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Google 

!  Google is the leading search and online 
advertising company - founded by Larry Page and 
Sergey Brin (Ph.D. students at Stanford 
University) 

!  “googol” or 10100 is the mathematical term 
Google was named after 

!  Google’s success in search is largely based on its 
PageRank™ algorithm 

!  Gartner reckons that Google now make use of 
more than 1 million servers, spitting out search 
results, images, videos, emails and ads 

!  Google reports that it spends some 200 to 250 
million US dollars a year on IT equipment.  
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Matrices 

!  A Matrix is a rectangular array of numbers 

!  aij is the element of matrix A in row i and column j 
!  A is said to be a n x m matrix if it has n rows and m 

columns 
!  A square matrix is a n x n matrix 
!  The transpose AT of a matrix A is the matrix obtained by 

exchanging the rows and the columns 

  

!!
"

#
$$
%

&
=!!
"

#
$$
%

&
=

654
321

232221

131211

aaa
aaa

A

AT =

a11
T a12

T

a21
T a22

T

a31
T a32

T

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

a11 a21

a12 a22

a13 a23

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

1 4

2 5

3 6

!

"

#
#
#
#
#

$

%

&
&
&
&
& 5 



Exercise 

!  What is the size of these matrices 

!  Compute their transpose 
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Exercise 

!  What is the size of these matrices 

!  Compute their transpose 
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Matrices 

!  A square matrix is diagonal iff has aij = 0 
for all i≠j 

!  The Identity matrix 1 is the diagonal matrix 
with 1´s along the diagonal 

!  A symmetric matrix A satisfy the condition 
A=AT 
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Exercise 

!  Is a diagonal matrix symmetric? 

!  Make an example of a symmetric matrix 

!  Make an example of a 2x3 symmetric matrix  

9 



Exercise 

!  Is a diagonal matrix symmetric? 
"  YES because if it is diagonal then aij = 0 for all 

i≠j, hence aij = aji for all i≠j 

!  Make an example of a symmetric matrix 

!  Make an example of a 2x3 symmetric matrix 
"  Impossible, a symmetric matrix is a square 

matrix  
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Vectors 

!  A vector v is a one-dimensional array of 
numbers (is an n x 1 matrix – column vector) 

!  Example: 

 
!  The standard form of a vector is a column 

vector 
!  The transpose of a column vector vT =(3 5 7) 

is a row vector. 
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Operation on matrices 

!  Addition: A=(aij), B=(bij), C=(cij) = A+B 
"  cij = aij + bij  

!  Scalar multiplication: λ is a number, λ A = 
(λaij) 

!  Multiplication: if A and B are compatible, i.e., 
the number of columns of A is equal to the 
number of rows of B, then 
"  C=(cij)= AB 
"  cij = Σk aik bkj 
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Examples 

!  If AB=1, then B is said to be the inverse of A 
and is denoted with A-1 

!  If a matrix has an inverse is called invertible or 
non singular 
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It is symmetric. 
Is it a general 
fact?  
Is AATalways 
symmetric? 



Exercise 

!  Compute the following operations 
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Exercise 

!  Compute the following operations 
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Rank of a Matrix 

!  The row (column) rank of a matrix is the 
maximum number of rows (columns) that are 
linearly independent 

!  The vectors v1, …, vn are linearly independent 
iff there is no linear combination a1v1+ … + anvn 
(with coefficients ai not all 0) of the vectors that 
is equal to 0 

!  Example 1: (1 2 3), (1 4 6), and (0 2 3) are 
linearly dependent: show it 

!  Example 2: (1 2 3) and (1 4 6) are not linearly 
dependent: show it  

!  The kernel of a matrix A is the subspace of 
vectors v such that Av=0 
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Exercise solution 

!  1*(1 2 3)T -1*(1 4 6)T + 1*(0 2 3)T =(0 0 0)T 

!   (1 -1 1)T is in the kernel of the matrix: 

!  a*(1 2 3) + b*(1 4 6) = (0 0 0) 
"  Then a=-b and also a = -2b, absurd.  
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Rank and Determinant 

!  Theorem. A n x n square matrix is nonsingular 
iff has full rank (i.e. n). 

