Google PageRank

Francesco Ricci

Faculty of Computer Science Free University of Bozen-Bolzano fricci@unibz.it

Content

- Linear Algebra
- Matrices
- Eigenvalues and eigenvectors
- Markov chains
- Google PageRank

2

OUR TARGET

Covi di

ALGEBRA

ANALISI

NEWV

Literature

- C. D. Manning, P. Raghavan, H.
 Schütze, *Introduction to Information Retrieval*, Cambridge University Press, 2008. Chapter 21
- Markov chains description on wikipedia
- Amy N. Langville & Carl D. Meyer, Google's PageRank and Beyond: The Science of Search Engine Rankings, Princeton University Press, 2006.

Google

- Google is the leading search and online advertising company - founded by Larry Page and Sergey Brin (Ph.D. students at Stanford University)
- googol" or 10¹⁰⁰ is the mathematical term Google was named after
- □ Google's success in search is largely based on its PageRank[™] algorithm
- Gartner reckons that Google now make use of more than 1 million servers, spitting out search results, images, videos, emails and ads
- Google reports that it spends some 200 to 250 million US dollars a year on IT equipment.

Matrices

• A **Matrix** is a rectangular array of numbers

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

- a_{ii} is the **element** of matrix **A** in row i and column j
- A is said to be a n x m matrix if it has n rows and m columns
- A square matrix is a n x n matrix
- The transpose A^T of a matrix A is the matrix obtained by exchanging the rows and the columns

$$A^{T} = \begin{pmatrix} a_{11}^{T} & a_{12}^{T} \\ a_{21}^{T} & a_{22}^{T} \\ a_{31}^{T} & a_{32}^{T} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

5

What is the size of these matrices

$$\begin{bmatrix} 1 & 9 & -13 \\ 20 & 5 & -6 \end{bmatrix}.$$
$$\begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$$
$$\mathbf{A} = \begin{bmatrix} 0 & -1 & -2 & -3 \\ 1 & 0 & -1 & -2 \\ 2 & 1 & 0 & -1 \end{bmatrix}$$

Compute their transpose

Exercise

□ What is the size of these matrices

$$\begin{bmatrix} 1 & 9 & -13 \\ 20 & 5 & -6 \end{bmatrix}. \qquad \begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 0 & -1 & -2 & -3 \\ 1 & 0 & -1 & -2 \\ 2 & 1 & 0 & -1 \end{bmatrix}$$

2x3 3x1 3X4

Compute their transpose

$$\begin{bmatrix} 1 & 20 \\ 9 & 5 \\ -13 & -6 \end{bmatrix} \begin{bmatrix} 4 & 1 & 8 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \\ -3 & -2 & -1 \end{bmatrix}$$

7

1

0

-1

Matrices

A square matrix is **diagonal** iff has a_{ij} = 0 for all i≠j

$$A = \begin{pmatrix} a_{11} & 0\\ 0 & a_{22} \end{pmatrix}$$

The **Identity** matrix **1** is the diagonal matrix with 1's along the diagonal

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

A symmetric matrix A satisfy the condition
 A=A^T

□ Is a diagonal matrix symmetric?

Make an example of a symmetric matrix

■ Make an example of a 2x3 symmetric matrix

Exercise

Is a diagonal matrix symmetric?

YES because if it is diagonal then a_{ij} = 0 for all i≠j, hence a_{ij} = a_{ji} for all i≠j

Make an example of a symmetric matrix

$$\left[\begin{array}{rrr}1&2\\2&3\end{array}\right]$$

Make an example of a 2x3 symmetric matrix

Impossible, a symmetric matrix is a square matrix

Vectors

- A vector v is a one-dimensional array of numbers (is an n x 1 matrix – column vector)
- **Example:**

$$\mathbf{v} = \left(\begin{array}{c} 3\\5\\7\end{array}\right)$$

- The standard form of a vector is a column vector
- The transpose of a column vector v^T = (3 5 7) is a row vector.

