8 2 1 0 -1

o Compute their transpose



Exercise

o What is the size of these matrices

1 9 —-13
20 5 —6 |

2X3

=

1
8

S

3x1

o Compute their transpose

I 20
9 5
-13 -6

[418]

0 —1 -2 -3
1 0 -1 -2

2 1 0 -1

3X4

0 1 2
-1 0 1
-2 -1 0

-3 -2 -1




Matrices

0 A square matrix is diagonal iff has a; = 0

’ (all G)
C (222

o The Identity matrix 1 is the diagonal matrix
with 1 s along the diagonal

1 O
A=
o
o A symmetric matrix A satisfy the condition
A=AT



Exercise

o Is a diagonal matrix symmetric?

0 Make an example of a symmetric matrix

0 Make an example of a 2x3 symmetric matrix



Exercise

0 Is a diagonal matrix symmetric?

= YES because if it is diagonal then a;; = 0 for all
i#j, hence a;; = a; for all i#]

o Make an example of a symmetric matrix

.
3 -

1
2
0 Make an example of a 2x3 symmetric matrix

= Impossible, a symmetric matrix is a square
matrix

10



Vectors

O A vector v is a one-dimensional array of
numbers (is an n x 1 matrix — column vector)

o Example:
( 3 \
v=| 5

7

O The standard form of a vector is a column
vector

o The transpose of a column vector vf =(3 5 7)
IS @ row vector.

11



Operation on matrices

o Addition: A=(a;), B=(b;), C=(c;) = A+B
N CIJ — aIJ + le

o Scalar multiplication: A is a number, LA =
(Aaj)

o Multiplication: if A and B are compatible, i.e.,

the number of columns of A is equal to the
number of rows of B, then

= C=(c;)= AB
=Gy = 2y A by

12



Examples

1 4
1 2 3 1*¥14+2*%243%3  1*442*%543%6 14 32
4*14+5%24+6*3 4*44+5*54+6%6

2 5 =
4 5 6 32 77

It is symmetric.
1 1 I -1 \|_| 10 Is it a general
0 1)L 0 1 0 1 [ac

Is AATalways
symmetric?

o If AB=1, then B is said to be the inverse of A
and is denoted with A-1

o If @ matrix has an inverse is called invertible or
non singular

13



Exercise

o Compute the following operations

1t 31 [oo0 5]
100l T|75 0/~
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Exercise

o Compute the following operations

131 [00 5
100|750

140
1 +7

O0+5 040

3+0 1+5]

2.-3]
2.4 2--2 2.5

, [t 8 3] _[2-1 2.8
4 =2 5|~

-123'1" 1 0

0 6 7] —|%F

L ' 3 7

1 2]fo 1] Jo 1

3 4|10 0] ~ |0 3|

0 111 2] [3 4

0 0|3 4]~ |0 of

2
8

1 36
18 50

16 -6
—4 10

|
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Rank of a Matrix

o The row (column) rank of a matrix is the
maximum number of rows (columns) that are
linearly independent

o The vectors vy, ..., vV, are linearly independent
iff there is no linear combination a,v,+ ... + a_ v,
(with coefficients a; not all 0) of the vectors that

isequalto O

o Example 1: (12 3),(146),and (0 2 3) are
linearly dependent: show it

o Example 2: (1 2 3) and (1 4 6) are not linearly
dependent: show it

o The kernel of a matrix A is the subspace of
vectors v such that Av=0

16



Exercise solution

o 1%(123)T-1%(1 4 6)T + 1*(0 2 3)T =(0 0 0)T

i

1-11)"isin the kernel of the matrix:

oa*(123)+b*x(146)=(000)
= Then a=-b and also a = -2b, absurd.

17



Rank and Determinant

0 Theorem. A n X n square matrix is nonsingular
iff has full rank (i.e. n).

0 Theorem. A matrix has full column rank iff it
does not have a null vector

o Theorem. A n X n matrix A is singular iff the
det(A)=0

det(4) = 1 h =l
C = < +j
E(_l)l ]alj det(A[U]) if n>1

=1

O Apy is the ij minor, i.e., the matrix obtained by
deleting the i-th row and the j-th column from A.