!  Theorem. A matrix has full column rank iff it 
does not have a null vector 

!  Theorem. A n x n matrix A is singular iff the 
det(A)=0 

!  A[ij] is the ij minor, i.e., the matrix obtained by 
deleting the i-th row and the j-th column from A. 
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Exercise 

!  Compute the determinant of the following 
matrices 
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Exercise 

!  Compute the determinant of the following 
matrices 
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Eigenvectors and Eigenvalues 

!  Definition. If M is a square matrix, v is a 
nonzero vector and λ is a number such that  
"  M v =  λ v 

!  then v is said to be an (right) eigenvector of A 
with eigenvalue λ 

!  If v is an eigenvector of M with eigenvalue λ, 
then so is any nonzero multiple of v 

!  Only the direction matters.  
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Example 
!  The matrix  

!  Has two (right) eigenvectors: 
"  v1 =(1 1)t and v2 = (3 1)t 
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Is it singular? 



Example 
!  The matrix  

!  Has two eigenvectors: 
"  v1 =(1 1)t and v2 = (3 1)t 

!  Mv1 = (-1 -1)t = -1 v1        

"  The eigenvalue is  -1 
!  Mv2 = (3 1)t = 1 v2 

"  The eigenvalue is 1 
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Transformation 

!  There is a lot of distortion in these directions (1 
0)t, (1 1)t, (0 1)t  
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Transformation along eigenvectors 

!  There are two 
independent directions 
which are not twisted 
at all by the matrix M: 
(1 1) and (3 1)  

!  one of them is flipped 
(1 1) 

!  We see less distortion 
if our box is oriented 
in the two special 
directions.  
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Results 

!  Theorem: every square matrix has at least one 
eigenvector 

!  The usual situation is that an n x n matrix has n 
linearly independent eigenvectors 

!  If there are n of them, they are a useful basis for 
Rn.  

!  Unfortunately, it can happen that there are fewer 
than n of them.  
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Finding Eigenvectors 

!  M v =  λ v   
"  v is an eigenvector and is λ an eigenvalue 

!  If λ = 0, then finding eigenvectors is the same as 
finding nonzero vectors in the null space – iff 
det(M) = 0, i.e., the matrix is singular 

!  If λ != 0, then finding the eigenvectors is 
equivalent to finding the null space for the matrix 
M – λ1 (1 is the identity matrix) 

!  The matrix M – λ1 has a non zero vector in the 
null space iff det(M – λ1) = 0 

!  det(M – λ1) = 0 is called the characteristic 
equation. 27 



Exercise 


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eigenvectors of this matrix 
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1)  Find the solutions λ of the characteristic equation (eigenvalues) 

2)  Find the eigenvectors corresponding to the found eigenvalues. 



Exercise Solution 

!  det(M – λ1) = 0 
"  (2 - λ)(-2 - λ) + 3 = λ2 � 1

!  The solutions are +1 and -1 
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Exercise Solution 

!  det(M – λ1) = 0 
"  (2 - λ)(-2 - λ) + 3 = λ2 � 1

!  The solutions are +1 and -1 
!  Now we have to solve the set of linear 

equations 
"  Mv=v  (for the first eigenvalue) 
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Exercise Solution 

!  det(M – λ1) = 0 
"  (2 - λ)(-2 - λ) + 3 = λ2 � 1

!  The solutions are +1 and -1 
!  Now we have to solve the set of linear 

equations 
"  Mv=v  (for the first eigenvalue) 

"  Has solution x=3y, (3 1)t – and all vectors 
obtained multiplying this with a scalar. 
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Algorithm 

!  To find the eigenvalues and eigenvectors of M:  
"  First find the eigenvalues by solving the 

characteristic equation.  
Call the solutions λ1,..., λn. (There is always at 
least one eigenvalue, and there are at most n 
of them.)  