Operation on matrices

Addition: $\mathbf{A} = (a_{ij}), \mathbf{B} = (b_{ij}), \mathbf{C} = (c_{ij}) = \mathbf{A} + \mathbf{B}$

 $\bullet c_{ij} = a_{ij} + b_{ij}$

- **Scalar multiplication:** λ is a number, $\lambda \mathbf{A} = (\lambda a_{ij})$
- Multiplication: if A and B are compatible, i.e., the number of *columns* of A is equal to the number of *rows* of B, then

$$\bullet c_{ij} = \Sigma_k a_{ik} b_{kj}$$

Examples

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 1*1+2*2+3*3 & 1*4+2*5+3*6 \\ 4*1+5*2+6*3 & 4*4+5*5+6*6 \end{pmatrix} = \begin{pmatrix} 14 & 32 \\ 32 & 77 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
It is symmetric.
Is it a general fact?
Is AA^Talways symmetric?

- If AB=1, then B is said to be the inverse of A and is denoted with A⁻¹
- If a matrix has an inverse is called invertible or non singular

Exercise

Compute the following operations

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} =$$

$$2 \cdot \begin{bmatrix} 1 & 8 & -3 \\ 4 & -2 & 5 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & -2 & 5 \end{bmatrix}^{T} =$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 7 \end{bmatrix}^{T} =$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} =$$

$$\begin{bmatrix} 0 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} =$$

Exercise

Compute the following operations

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$$
$$2 \cdot \begin{bmatrix} 1 & 8 & -3 \\ 4 & -2 & 5 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 & 2 \cdot 8 & 2 \cdot -3 \\ 2 \cdot 4 & 2 \cdot -2 & 2 \cdot 5 \end{bmatrix} = \begin{bmatrix} 2 & 16 & -6 \\ 8 & -4 & 10 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 7 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 \\ 2 & -6 \\ 3 & 7 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix},$$
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}.$$

Rank of a Matrix

- The row (column) rank of a matrix is the maximum number of rows (columns) that are linearly independent
- The vectors v₁, ..., v_n are linearly independent iff there is no linear combination a₁v₁+ ... + a_nv_n (with coefficients a_i not all 0) of the vectors that is equal to 0
- Example 1: (1 2 3), (1 4 6), and (0 2 3) are linearly dependent: show it
- Example 2: (1 2 3) and (1 4 6) are not linearly dependent: show it
- The kernel of a matrix A is the subspace of vectors v such that Av=0

1* $(1 2 3)^{T} - 1^{*}(1 4 6)^{T} + 1^{*}(0 2 3)^{T} = (0 0 0)^{T}$

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

 \square (1 -1 1)^T is in the kernel of the matrix:

 $\Box a^{*}(123) + b^{*}(146) = (000)$

Then a=-b and also a = -2b, absurd.

Rank and Determinant

- Theorem. A n x n square matrix is nonsingular iff has full rank (i.e. n).
- Theorem. A matrix has full column rank iff it does not have a null vector
- Theorem. A n x n matrix A is singular iff the det(A)=0

$$\det(A) = \begin{cases} a_{11} & \text{if } n = 1\\ \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{[1j]}) & \text{if } n > 1 \end{cases}$$

A_[ij] is the ij minor, i.e., the matrix obtained by deleting the i-th row and the j-th column from A.₁₈

Exercise

Compute the determinant of the following matrices

Exercise

Compute the determinant of the following matrices

$$\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix} = 1*4-1*2 = 2$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{pmatrix} = 1*(4*3-2*6)-(2*3-2*3)=0$$

http://www.bluebit.gr/matrix-calculator/

Eigenvectors and Eigenvalues

Definition. If **M** is a square matrix, **v** is a nonzero vector and λ is a number such that

 $\bullet \mathbf{M} \mathbf{v} = \lambda \mathbf{v}$

- then v is said to be an (right) eigenvector of A with eigenvalue λ
- If v is an eigenvector of M with eigenvalue λ, then so is any nonzero multiple of v
- Only the direction matters.