Exercise

o Compute the determinant of the following
matrices

—
N —
A
N———

N B~ =

Y R
(OST \ I
W N O

~_
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Exercise

o Compute the determinant of the following
matrices

1 1 — 1%4-1%2 = 2

2 4

1 1 0

2 42| e zner 23290

http://www.bluebit.gr/matrix-calculator/

20



Eigenvectors and Eigenvalues

o Definition. If M is a square matrix, v is a
nonzero vector and A is a number such that

s Mv=\LvV

o then v is said to be an (right) eigenvector of A
with eigenvalue A

o If v is an eigenvector of M with eigenvalue A,
then so is any nonzero multiple of v

0 Only the direction matters.

21



Example

0 The matrix Is it singular?
2 =3
1 -2

M =

o Has two (right) eigenvectors:

=(1 1)tand v, = (3 1)t
*vi=(lifandv, = (3 1) Prove that

22



Example

0 The matrix Is it singular?

2 -3
1 -2

M =

O Has two eigenvectors:

—(11)tandv, = (3 1)t
*vi=(11)andv, =(31) Prove that

OMv,=(-1-1)t=-1wv,
= The eigenvalue is -1
oMv,=(31)t=1wv,
= The eigenvalue is 1 23



Transformation

0 There is a lot of distortion in these directions (1
0)% (1 1)5 (0 1)°

24



Transformation along eigenvectors

0 There are two
independent directions -
which are not twisted e
at all by the matrix M: M T

(11) and (3 1) " N

o one of them is flipped \
(11)

0o We see less distortion

if our box is oriented /
~

in the two special 7

directions. P

25



Results

0 Theorem: every square matrix has at least one
eigenvector

0 The usual situation is that an n X n matrix has n
linearly independent eigenvectors

o If there are n of them, they are a useful basis for
RN,

o Unfortunately, it can happen that there are fewer
than n of them.

26



Finding Eigenvectors N)©O V

oMv= AV
® V is an eigenvector and is A an eigenvalue

o If A = 0, then finding eigenvectors is the same as
finding nonzero vectors in the null space - iff
det(M) = 0, i.e., the matrix is singular

o If A '= 0, then finding the eigenvectors is
equivalent to finding the null space for the matrix
M - A1 (1 is the identity matrix)

o The matrix M — A1 has a non zero vector in the
null space iff det(M - A1) =0

o det(M - A1) = O is called the characteristic
equation. 27



Exercise

M=(2 ‘3) Find the eigenvalues and the
-2 eigenvectors of this matrix

1) Find the solutions A of the characteristic equation (eigenvalues)

2) Find the eigenvectors corresponding to the found eigenvalues.

28



Exercise Solution

M=(2 ‘3) Find the eigenvalues and the
-2 eigenvectors of this matrix

odet(M-A1)=0
m(2-M(-2-N)+3=N-1
0o The solutions are +1 and -1

29



Exercise Solution

M=(2 ‘3) Find the eigenvalues and the

I -2 eigenvectors of this matrix

odet(M-A1)=0
m(2-M)(-2-N)+3=N-1

o The solutions are +1 and -1

O Now we have to solve the set of linear
equations

= Mv=v (for the first eigenvalue)

30



Exercise Solution

M=(2 ‘3) Find the eigenvalues and the

I -2 eigenvectors of this matrix

odet(M-A1)=0
m(2-M)(-2-N)+3=N-1

o The solutions are +1 and -1

O Now we have to solve the set of linear
equations

= Mv=v (for the first eigenvalue)
2x-3y=x
X=2y=y

= Has solution x=3y, (3 1)t- and all vectors
obtained multiplying this with a scalar.

31



Algorithm

o To find the eigenvalues and eigenvectors of M:

= First find the eigenvalues by solving the
characteristic equation.
Call the solutions A4,..., A,. (There is always at
least one eigenvalue, and there are at most n
of them.)

= For all 4., the existence of a nonzero vector in
this null space is guaranteed. Any such vector
IS an eigenvector.