"  For all λk, the existence of a nonzero vector in 
this null space is guaranteed. Any such vector 
is an eigenvector. 
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Graphs 

!  A directed graphs G is a pair (V,E), where V is a 
finite set and E is a binary relations on V 
"  V is the Vertex set of G: contains the 

vertices 
"  E is the Edge set of G: contains the edges 

!  In an undirected graphs G=(V,E) the edges 
consists of unordered pairs of vertices 

!  The in-degree of a vertex v (directed graph) is 
the number of edges entering in v 

!  The out-degree of a vertex v (directed graph) is 
the number of edges leaving v. 
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The Web as a Directed Graph 

Assumption 1: A hyperlink between pages denotes 
author perceived relevance (quality signal) 

Assumption 2: The anchor of the hyperlink describes the 
target page (textual context) 

Page A 
hyperlink Page B Anchor 
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Ranking web pages 

!  To count inlinks: enter in google search form 
link:www.mydomain.com 

!  Web pages are not equally �important� 
"  www.unibz.it vs. www.stanford.edu 
"  Inlinks as votes 

! www.stanford.edu has 3200 inlinks 
! www.unibz.it has 352 inlink (Feb 2013) 

!  Are all inlinks equal? 
"  Recursive question!  
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Simple recursive formulation 

!  Each link�s vote is proportional to the 
importance of its source page 

!  If page P with importance x has n outlinks, each 
link gets x/n votes 

1000 $ 

333 $ 333 $ 

333 $ 

GROLES
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Simple �flow� model 

The web in 1839 

Yahoo 

Microsoft Amazon 

y 

a m 

y/2 

y/2 

a/2 

a/2 

m 

y  = y /2 + a /2 
a  = y /2 + m 
m = a /2 

a, m, and y are the importance of these pages 
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Solving the flow equations 

!  3 equations, 3 unknowns, no constants 
"  No unique solution 
"  If you multiply a solution by a constant (λ) you 

obtain another solution - try with (2 2 1) 
!  Additional constraint forces uniqueness 

"  y+a+m = 1 (normalization) 
"  y = 2/5, a = 2/5, m = 1/5 
"  These are the scores of the pages under the 

assumption of the flow model 
!  Gaussian elimination method works for small 

examples, but we need a better method for large 
graphs. 

= The Total Flow is I
G
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Matrix formulation 

!  Matrix M has one row and one column for each 
web page (square matrix) 

!  Suppose page i has n outlinks 
"  If i links to j, then Mij=1/n 
"  Else Mij=0 

!  M is a row stochastic matrix 
"  Rows sum to 1 

!  Suppose r is a vector with one entry per web 
page 
"  ri is the importance score of page i 
"  Call it the rank vector 
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Example 

y    ½   ½   0 
a    ½   0    ½  
m    0   1    0 

y    a     m 

y  = y /2 + a /2 
a  = y /2 + m 
m = a /2 

(y a m) = (y a m)M 

Yahoo 

Microsoft Amazon 

y 

a m 

y/2 

y/2 

a/2 

a/2 

m 

= M 
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Power Iteration Solution 

Yahoo 

Microsoft Amazon 

(1/3 1/3 1/3) 
(1/3 1/3 1/3)M = (1/3 1/2 1/6) 
(1/3 1/2 1/6)M = (5/12 1/3 1/4) 
(5/12 1/3 1/4)M = (3/8 11/24 1/6) 
… 
(2/5 2/5 1/5) 

y    ½   ½   0 
a    ½   0    ½  
m    0   1    0 

y    a     m 

(y a m) = (y a m)M 

= M 



Example 
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States and probabilities 

DRY RAIN 

0.38 

0.62 

0.15 

0.85 

43 

MARKOW
CHAIN



Composing transitions 

0.44 = 0.38*0.15+0.62*0.62 
What kind of operation is on the matrix? 
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Composing transitions  