Example

• The matrix

$$M = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$$

Has two (right) eigenvectors: $\mathbf{v_1} = (1 \ 1)^t$ and $\mathbf{v_2} = (3 \ 1)^t$

Prove that

Example

D The matrix

$$M = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$$

Has two eigenvectors:

•
$$\mathbf{v_1} = (1 \ 1)^t$$
 and $\mathbf{v_2} = (3 \ 1)^t$

Prove that

There is a lot of distortion in these directions (1 0)^t, (1 1)^t, (0 1)^t

Transformation along eigenvectors

- There are two independent directions which are not twisted at all by the matrix M: (1 1) and (3 1)
- one of them is flipped(1 1)
- We see less distortion if our box is oriented in the two special directions.

Results

- Theorem: every square matrix has at least one eigenvector
- The usual situation is that an n x n matrix has n linearly independent eigenvectors
- If there are n of them, they are a useful basis for Rⁿ.
- Unfortunately, it can happen that there are fewer than n of them.

Finding Eigenvectors

 $\square \mathbf{M} \mathbf{v} = \lambda \mathbf{v}$

- **v** is an eigenvector and is λ an eigenvalue
- If λ = 0, then finding eigenvectors is the same as finding nonzero vectors in the null space iff det(M) = 0, i.e., the matrix is singular
- If λ != 0, then finding the eigenvectors is equivalent to finding the null space for the matrix
 M λ1 (1 is the identity matrix)
- The matrix $\mathbf{M} \lambda \mathbf{1}$ has a non zero vector in the null space iff det($\mathbf{M} \lambda \mathbf{1}$) = 0

□ det($\mathbf{M} - \lambda \mathbf{1}$) = 0 is called the **characteristic** equation.

Exercise

$$M = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors of this matrix

- 1) Find the solutions λ of the characteristic equation (eigenvalues)
- 2) Find the eigenvectors corresponding to the found eigenvalues.

$$M = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors of this matrix

det(M - λ1) = 0
 (2 - λ)(-2 - λ) + 3 = λ² - 1
 The solutions are +1 and -1

$$M = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors of this matrix

 $\Box \det(\mathbf{M} - \lambda \mathbf{1}) = 0$

•
$$(2 - \lambda)(-2 - \lambda) + 3 = \lambda^2 - 1$$

- The solutions are +1 and -1
- Now we have to solve the set of linear equations
 - Mv=v (for the first eigenvalue)

$$M = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$$

Find the eigenvalues and the eigenvectors of this matrix

 $\Box \det(\mathbf{M} - \lambda \mathbf{1}) = 0$

$$(2 - \lambda)(-2 - \lambda) + 3 = \lambda^2 - 1$$

- The solutions are +1 and -1
- Now we have to solve the set of linear equations
 - Mv=v (for the first eigenvalue)

$$2x - 3y = x$$

$$x - 2y = y$$

Has solution x=3y, (3 1)^t – and all vectors obtained multiplying this with a scalar.

Algorithm

To find the eigenvalues and eigenvectors of M:

First find the eigenvalues by solving the characteristic equation.
 Call the solutions λ₁,..., λ_n. (There is always at least one eigenvalue, and there are at most n

of them.)

For all λ_k , the existence of a nonzero vector in this null space is guaranteed. Any such vector is an eigenvector.

Graphs

- A directed graphs G is a pair (V,E), where V is a finite set and E is a binary relations on V
 - V is the Vertex set of G: contains the vertices
 - E is the Edge set of G: contains the edges
- In an undirected graphs G=(V,E) the edges consists of unordered pairs of vertices
- The in-degree of a vertex v (directed graph) is the number of edges entering in v
- The out-degree of a vertex v (directed graph) is the number of edges leaving v.

Assumption 2: The anchor of the hyperlink describes the target page (textual context)

Ranking web pages

To count inlinks: enter in google search form link:www.mydomain.com

Web pages are not equally "important"

- www.unibz.it vs. www.stanford.edu
- Inlinks as votes

www.stanford.edu has 3200 inlinks
 www.unibz.it has 352 inlink (Feb 2013)

□ Are all *inlinks* equal?

Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x/n votes

KULES

Simple "flow" model incognite = (?) The web in 1839 y = y/2 + a/2y/2 Yahoo a = y/2 + mm = a/2a/2 y/2 WRITE As a m Microsoft LINE AN. Amazon APPLICATIONS a/2 m 🔁 а HATRIX

a, m, and y are the importance of these pages

Solving the flow equations

3 equations, 3 unknowns, no constants

- No unique solution
- If you multiply a solution by a constant (λ) you obtain another solution try with (2 2 1)

Additional constraint forces uniqueness

y+a+m = 1 (normalization) = The TOTAL FLOW IS 1

- These are the scores of the pages under the assumption of the flow model
- Gaussian elimination method works for small examples, but we need a better method for large graphs.

Matrix formulation

Matrix M has one row and one column for each web page (square matrix)

Suppose page i has n outlinks

- If i links to j, then M_{ij}=1/n
- Else M_{ii}=0

M is a row stochastic matrix

- Rows sum to 1
- Suppose r is a vector with one entry per web page
 - r_i is the **importance score** of page i
 - Call it the rank vector

Nor A : Sie
$$\overline{r} \in (o_1 1)^n$$
 allored \overline{r} rise
Example $\overline{r} M = \overline{r}$ oppose $M^{-1} \cdot \overline{r} = \overline{r}^{-1}$
 $y' = \overline{r}$
 $a = y/2 + a/2$
 $a = y/2 + m$
 $m = a/2$

Power Iteration Solution

$$(5/12 \ 1/3 \ 1/4)\mathbf{M} = (3/8 \ 11/24 \ 1/6)$$

(2/5 2/5 1/5)

Example

Following 6 hours

72 cases 28 cases

Composing transitions R $\bigotimes (.85 .15) \qquad \text{What can we san about the 12 h} \\ \mathbf{R} (.38 .62) \qquad \text{What can we san about the 12 h} \\ \underbrace{.38 .62} \qquad \underbrace{.3$ What can we say transition? From 00-06 to 12-18? Rain > > > Rain > > > Rain Rain > > > dry > > $\overset{.62}{\underset{.38}{\blacksquare}}$ = .38 = .06= .44

0.44 = 0.38*0.15+0.62*0.62What kind of operation is on the matrix?

Composing transitions

dry rain dry $\begin{pmatrix} .85 & .15 \\ .38 & .62 \end{pmatrix} \begin{pmatrix} .85 & .15 \\ .38 & .62 \end{pmatrix} = \begin{pmatrix} .78 & .22 \\ .56 & .44 \end{pmatrix} = A^2$

- The probabilities of the 12hours transitions are given by squaring the matrix representing the probabilities of the 6hours transitions
 - P(rain-in-12hours|rain-now) = P(rain-in-12hours|rain-in-6hours)*P(rain-in-6hours|rain-now)+P(rain-in-12hours|dry-in-6hours)*P(dry-in-6hours|rain-now)=.
 62*.62+.15*.38=.44
 - P(dry-in-12hours|rain-now) = P(dry-in-12hours|rain-in-6hours)*P(rain-in-6hours|rain-now)+P(dry-in-6hours|dry-in-6hours)*P(dry-in-6hours|rain-now) = 38*.62+.85*.38=.56

Behavior in the limit

$$A = \begin{pmatrix} .85 & .15 \\ .38 & .62 \end{pmatrix} \qquad A^2 = \begin{pmatrix} .78 & .22 \\ .56 & .44 \end{pmatrix} \qquad A^3 = \begin{pmatrix} .75 & .25 \\ .64 & .36 \end{pmatrix}$$

$$A^{4} = \begin{pmatrix} .73 & .27 \\ .68 & .32 \end{pmatrix} \qquad A^{5} = \begin{pmatrix} .72 & .28 \\ .70 & .30 \end{pmatrix} \qquad A^{6} = \begin{pmatrix} .72 & .28 \\ .71 & .29 \end{pmatrix}$$