32



Graphs

o A directed graphs G is a pair (V,E), where V is a
finite set and E is a binary relations on V

m V is the Vertex set of G: contains the
vertices

= E is the Edge set of G: contains the edges

o In an undirected graphs G=(V,E) the edges
consists of unordered pairs of vertices

o The in-degree of a vertex v (directed graph) is
the number of edges entering in v

o The out-degree of a vertex v (directed graph) is
the number of edges leaving v.

33



The Web as a Directed Graph

hyperlink

Page B

Anchor |

Assumption 1: A hyperlink between pages denotes
author perceived relevance (quality signal)

Assumption 2: The anchor of the hyperlink describes the
target page (textual context)

34



Ranking web pages

o To count inlinks: enter in google search form
link: www.mydomain.com

o Web pages are not equally “important”
= www.unibz.it vs. www.stanford.edu
= Inlinks as votes
www.stanford.edu has 3200 inlinks
www.unibz.it has 352 inlink (Feb 2013)

o Are all inlinks equal?
= Recursive question!

35



Simple recursive formulation

o Each link’ s vote is proportional to the RULES
importance of its source page

o If page P with importance x has n outlinks, each
link gets x/n votes

333 % 333§

36



Simple “flow” model

g () \
The web in {39 imoo%wte "5< -
v N y=y/2+a/2
oy @ a=yl2+m
/ m=a)/2
d
y/2
s wrare
A m As G
9 al2 —_— APPLLLAATY
= 4 ' Rﬁ{ff'\,\x

37

a, m, and y are the importance of these pages



Solving the flow equations

0 3 equations, 3 unknowns, no constants
= No unique solution

= If you multiply a solution by a constant (i) you
obtain another solution - try with (2 2 1)
o Additional constraint forces uniqueness
= y+a+m = 1 (normalization) = T qovaL Frow s i
C»-y=2/5,a =2/5 m=1/5
m These are the scores of the pages under the
assumption of the flow model

0 Gaussian elimination method works for small
examples, but we need a better method for large

graphs.

38



Matrix formulation ¢ —[1T°
g Hl'),$247
o Matrix M has one row and one column for each ¥ -
web page (square matrix) (-3

O Suppose page i has n outlinks
m If j links to j, then Mij=1/n
= Else M;;=0

o M is a row stochastic matrix
= Rows sum to 1

O Suppose r is a vector with one entry per web
page
= I, is the importance score of page i
= Call it the rank vector

39



NetAc : Sle v € Co,ﬂm ollovew VY n]g,a,

— — T 27 -
Example r M =v oyppue MP-V =V
y a m
y Y 1 0)
" y/2 a |1, 0 n =M
y m KO 1 Oj
VAVAL (yam) = (yamM
m
al2 a=y/2+m
a m

m=a/2

40



Power Iteration Solution

3

y a m
y a2 0
a | 0 W =M
m KO 1 Oj
= (yam)=(yam)M
(1/31/31/3) C=o o _ 2 %
(1/31/3 1/3M = (1/3 1/2 1/6) b4 - Y(czs’; ‘;«i‘) rt{{ LA

(1/31/2 1/6)M = (5/12 1/3 1/4) €=9
(5/12 1/3 1/4)M = (3/8 11/24 1/6)

.(.i/S 2/51/5)

41



Example

Following 6 hours

dry rain
First 6 hours dry 61 11 72 cases
rain 11 (17 78 cases
72 cases 28 cases
Following 6 hours
dry rain
First 6 hours dry 85 .15 72 cases

rain -38 .62 28 cases

72 cases 28 cases



States and probabilities AR K oW
CRAIN




Composing transitions

® R
® (.85 .15"
R .38 .62,

What can we say
about the 12 h
transition? From
00-06 to 12-18?

Rain> > > Rain> > > (Eain>
.62 .62

{

Rain> > > dry > > >( Rain)
.38 A5

38

[l
-
o)

Il
TN

0.44 = 0.38*0.15+0.62*0.62

What kind of operation is on the matrix?

