
Hash tables

A randomized implementation of
dictionaries

reference
(Chapter 13.6) https://ocw.mit.edu/courses/6-046j-design-and-

analysis-of-algorithms-spring-
2015/resources/lecture-8-randomization-
universal-perfect-hashing/

+

Design and Analysis of Algorithms
(MIT opencourseware)
Lecture 8

The dictionary problem:

Given a universe U of possible elements, maintain a subset S  U subject
to the following operations:
- make-dictionary(): Initialize an empty dictionary.
- insert(u): Add element u  U to S.
- delete(u): Delete u from S, if u is currently in S.
- look-up(u): Determine whether u is in S.

Challenge: Universe U can be extremely large so defining an array of size
|U| is infeasible.

A solution: balanced (e.g. AVL) trees
– O(|S|) space
– O(log |S|) time per operation

hash tables:
- O(|S|) space
- O(1) expected amortized time per operation

idea

U

Insert/Delete/Lookup of u:
- compute h(u)
- insert/delete/search u by scanning list H[h(u)]

goal: find a function h that “spreads out” elements

collision: when h(u) = h(v) but u  v.

H

0

1
2

m-1

h

h: U {0,1,...,m-1}

h(u): slot where u is put

u v

H[i]: linked list of all elements that h maps to slot i
(hashing with chaining)

m  n:=|S|

choosing a good hash function

obs: for any deterministic hash function one can find a set S where all
elements of S are mapped to the same slot

(n) time per operation

idea: use randomization

obvious approach: for each u, choose h(u) uniformly at random

look-up(u): ...where did we put u?

we have to maintain the set of pairs {(u,h(u)): uS}

that’s the
dictionary
problem!

maybe I
can use a

hash table

A family H of hash functions is universal if

for each distinct u,vU Pr (h(u)=h(v))  1/m
hH

universal hashing

Theorem
Let H be a family of universal hash functions. Let SU of n elements.

Let uS. Pick a random function h from H, and let X be the random
variable counting the number of elements of S mapped to h(u).
Then E[X]  1+n/m

proof

for each s S Xs r. v. =
if h(s)=h(u)1

otherwise0
X = 

sS
Xs

E[X] =E 
sS

Xs = 
sS

E[Xs] = 
sS

Pr(h(s)=h(u))

= 1 + 
sS\{u}

Pr(h(s)=h(u))  1 + n/m

notice: m=(n) expected O(1) time per operation

designing a universal family of hash functions

Table size: choose m as a prime number such that n  m  2n

Integer encoding: Identify each element xU with a base-m integer of
r digits: x = (x1, x2, …, xr), xi{0,1,...,m-1}.

Hash function:
given aU, a = (a1, a2, …, ar)

ha (x)= 
i=1

aixi

r
mod m

hash function family: H ={ha: aU }

always exists
[Chebyshev 1850]

word RAM model:
- manipulating O(1)

machine words takes
O(1) time

- every object of interest
fits in a machine word

- storing ha requires just storing a
single value, a (1 machine word)

- computing ha(x) takes O(1) time

x1 x2 x3 xr

 log |U| bits

 log m
bits

a1 a2 a3 ar

Theorem

H ={ha: aU } is universal

proof

Let x = (x1, x2, …, xr) and y = (y1, y2, …, yr) be two distinct elements of U.
We need to show that Pr[ha(x) = ha(y)]  1/m.

since x  y, there exists an integer j such that xj  yj.

we have ha(x) = ha(y) iff

we can assume a was chosen uniformly at random by first selecting all
coordinates ai where i  j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i  j.

since m is prime & z 0, z has a multiplicative inverse z-1, i.e. z z-1 =1 mod m

aj (yj-xj) = 
ij

ai(xi-yi) mod m

z 

Theorem

H ={ha: aU } is universal

proof

Let x = (x1, x2, …, xr) and y = (y1, y2, …, yr) be two distinct elements of U.
We need to show that Pr[ha(x) = ha(y)]  1/m.

since x  y, there exists an integer j such that xj  yj.

we have ha(x) = ha(y) iff

we can assume a was chosen uniformly at random by first selecting all
coordinates ai where i  j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i  j.

since m is prime & z 0, z has a multiplicative inverse z-1, i.e. z z-1 =1 mod m

Pr[ha(x) = ha(y)]  1/m.

aj = z-1
ij

ai(xi-yi) mod m



another universal hash family

choose a prime p  |U| (once)

Hash function:
given a,bU,

hab (x)= [(ax+b) mod p] mod m

hash function family: H ={hab: a,bU }

how to (dynamically) choose the table size

notice: S changes over time and we want to use O(|S|) space

parameters:
- n: # of elements currently in the table, i.e. n=|S|;
- N: virtual size of the table
- m: actual size of the table (a prime number between N and 2N)

doubling/halving technique:
- init n=N=1;
- whenever n>N:

- N:=2N
- choose a new m
- re-hash all items (in O(n) time)

- whenever n<N/4:
- N:=N/2
- choose a new m
- re-hash all items (in O(n) time)

O(1) amortized time
per insertion/deletion

What’s next?

randomization: an amazing algorithmic tool
- hash functions/tables
- sampling
- sketches
- ...

it allows to solve efficiently many practical important problems:

fining similar items

Given N items, find pairs of them whose similarity is above a give threshold

main challenge: N is huge and a (N2)-time solution is infeasible

LSH technique: solves the problem in O(N polylog N) time and space

counting distinct elements in a stream:

given a stream of m element x1,x2,...xm where each xiU, return the
number d of distinct elements

simple solution: O(d) space or O(|U|) space

probabilistic counters: O(log d) space

randomization: an amazing algorithmic tool
- hash functions/tables
- sampling
- sketches
- ...

it allows to solve efficiently many practical important problems:

fining similar items

Given N items, find pairs of them whose similarity is above a give threshold

main challenge: N is huge and a (N2)-time solution is infeasible

LSH technique: solves the problem in O(N polylog N) time and space

counting distinct elements in a stream:

given a stream of m element x1,x2,...xm where each xiU, return the
number d of distinct elements

simple solution: O(m) space or O(|U|) space

probabilistic counters: O(log m) space

if interested:

Algorithms for Big Data
(prof. Clementi)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