$$A^{7} = \begin{pmatrix} .72 & .28 \\ .71 & .29 \end{pmatrix} \qquad A^{8} = \begin{pmatrix} .72 & .28 \\ .72 & .28 \end{pmatrix} \qquad A^{9} = \begin{pmatrix} .72 & .28 \\ .72 & .28 \end{pmatrix}$$

$$A^{\infty} = \begin{pmatrix} .72 & .28 \\ .72 & .28 \end{pmatrix}$$

46

-

Behavior in the limit

If a,b <=1, and a+b=1, i.e., (a b) is a generic state with a certain probability a to be dry and b=1-a to be rain, then</p>

$$(a \ b)A^{\infty} = (a \ b)\begin{pmatrix} .72 & .28\\ .72 & .28 \end{pmatrix} = (.72 & .28)$$

- In particular (.72 .28)A=(.72 .28), i.e., it is a (left) eigenvector with eigenvalue 1
- The eigenvector (.72.28) represents the limit situation starting from a generic situation (a b): it is called the stationary distribution.

Exercise

□ Find one (left) eigenvector of the matrix below:

- Solve first the characteristic equation (to find the eigenvalues)
- and then find the left eigenvector corresponding to the largest eigenvalue

$$\left(\begin{array}{cc} .85 & .15 \\ .38 & .62 \end{array}\right)$$

Characteristic equation

$$det \begin{pmatrix} .85 - \lambda & .15 \\ .38 & .62 - \lambda \end{pmatrix} = (0.85 - \lambda)(0.62 - \lambda) - 0.15 * 0.38 = \lambda^2 - 1.47\lambda + 0.47$$
$$\lambda = \frac{1.47 \pm \sqrt{1.47^2 - 4 * 0.47}}{2} \qquad \text{Solutions } \lambda = 1 \text{ and } \lambda = 0.47$$
$$(x \ y \) \begin{pmatrix} .85 & .15 \\ .38 & .62 \end{pmatrix} = (x \ y \) \qquad 0.85x + 0.38y = x$$
$$x + y = 1$$

49

$$0.85x + 0.38(1-x) = x$$

-0.53x +0.38=0
x = 0.38/0.53=**0.72** y = 1 - 0.72= **0.28**

Markov Chain

n=time slots

- A Markov chain is a sequence $X_1, X_2, X_3, ...$ of random variables ($\Sigma_{v \text{ all possible values of } X$ P(X=v) = 1) with the property:
- Markov property: the conditional probability distribution of the next future state X_{n+1} given the present and past states is a function of the present state X_n alone

$$\Pr(X_{n+1} = x | X_0 = x_0, X_1 = x_1, \dots, X_n = x_n) = \Pr(X_{n+1} = x | X_n = x_n).$$

If the state space is finite then the transition probabilities can be described with a matrix $P_{ij} = P(X_{n+1} = j \mid X_n = i)$, i, j = 1, ...m $\begin{pmatrix} .85 & .15 \\ .38 & .62 \end{pmatrix} = \begin{pmatrix} P(X_{n+1} = 1 \mid X_n = 1) & P(X_{n+1} = 2 \mid X_n = 1) \\ P(X_{n+1} = 1 \mid X_n = 2) & P(X_{n+1} = 2 \mid X_n = 2) \\ & & 50 \end{pmatrix}$

Example: Web

- $\Box X_t$ is the page visited by a user (random surfer) at time t;
- At every time t the user can be in one among m pages (states)
- We assume that when a user is on page *j* at time *t*, then the probability to be on page *j* at time *t*+1 depends only on the fact that the user is on page *i*, and **not on the pages previously visited.**

LARKOV CHAIN

Probabilities

In this example there are 5 states and the probability to jump from a page/state to another is not constant (it is not $1/(\#of \ outlinks \ of \ the \ node)$) ... as we have assumed before in the simple web graph

This is not a Markov chain! (why?)

$$(0.5, 0.5, 0, ..., 0) P = (P_{11} \cdot 0.5 + P_{21} \cdot 0.5, ..., P_{1n} \cdot 0.5 + P_{2n} \cdot 0.5)$$

this is the linear combination of the first two rows.