44



Composing transitions

dry rain
dry (.85 .15\/.85 .15 I8 .22 e
rain {38 .62 ){.38 .62 S6 .44
o The probabilities of the 12hours transitions are
given by squaring the matrix representing the
probabilities of the 6hours transitions
= P(rain-in-12hours|rain-now)= P(rain-in-12hours|rain-
in-6hours)*P(rain-in-6hours|rain-now)+P(rain-
in-12hours|dry-in-6hours)*P(dry-in-6hours|rain-now)=.
62*.62+.15*.38=.44
= P(dry-in-12hours|rain-now)= P(dry-in-12hours|rain-
in-6hours)*P(rain-in-6hours|rain-now)+P(dry-

in-12hours|dry-in-6hours)*P(dry-in-6hours|rain-now)= N
38*.62+.85*.38=.56



Behavior in the limit

o 85 15 e I8 22 VE
o 73 27 o 72 28

.68 .32 170 30
e 72 28 e 72 28

71 .29 72 28

(72 28
A =

(2

15 .25
64 .36

12 .28

72 .28
12 .28



Behavior in the limit

o If a,b <=1, and a+b=1, i.e., (a b) is a generic
state with a certain probability a to be dry and
b=1-a to be rain, then

A Fag

) = (72 .28)

o In particular (.72 .28)A=(.72 .28), i.e., it is a
(left) eigenvector with eigenvalue 1

0 The eigenvector (.72 .28) represents the limit
situation starting from a generic situation (a b): it
is called the stationary distribution.

47



Exercise

o Find one (left) eigenvector of the matrix below:

= Solve first the characteristic equation (to find
the eigenvalues)

= and then find the left eigenvector
corresponding to the largest eigenvalue

85 .15
38 .62

48



Exercise Solution

o Characteristic equation

det( 85-4 15 ) =(0.85-1)(0.62-)\) - 0.15*%0.38 = A2 - 1.47) +0.47

38 62-A
A= 1'471\/1 AT -4%047 Solutions A =1 and A =0.47
2
(x y)'85 15 =(x Y) 0.85x + 0.38y=
38 62 ' IOy =X
X+y=1

0.85x +0.38(1-x)=x
-0.53x +0.38=0

x = 0.38/0.53=0.72 y=1-0.72= 0.28

49



Markov Chain h= f(vue, 5\0&‘5

o A Markov chain is a sequence X;, X5, X5, ... of random
variables (Zv all possible values of X P(X=V) = 1) with the property:
o Markov property: the conditional probability distribution of

the next future state X, ., given the present and past states
is a function of the present state X, alone

Pr(JXn_*_l — lﬂla\o — l“U, 4\.1 —_ l-‘l, ey 4\"’ - l.‘n ) = Pl‘(4\n+1 — l‘|x\n - l.‘n )-

o If the state space is finite then the transition probabilities
can be described with a matrix P;=P(X, ;=] [ X,=1),1,] =1,

..M ’ 'S {: e ﬂ%ﬂv
85 .15 P(X,., =1lX =1) P(X, =21X,=1)
38 .62 P(X  =11X =2) P(X_ =21X =2)

50



Example: Web

0 X, is the page visited by a user (random surfer) at
time ¢;

0 At every time t the user can be in one among m
pages (states)

o We assume that when a user is on page j at time
t, then the probability to be on page j at time t+1
depends only on the fact that the user is on page
i, and not on the pages previously visited.

HARWK OV CcHAIN
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Probabilities

P(P,|P,)=0.1
(P,|P4) =04
P(P,|Py)= 1.0 @
(Po)- PP P
P(P,P,)=0.05
P(P;|P,)=0.3
P(P,| P,)=0.15

Goal

PP, |P3;) =0.5

In this example there are 5 states and the probability to
jump from a page/state to another is not constant (it is not
1/(#of outlinks of the node)) ... as we have assumed before
in the simple web graph

This is not a Markov chain! (why?)

52



fz“’ P‘l{
Examples ¢ o,
( S L
0 Py=P(Xpp1=J | Xo=1),0,j =1, ..m L

o(1,0,0,.. 0)P=(Py, Pys Py ..oy Pyn)

m if attime nitis in state 1, then at time n+1 it
is in state j with probability Py, i.e., the first
row of P; gives the probabilities to be in the
other states

O (0-5, 0.5, O, cany O) P —_ (P11'0.5 + P21'O.5, sany

P,,-0.5 + P,,-0.5)

= this is the linear combination of the first two
rOwSs.