!  The probabilities of the 12hours transitions are 
given by squaring the matrix representing the 
probabilities of the 6hours transitions  
"  P(rain-in-12hours|rain-now)= P(rain-in-12hours|rain-

in-6hours)*P(rain-in-6hours|rain-now)+P(rain-
in-12hours|dry-in-6hours)*P(dry-in-6hours|rain-now)=.
62*.62+.15*.38=.44 

"  P(dry-in-12hours|rain-now)= P(dry-in-12hours|rain-
in-6hours)*P(rain-in-6hours|rain-now)+P(dry-
in-12hours|dry-in-6hours)*P(dry-in-6hours|rain-now)= 
38*.62+.85*.38=.56 
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Behavior in the limit 
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Behavior in the limit 

!  If a,b <=1, and a+b=1, i.e., (a b) is a generic 
state with a certain probability a to be dry and 
b=1-a to be rain, then 

!  In particular (.72 .28)A=(.72 .28), i.e., it is a 
(left) eigenvector with eigenvalue 1 

!  The eigenvector (.72 .28) represents the limit 
situation starting from a generic situation (a b): it 
is called the stationary distribution. 

( ) ( ) ( )28.72.
28.72.
28.72.

=
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=∞ baAba

47 



Exercise 

!  Find one (left) eigenvector of the matrix below: 
"  Solve first the characteristic equation (to find 

the eigenvalues)  
"  and then find the left eigenvector 

corresponding to the largest eigenvalue 
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Exercise Solution 

!  Characteristic equation 
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det .85−λ .15
.38 .62−λ
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1.47± 1.472 − 4*0.47
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Solutions λ =1 and λ = 0.47 

( x y ) .85 .15
.38 .62
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x + y = 1 

0.85x +0.38(1-x)=x 
-0.53x +0.38=0 

x =  0.38/0.53=0.72 y =  1 – 0.72= 0.28 



Markov Chain 

!  A Markov chain is a sequence X1, X2, X3, ... of random 
variables (Σv all possible values of X P(X=v) = 1) with the property: 

!  Markov property: the conditional probability distribution of 
the next future state Xn+1 given the present and past states 
is a function of the present state Xn alone  

!  If the state space is finite then the transition probabilities 
can be described with a matrix Pij=P(Xn+1= j | Xn = i ), i,j =1, 
…m 
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Example: Web 

! Xt is the page visited by a user (random surfer) at 
time t;  

! At every time t the user can be in one among m 
pages (states) 

! We assume that when a user is on page i at time 
t, then the probability to be on page j at time t+1 
depends only on the fact that the user is on page 
i, and not on the pages previously visited. 
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Probabilities 

P0 
P1 

P2 

P3 

P4 Goal 

P(P2|P1) = 0.4 

P(P1|P1) = 0.1 

P(P0|P1)= 0.05 
P(P3 |P1) = 0.3 

P(P4| P1) = 0.15 

In this example there are 5 states and the probability to 
jump from a page/state to another is not constant (it is not 
1/(#of outlinks of the node)) … as we have assumed before 
in the simple web graph 

This is not a Markov chain! (why?) 

P(P1|P0)= 1.0 

P(P1|P2)= 1.0 

P(P4 |P3) = 0.5 

P(P1 |P3) = 0.5 
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Examples 

!  Pij=P(Xn+1= j | Xn = i ), i,j =1, …m 

!  (1, 0, 0, …, 0) P = (P11, P12, P13, …, P1n) 
"  if at time n it is in state 1, then at time n+1 it 

is in state j with probability P1j, i.e., the first 
row of Pij gives the probabilities to be in the 
other states 

!  (0.5, 0.5, 0, …, 0) P = (P11·0.5 + P21·0.5, …, 
P1n·0.5 + P2n·0.5) 
"  this is the linear combination of the first two 

rows. 
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Stationary distribution 
!  A stationary distribution is a m-dimensional (sum 

1) vector which satisfies the equation: 
 
!  Where π is a (column) vector and πT (row vector) is 

the transpose of π 

!  A stationary distribution always exists, but is not 
guaranteed to be unique (can you make an example 
of a Markov chain with more than one stationary 
distribution?) 