Stationary distribution

 $\langle \Pi_{1} \Pi_{2} \Pi_{2} \Pi_{m} \rangle \cdot (P)$

 A stationary distribution is a m-dimensional (sum 1) vector which satisfies the equation:

$$\pi^T \mathbf{P} = \pi^T, \qquad \mathbf{\lambda} = \mathbf{1}$$

- **D** Where π is a (column) vector and π^T (row vector) is the transpose of π
- A stationary distribution always exists, but is not guaranteed to be unique (can you make an example of a Markov chain with more than one stationary distribution?)

Where x is a generic distribution over the m states (i.e., it is an m-dimensional vector whose entries are <=1 and the sum is 1)</p>

Random Walk Interpretation

Imagine a random web surfer

- At any time t, surfer is on some page P
- At time t+1, the surfer follows an outlink from P uniformly at random
- Ends up on some page Q linked from P
- Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - **p**(t) is a probability distribution on pages

X(t) = page of surfer at The stationary distribution time t • Where is the surfer at time t+1? Follows a link uniformly at random P = N(i, 5) = R(i-5) $p(t+1) = p(t)M \longrightarrow WRY ? * P = N(i, 5) = R(i-5)$ Suppose the random walk reaches a state such that p(t+1) = p(t)M = p(t)Then p(t) is a stationary distribution for the P(i,5)random walk • Our rank vector $\mathbf{r} = \mathbf{p}(t)$ satisfies $\mathbf{r} = \mathbf{rM}$. ★ $\forall 5=1...M: R[X(t+1)=5] = \prod_{i=1}^{m} R[X(t)=i] \cdot R[X(t+1)=5[X(t)=i]$ $\int_{D} In \text{ vect. form is : } \bar{p}(t+\iota) = \bar{p}(t) \cdot M$ 56

Ergodic Markov chains

- A Markov chain is ergodic if:
 - Informally: there is a path from any state to any other; and the states are not partitioned into sets such that all state transitions occur cyclically from one set to another.
 - Formally: for any start state, after a finite transient time T₀, the probability of being in any state **at any fixed time T>T₀** is nonzero.

Not ergodic: the probability to be in a state, at a fixed time, e.g., after 500 transitions, is always either 0 or 1 according to the initial state. 57

Ergodic Markov chains

- For any ergodic Markov chain, there is a unique long-term visit rate for each state
 - Steady-state probability distribution
- Over a long time-period, we visit each state in proportion to this rate
- It doesn't matter where we start.
- Note: non ergodic Markov chains may still have a steady state.

Non Ergodic Example

- It is easy to show that the steady state (left eigenvector) is π^T = (0 0 1), π^TP=π^T, i.e., is the state 3
- The user will always reach the state 3 and will stay there (spider trap)
- This is a non-ergodic Markov Chain (with a steady-state).

Random teleports

- The Google solution for spider traps (not for dead ends)
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Matrix formulation

Suppose there are N pages

Consider a page i, with set of outlinks O(i)

We have

 $\square M_{ij} = 1/|O(i)|$ when *i links j*

 \square and $M_{ij} = 0$ otherwise

The random teleport is equivalent to

- adding a teleport link from i to every other page with probability (1-β)/N
- reducing the probability of following each outlink from 1/|O(i)| to β/|O(i)|
- Equivalent: tax each page a fraction (1-β) of its score and redistribute evenly.

Example

□ Simple example with 6 pages

□ $P(5|1)=P(4|1)=P(3|1)=P(2|1)=\beta/4+(1-\beta)/6$ □ $P(1|1)=P(6|1)=(1-\beta)/6$ □ $P(*|1)=4[\beta/4+(1-\beta)/6]+2(1-\beta)/6=1$

Google Page Rank

Construct the NxN matrix A as follows

•
$$A_{ij} = \beta M_{ij} + (1-\beta)/N$$

Verify that A is a stochastic matrix

- The page rank vector r is the principal eigenvector of this matrix
 - satisfying r = rA
 - The score of each page r_i satisfies the following:

$$r_i = \beta \left(\sum_{k \in I(i)} \frac{r_k}{|O(k)|} \right) + \frac{(1 - \beta)}{N}$$

- I(i) is the set of nodes that have a link to page i
- O(k) is the set of links exiting from k
- r is the stationary distribution of the random walk with teleports.