53




Stationary distribution <H¢lﬂzl“‘nﬁﬂ>'( P >

0 A stationary distribution is a m-dimensional (sum
1) vector which satisfies the equation:

P =qx", )\='L

0o Where = is a (column) vector and =" (row vector) is
the transpose of n

o A stationary distribution always exists, but is not
guaranteed to be unique (can you make an example
of a Markov chain with more than one stationary
distribution?)

o If there is only one stationary distribution then

o Where x is a generic distribution over the m states
(i.e., it is an m-dimensional vector whose entries are
<=1 and the sumis 1)

54



Random Walk Interpretation

o Imagine a random web surfer
= At any time t, surfer is on some page P

= At time t+1, the surfer follows an outlink from
P uniformly at random

= Ends up on some page Q linked from P
= Process repeats indefinitely

o Let p(t) be a vector whose ith component is the
probability that the surfer is at page i at time t

= p(t) is a probability distribution on pages

55



The stationary distribution X(t)= poge =¥
SURFER

o Where is the surfer at time t+17 tine €
= Follows a link uniformly at random ( ) .
= p(t+1) = p(OM  —+ Why ° X f”H 43 —-ﬁ{(‘f"ﬂ

O Suppose the random walk reaches a state such
that p(t+1) = p(t)M = p(t)

= Then p(t) is a stationary distribution for the
random walk f(f,S)

o Our rank vector r= p(t) satisfies r = rM. /d

K\ =t f (ken)=S] = % fﬁt\x:e): ;1< T [X(en)=s[XE)- i |
Cp)Iw Ve,c\'-govavl R ‘f.‘(éﬂ>¢~ (;Cé>5t'{



Ergodic Markov chains

o A Markov chain is ergodic if:

= Informally: there is a path from any state to any
other; and the states are not partitioned into sets
such that all state transitions occur cyclically from
one set to another.

= Formally: for any start state, after a finite transient
time T,, the probability of being in any state at
any fixed time T>T, is nonzero.

IR TE Not
” ergodic
C> ZD ¢ (even/
odd).

Not ergodic: the probability to be in a state, at a fixed
time, e.qg., after 500 transitions, is always either 0 or 1
according to the initial state. >



Ergodic Markov chains

o For any ergodic Markov chain, there is a unique
long-term visit rate for each state

m Steady-state probability distribution

o Over a long time-period, we visit each state in
proportion to this rate

O It doesn’t matter where we start.

o Note: non ergodic Markov chains may still have a
steady state.

58



Non Ergodic Example

(0 0.5 0.5)
P=]02 0 0.8
\ 0 0 1 )

o It is easy to show that the steady state (left
eigenvector) isx™= (00 1), a'P=x" , i.e., is
the state 3

o The user will always reach the state 3 and will
stay there (spider trap)

o This is a non-ergodic Markov Chain (with a
steady-state).

59



Random teleports

o The Google solution for spider traps (not for dead
ends)

O At each time step, the random surfer has two
options:
= With probability g, follow a link at random
= With probability 1-f, jump to some page
uniformly at random

= Common values for p are in the range 0.8 to
0.9

o Surfer will teleport out of spider trap within a few
time steps

60



Matrix formulation

O Suppose there are N pages
= Consider a page i, with set of outlinks O(i)
= We have
M; = 1/]0(i)| when i links j
and M;; = 0 otherwise
= The random teleport is equivalent to

adding a teleport link from i to every other
page with probability (1-p)/N

reducing the probability of following each
outlink from 1/]|0(i)| to p/|O(i)]

Equivalent: tax each page a fraction (1-) of
its score and redistribute evenly.
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Example

o Simple example with 6 pages

o P(5
o P(1
o P(*

1)=P(4
1)=P(6
1) =4[

1)=P(3|1)=P(2|1)= p/4 +(1-p)/6
1)= (1-)/6

3/4 +(1-p)/6] + 2(1-p)/6 =1

62



Google Page Rank

O

Construct the NxN matrix A as follows
= Ay = BM; + (1-B)/N
Verify that A is a stochastic matrix

The page rank vector r is the principal eigenvector of
this matrix

= satisfying r = rA
= The score of each page r; satisfies the following:

E P +(1_/3)
1O(k) |

kEI(i) N

=P

I(i) is the set of nodes that have a link to page |
O(k) is the set of links exiting from k

r is the stationary distribution of the random walk with
teleports. °3



Example

(0,03
0,03
0,03
0,03
0,03
L 0,03

P(4|1)=0.24=0.85/4 + 0.15/6
P(6/1)=0.03=0.15/6
P(4|6)=0.88=0.85/1 + 0.15/6

0,03
0,03
0,03
30 — ’
$=0.85 AT = 1003
0,03
L 0,03

Stationary distribution = (0.03 0.23 0.13 0.24 0.14 0.24)

0,24
0,03
0,03
0,88
0,03
0,03

0,23
0,23
0,23
0,23
0,23
0,23

0,24
0,45
0,03
0,03
0,03
0,03

0,13
0,13
0,13
0,13
0,13
0,13

0,24
0,03
0,03
0,03
0,03
0,88

0,24
0,24
0,24
0,24
0,24
0,24

0,24
0,03
0,88
0,03
0,03
0,03

0,14
0,14
0,14
0,14
0,14
0,14

0,03)
0,45
0,03
0,03
0,88
0,03

0,24
0,24
0,24
0,24
0,24
0,24 |




Dead ends

o Pages with no outlinks are “"dead ends” for the
random surfer (dangling nodes)

= Nowhere to go on next step

o When there are dead ends the matrix is no longer
stochastic (the sum of the row elements is not 1)

o This is true even if we add the teleport

= because the probability to follow a teleport link
is only (1-f)/N and there are just N of these
teleports- hence any of them is (1-f)
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Dealing with dead-ends

0 1) Teleport

= Follow random teleport links with probability
1.0 from dead-ends (i.e., for that pages set 3 =

0)
= Adjust matrix accordingly
0 2) Prune and propagate
= Preprocess the graph to eliminate dead-ends
= Might require multiple passes (why?)
= Compute page rank on reduced graph

= Approximate values for dead ends by
propagating values from reduced graph
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Computing page rank

0 Key step is matrix-vector multiply
m pFhew — roIdA

o Easy if we have enough main memory to hold
A, rold, pnew
o Say N = 1 billion pages
= We need 4 bytes (32 bits) for each entry
(say)

= 2 billion entries for vectors r"e¥ and rold,
approx 8GB

= Matrix A has N2 entries, i.e., 1018
it is a large number!
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Sparse matrix formulation

o Although A is a dense matrix, it is obtained from a
sparse matrix M

= 10 links per node, approx 10N entries
o We can restate the page rank equation

mr=prM + [(1-p)/N]y (see slide 63)

= [(1-B)/N]y is an N-vector with all entries (1-p)/N
O So in each iteration, we need to:

= Compute rmew = pBroldM

= Add a constant value (1-f)/N to each entry in

rnew
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Sparse matrix encoding

0 Encode sparse matrix using only nonzero entries
= Space proportional roughly to number of links
= say 10N, or 4*10*1 billion = 40GB
= still won't fit in memory, but will fit on disk

source L
node degree destination nodes
0 3 1,5,7

1 5 17,64, 113, 117, 245

2 2 13, 23




Basic Algorithm

o Assume we have enough RAM to fit r"ew, plus
some working memory

= Store rold and matrix M on disk

Basic Algorithm:
o Initialize: rold = [1/N],
o Iterate:

= Update: Perform a sequential scan of M and
ro'd and update rnew

= Write out rew to disk as r°d for next iteration

= Every few iterations, compute |r"ew-rold| and
stop if it is below threshold

Need to read in both vectors into memory 7



Update step

Initialize all entries of r"*W to (1-f)/N
For each page p (out-degree n):

Read into memory: p, n, dest,,...,dest , rold(p)

forj=1...N:
rew(dest) += B*rod(p)/n

rnew src  degree destination
0 I EN EET
;- 1 4 17, 64, 113, 117
3 p) 2 13, 23
4
g. The old value in 0 contributes to

updating only the new values in
1,5, and 6.

r0|d

O bhbWN-O0
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