!  If there is only one stationary distribution then 

!  Where x is a generic distribution over the m states 
(i.e., it is an m-dimensional vector whose entries are 
<=1 and the sum is 1) 

nT

n

T Pxlim=π
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Random Walk Interpretation 

!  Imagine a random web surfer 
"  At any time t, surfer is on some page P 
"  At time t+1, the surfer follows an outlink from 

P uniformly at random 
"  Ends up on some page Q linked from P 
"  Process repeats indefinitely 

!  Let p(t) be a vector whose ith component is the 
probability that the surfer is at page i at time t 
"  p(t) is a probability distribution on pages 
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The stationary distribution 

!  Where is the surfer at time t+1? 
"  Follows a link uniformly at random 
"  p(t+1) = p(t)M 

!  Suppose the random walk reaches a state such 
that p(t+1) = p(t)M = p(t) 
"  Then p(t) is a stationary distribution for the 

random walk 
!  Our rank vector r= p(t) satisfies r = rM. 
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Ergodic Markov chains 
!  A Markov chain is ergodic if: 

"  Informally: there is a path from any state to any 
other; and the states are not partitioned into sets 
such that all state transitions occur cyclically from 
one set to another.  

"  Formally: for any start state, after a finite transient 
time T0, the probability of being in any state at 
any fixed time T>T0 is nonzero. 

Not 
ergodic 
(even/ 
odd). 

Not ergodic: the probability to be in a state, at a fixed 
time, e.g., after 500 transitions, is always either 0 or 1 
according to the initial state.  57 



Ergodic Markov chains 

!  For any ergodic Markov chain, there is a unique 
long-term visit rate for each state 
"  Steady-state probability distribution 

!  Over a long time-period, we visit each state in 
proportion to this rate 

!  It doesn’t matter where we start. 
!  Note: non ergodic Markov chains may still have a 

steady state. 
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Non Ergodic Example 

!  It is easy to show that the steady state (left 
eigenvector) is πT= (0 0 1), πTP=πT   , i.e., is 
the state 3 

!  The user will always reach the state 3 and will 
stay there (spider trap) 

!  This is a non-ergodic Markov Chain (with a 
steady-state). 
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Random teleports 

!  The Google solution for spider traps (not for dead 
ends) 

!  At each time step, the random surfer has two 
options: 
"  With probability β, follow a link at random 
"  With probability 1-β, jump to some page 

uniformly at random 
"  Common values for β are in the range 0.8 to 

0.9 
!  Surfer will teleport out of spider trap within a few 

time steps 
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Matrix formulation 
!  Suppose there are N pages 

"  Consider a page i, with set of outlinks O(i) 
"  We have  

! Mij = 1/|O(i)| when i links j 
! and Mij = 0 otherwise 

"  The random teleport is equivalent to 
! adding a teleport link from i to every other 

page with probability (1-β)/N 
! reducing the probability of following each 

outlink from 1/|O(i)| to β/|O(i)| 
! Equivalent: tax each page a fraction (1-β) of 

its score and redistribute evenly.  
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!  Simple example with 6 pages 

!  P(5|1)=P(4|1)=P(3|1)=P(2|1)= β/4 +(1-β)/6 
!  P(1|1)=P(6|1)= (1-β)/6 
!  P(*|1) = 4[β/4 +(1-β)/6] + 2(1-β)/6 = 1 

Example 
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Google Page Rank 

!  Construct the NxN matrix A as follows 
"  Aij = βMij + (1-β)/N 

!  Verify that A is a stochastic matrix 
!  The page rank vector r is the principal eigenvector of 

this matrix 
"  satisfying r = rA 
"  The score of each page ri satisfies the following:  

