Hash tables

A randomized implementation of
dictionaries

_% Design and Analysis of Algorithms
3 Pearson International Edition (MIT OpenCOUI"SQWGI"e)

Lecture 8
reference

(Chapter 13.6) https://ocw.mit.edu/courses/6-046 j-design-and-
analysis-of-algorithms-spring-
2015/resources/lecture-8-randomization-

universal-perfect-hashing/

The dictionary problem:

Given a universe U of possible elements, maintain a subset S c U subject
to the following operations:

- make-dictionary(): Initialize an empty dictionary.

- insert(u): Add elementu e U to S.

- delete(u): Delete u from S, if u is currently in S.

- look-up(u): Determine whether uis in S.

Challenge: Universe U can be extremely large so defining an array of size
|U| is infeasible.

balanced (e.g. AVL) trees
- O(|S]) space
- O(log |S|) time per operation

- O(]S]) space
- O(1) expected amortized time per operation

idea H h: U — {0,1,... m-1}

0 h(u): slot where u is put
U 1
h 2 u Y
_>
m-1 m~ n:=|S|

collision: when h(u) = h(v) but u = v.

H[i]: linked list of all elements that h maps to slot i
(hashing with chaining)

of u:
- compute h(u)
- insert/delete/search u by scanning list H[h(u)]

find a function h that "spreads out” elements

choosing a good hash function

for any defterministic hash function one can find a set S where all
elements of S are mapped to the same slot

®(n) time per operation

idea: use randomization

obvious approach: for each u, choose h(u) uniformly at random

look-up(u): ...where did we put u?

we have to maintain the set of pairs {(u,h(u)): ueS}

- that's the 2 maybe I
@ dictionary Q\?& °00 can use a
problem! V hash table

universal hashing

A family F€ of hash functions is universal if

for each distinct u,veU hPrg'e(h(u)zl'\(v)) < 1/m

Theorem
Let F€ be a family of universal hash functions. Let ScU of n elements.

Let ueS. Pick a random function h from #€, and let X be the random

variable counting the number of elements of S mapped to h(u).
Then E[X] < 1+n/m

proof "1 if h(s)=h(u)
foreachs eS X .r.v.= = X:ZXS
0 otherwise S€S5

E[X] =E[ZXS] = 2 E[X]= Y Pr(h(s)=h(u))

seS seS seS

=1+ ZPr‘(h(s):h(u)) <1l+n/m
seS\{u}

m=0(n) mmp expected O(1) time per operation

designing a universal family of hash functions always exists
/ [Chebyshev 1850]

Table size: choose m as a prime number such that n <m < 2n

Integer encoding: Identify each element xeU with a base-m integer of
r digits: x = (x4, X5, ..., X,), X;€{0,1,... m-1}.
Hash function: ~log 1”' bits

ivenacVU,a=(a, a,, .., a ‘ ‘
9 (12 r') |X1|X2|X3|Xr.|

r 3

r —
ha (X)7 D ax; | mod m ~logm
i=1 bits
) ’ 101 G | O3 | G |
hash function family: # ={h; aeU }
word RAM model:
- manipulating O(1)
machine words takes - storing h, requires just storing a
O(1) time # single value, a (1 machine word)
- every object of interest - computing h,(x) takes O(1) time

fits in a machine word

Theorem
F€ ={h: acU } is universal
proof

Let x = (x4, X5, ..., X.) and y = (Y;, Y2, ... ¥,) be two distinct elements of U.
We need to show that Pr[h (x) = h(y)] < 1/m.

since x #y, there exists an integer j such that x; = y;.

we have h(x) = h,(y) iff

a; (yy-x;) = Zai(xi'Yi) mod m
_'_I ‘I#—'J ' |

Z

0

we can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume q; is fixed for all coordinates i = j.

since m is prime & z #0, z has a multiplicative inverse z1,i.e. z z! =1 mod m

Theorem
F€ ={h: acU } is universal
proof

Let x = (x4, X5, ..., X.) and y = (Y;, Y2, ... ¥,) be two distinct elements of U.
We need to show that Pr[h (x) = h(y)] < 1/m.

since x #y, there exists an integer j such that x; = y;.

we have h(x) = h,(y) iff
a; = z'! Zai(xi'Yi) mod m

‘I#—'J |
1
(00

we can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume q; is fixed for all coordinates i = j.

since m is prime & z #0, z has a multiplicative inverse z1,i.e. z z! =1 mod m

m) Pr[h,(x) = hy(y)] < 1/m. »

another universal hash family

choose a prime p > |U| (once)

Hash function:
given a,beU,

hy, (X)= [(ax+b) mod p] mod m

hash function family: € ={h: a,beU}

how to (dynamically) choose the table size

S changes over time and we want to use O(|S|) space

parameters:

- n: # of elements currently in the table, i.e. n=|S|;

- Nt virtual size of the table

- m: actual size of the table (a prime number between N and 2N)

doubling/halving technique:
- init n=N=1;
- whenever n>N:

- N:=2N

- choose a new m

]) . : : O(1) amortized time
re-hash all |Tems (in O(n) time) ‘ per insertion/deletion
- whenever n<N/4:

- N:=N/2
- choose a new m
- re-hash all items (in O(n) time)

What's next?

randomization: an amazing algorithmic tool
- hash functions/tables

- sampling

- sketches

it allows to solve efficiently many practical important problems:

counting distinct elements in a stream:

given a stream of m element x;,x,,..x,, where each x,eU, return the
number d of distinct elements

O(d) space or O(|U]) space
O(log d) space

fining similar items
Given N items, find pairs of them whose similarity is above a give threshold

N is huge and a ®(N?)-time solution is infeasible
solves the problem in O(N polylog N) time and space

randomization: an amazing algorithmic tool
- hash functions/tables

- sampling

- sketches

it allows to sg

counting dist
given a strea

number d of Algorithms for Big Data
(prof. Clementi)

if interested:
if intereste the

fining similar items
Given N items, find pairs of them whose similarity is above a give threshold

N is huge and a ®(N?)-time solution is infeasible
solves the problem in O(N polylog N) time and space

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