Example

P(4|1)=0.24=0.85/4 + 0.15/6 P(6|1)=0.03=0.15/6 P(4|6)=0.88=0.85/1 + 0.15/6

	(0,0	0,23	0,13	0,24	0,14	0,24 `
β=0.85	0,0	0,23	0,13	0,24	0,14	0,24
	A 30 0,0	0,23	0,13	0,24	0,14	0,24
	$A^{30} = _{0,0}$	0,23	0,13	0,24	0,14	0,24
	0,0	0,23	0,13	0,24	0,14	0,24
	L 0,0	0,23	0,13	0,24	0,14	0,24

Stationary distribution = $(0.03 \ 0.23 \ 0.13 \ 0.24 \ 0.14 \ 0.24)$

64

Dead ends

- Pages with no outlinks are "dead ends" for the random surfer (dangling nodes)
 - Nowhere to go on next step
- When there are dead ends the matrix is no longer stochastic (the sum of the row elements is not 1)
- This is true even if we add the teleport
 - because the probability to follow a teleport link is only (1-β)/N and there are just N of these teleports- hence any of them is (1-β)

Dealing with dead-ends

1) Teleport

Follow random teleport links with probability
 1.0 from dead-ends (i.e., for that pages set β = 0)

Adjust matrix accordingly

2) Prune and propagate

- Preprocess the graph to eliminate dead-ends
- Might require multiple passes (why?)
- Compute page rank on reduced graph
- Approximate values for dead ends by propagating values from reduced graph

Computing page rank

Key step is matrix-vector multiply

 $\mathbf{r}^{new} = \mathbf{r}^{old}\mathbf{A}$

Easy if we have enough main memory to hold A, r^{old}, r^{new}

Say N = 1 billion pages

- We need 4 bytes (32 bits) for each entry (say)
- 2 billion entries for vectors r^{new} and r^{old}, approx 8GB
- Matrix A has N² entries, i.e., 10¹⁸
 it is a large number!

Sparse matrix formulation

Although A is a dense matrix, it is obtained from a sparse matrix M

- 10 links per node, approx 10N entries
- We can restate the page rank equation
 - $\mathbf{r} = \beta \mathbf{r} \mathbf{M} + [(1-\beta)/N]_{N}$ (see slide 63)
 - $[(1-\beta)/N]_N$ is an N-vector with all entries $(1-\beta)/N$
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{r}^{\text{old}} \mathbf{M}$
 - Add a constant value (1-β)/N to each entry in r^{new}

Sparse matrix encoding

Encode sparse matrix using only nonzero entries

- Space proportional roughly to number of links
- say 10N, or 4*10*1 billion = 40GB
- still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store **r**^{old} and matrix **M** on disk

Basic Algorithm:

- **Initialize:** $\mathbf{r}^{\text{old}} = [1/N]_{N}$
- Iterate:
 - Update: Perform a sequential scan of M and r^{old} and update r^{new}
 - Write out r^{new} to disk as r^{old} for next iteration
 - Every few iterations, compute |r^{new}-r^{old}| and stop if it is below threshold
 - Need to read in both vectors into memory 70

Update step

Initialize all entries of r^{new} to $(1-\beta)/N$ For each page p (out-degree n): Read into memory: p, n, dest₁,...,dest_n, r^{old}(p) for j = 1...N: $r^{new}(dest_j) += \beta^* r^{old}(p)/n$

SrC	degree	destination
0	3	1, 5, 6
1	4	17, 64, 113, 117
2	2	13, 23

The old value in 0 contributes to updating only the new values in 1,5, and 6.