!  I(i) is the set of nodes that have a link to page i 
!  O(k) is the set of links exiting from k 
!  r is the stationary distribution of the random walk with 

teleports. 
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Example 

0,03 0,24 0,24 0,24 0,24 0,03
0,03 0,03 0,45 0,03 0,03 0,45
0,03 0,03 0,03 0,03 0,88 0,03
0,03 0,88 0,03 0,03 0,03 0,03
0,03 0,03 0,03 0,03 0,03 0,88
0,03 0,03 0,03 0,88 0,03 0,03
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P(4|1)=0.24=0.85/4 + 0.15/6 
P(6|1)=0.03=0.15/6 
P(4|6)=0.88=0.85/1 + 0.15/6 

A = 

0,03 0,23 0,13 0,24 0,14 0,24
0,03 0,23 0,13 0,24 0,14 0,24
0,03 0,23 0,13 0,24 0,14 0,24
0,03 0,23 0,13 0,24 0,14 0,24
0,03 0,23 0,13 0,24 0,14 0,24
0,03 0,23 0,13 0,24 0,14 0,24

A30 = 

Stationary distribution = (0.03 0.23 0.13 0.24 0.14 0.24) 64 

β=0.85 



Dead ends 

!  Pages with no outlinks are “dead ends” for the 
random surfer (dangling nodes) 
"  Nowhere to go on next step 

!  When there are dead ends the matrix is no longer 
stochastic (the sum of the row elements is not 1) 

!  This is true even if we add the teleport  
"  because the probability to follow a teleport link 

is only (1-β)/N and there are just N of these 
teleports- hence any of them is (1-β) 
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Dealing with dead-ends 

!  1) Teleport 
"  Follow random teleport links with probability 

1.0 from dead-ends (i.e., for that pages set β = 
0) 

"  Adjust matrix accordingly 
!  2) Prune and propagate 

"  Preprocess the graph to eliminate dead-ends  
"  Might require multiple passes (why?) 
"  Compute page rank on reduced graph 
"  Approximate values for dead ends by 

propagating values from reduced graph 
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Computing page rank 

!  Key step is matrix-vector multiply 
"  rnew = roldA 

!  Easy if we have enough main memory to hold 
A, rold, rnew 

!  Say N = 1 billion pages 
"  We need 4 bytes (32 bits) for each entry 

(say) 
"  2 billion entries for vectors rnew and rold, 

approx 8GB 
"  Matrix A has N2 entries, i.e., 1018  

! it is a large number! 
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Sparse matrix formulation 

!  Although A is a dense matrix, it is obtained from a 
sparse matrix M 
"  10 links per node, approx 10N entries 

!  We can restate the page rank equation  
"  r = βrM + [(1-β)/N]N   (see slide 63) 
"  [(1-β)/N]N is an N-vector with all entries (1-β)/N 

!  So in each iteration, we need to: 
"  Compute rnew = βroldM 
"  Add a constant value (1-β)/N to each entry in 

rnew 
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Sparse matrix encoding 

!  Encode sparse matrix using only nonzero entries 
"  Space proportional roughly to number of links 
"  say 10N, or 4*10*1 billion = 40GB 
"  still won’t fit in memory, but will fit on disk 

0 3 1, 5, 7 

1 5 17, 64, 113, 117, 245 

2 2 13, 23 

source 
node degree destination nodes 
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Basic Algorithm  

!  Assume we have enough RAM to fit rnew, plus 
some working memory 
"  Store rold and matrix M on disk 

Basic Algorithm: 
!  Initialize: rold = [1/N]N 
!  Iterate: 

"  Update: Perform a sequential scan of M and 
rold and update rnew 

"  Write out rnew to disk as rold for next iteration 
"  Every few iterations, compute |rnew-rold| and 

stop if it is below threshold 
!  Need to read in both vectors into memory 70 



Update step 

0 3 1, 5, 6 

1 4 17, 64, 113, 117 

2 2 13, 23 
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rnew rold 

Initialize all entries of rnew to (1-β)/N 
For each page p (out-degree n): 

 Read into memory: p, n, dest1,…,destn, rold(p) 
 for j = 1…N: 
  rnew(destj) += β*rold(p)/n 

  

The old value in 0 contributes to 
updating only the new values in 
1,5, and 6. 71 


