
Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

http://www.cs.pr inceton.edu/~wayne/kleinberg -tardos

11. APPROXIMATION ALGORITHMS

‣ load balancing

‣ center selection

http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Coping with NP-completeness

Q. Suppose I need to solve an NP-hard optimization problem.

What should I do?

A. Sacrifice one of three desired features.

i. Runs in polynomial time.

ii. Solves arbitrary instances of the problem.

iii. Finds optimal solution to problem.

-approximation algorithm.

・Runs in polynomial time.

・Solves arbitrary instances of the problem

・Finds solution that is within ratio  of optimum.

Challenge. Need to prove a solution’s value is close to optimum,

without even knowing what is optimum value.

3

Def.

An -approximation algorithm for an optimization problem is a polynomial-time

algorithm that for all instances of the problem produces a solution whose value is

within a factor of  the value of an optimal solution.

: approximation ratio or approximation factor

minimization problem:

- 1

- for each returned solution x, cost(x)  OPT(x)

maximization problem:

- 1

- for each returned solution x, value(x)   OPT(x)

11. APPROXIMATION ALGORITHMS

‣ load balancing

‣ center selection

SECTION 11.1

Load balancing

Input. m identical machines; n ≥ m jobs, job j has processing time tj.

・Job j must run contiguously on one machine.

・A machine can process at most one job at a time.

Def. Let S[i] be the subset of jobs assigned to machine i.

The load of machine i is L[i] = Σj ∈ S[i] tj.

Def. The makespan is the maximum load on any machine L = maxi L[i].

Load balancing. Assign each job to a machine to minimize makespan.

6

Machine 2

Machine 1a d f

b c e g

timeL[2]0

machine 1

machine 2

L[1]

Load balancing on 2 machines is NP-hard

Claim. Load balancing is hard even if m = 2 machines.

Pf. PARTITION ≤ P LOAD-BALANCE.

7

yes

a d

f

b c

ge

length of job f

NP-complete by Exercise 8.26

Machine 2

Machine 1a d f

b c e g

time0

machine 1

machine 2

L

Load balancing: list scheduling

List-scheduling algorithm.

・Consider n jobs in some fixed order.

・Assign job j to machine i whose load is smallest so far.

Implementation. O(n log m) using a priority queue for loads L[k].
8

LIST-SCHEDULING (m, n, t1, t2, …, tn)
__ ___

FOR i = 1 TO m

L[i] ← 

S[i] ← 

FOR j = 1 TO n

i ← argmin k L[k]

S[i] ← S[i] ∪ { j }

L[i] ← L[i] + tj

RETURN S[1], S[2], …, S[m].

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i

List scheduling demo

9

A D

F

B C E

time0

IH J

G

machine 3

machine 1

machine 2

List scheduling demo

10

A

D

F

B C E

IH J

G

time0

machine 3

machine 1

machine 2

List scheduling demo

11

D

F

B

C E

IH J

G

A

time0

machine 3

machine 1

machine 2

List scheduling demo

12

D

F

B

C

E

IH J

G

A

time0

machine 3

machine 1

machine 2

List scheduling demo

13

F

B

C

E

IH J

G

D

A

time0

machine 3

machine 1

machine 2

List scheduling demo

14

F

B

C

E

IH J

G

D

A

time0

machine 3

machine 1

machine 2

List scheduling demo

15

G

Machine 3F

B

C

E

IH J

D

A

time0

machine 3

machine 1

machine 2

List scheduling demo

16

Machine 3

Machine 2

F

B

C

E

IH J

GD

A

time0

machine 3

machine 1

machine 2

List scheduling demo

17

Machine 3

Machine 2

F

B

C

E

I

H

J

GD

A

machine 3

machine 1

machine 2

time0

List scheduling demo

18

Machine 3

Machine 2

Machine 1

F

B

C

G

E IH

J

GD

A

machine 3

machine 1

machine 2

time0

List scheduling demo

19

Machine 3

Machine 2

Machine 1

F

B

C

G

E IH

J

D

A

machine 3

machine 1

machine 2

time0

List scheduling demo

20

Machine 3

Machine 2

Machine 1

FC

G

E IH

J

Machine 3

Machine 2

Machine 1

A

D

F

BC

G

E

I

H

J

A

machine 3

machine 1

machine 2

time0

optimal schedule0

B D

Load balancing: list scheduling analysis

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

・First worst-case analysis of an approximation algorithm.

・Need to compare resulting solution with optimal makespan L*.

Lemma 1. For all k : the optimal makespan L* ≥ tk .

Pf. Some machine must process the most time-consuming job.

Lemma 2. The optimal makespan .

Pf.

・The total processing time is Σk tk .

・One of m machines must do at least a 1 / m fraction of total work.

21

Load balancing: list scheduling analysis

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L[i] of bottleneck machine i.

・Let j be last job scheduled on machine i.

・When job j assigned to machine i, i had smallest load.

Its load before assignment is L[i] – tj ; hence L[i] – tj ≤ L[k] for all 1 ≤ k ≤ m.

22

jmachine i

timeL = L[i]0 L[i] - tj

blue jobs scheduled before j

machine that ends up

with highest load

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load L[i] of bottleneck machine i.

・Let j be last job scheduled on machine i.

・When job j assigned to machine i, i had smallest load.

Its load before assignment is L[i] – tj ; hence L[i] – tj ≤ L[k] for all 1 ≤ k ≤ m.

・Sum inequalities over all k and divide by m:

・Now,

Load balancing: list scheduling analysis

23

Lemma 2

above inequality

≤ L*

Lemma 1

≤ L*

machine that ends up

with highest load

Load balancing: list scheduling analysis

Q. Is our analysis tight?

A. Essentially yes.

Ex: m machines, first m (m – 1) jobs have length 1, last job has length m.

24

machine 2 idle

machine 3 idle

machine 4 idle

machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle

m = 10

0 9 19

list scheduling makespan = 19 = 2m - 1

Load balancing: list scheduling analysis

Q. Is our analysis tight?

A. Essentially yes.

Ex: m machines, first m (m – 1) jobs have length 1, last job has length m.

25

m = 10

0 9 19

optimal makespan = 10 = m

10

Longest processing time (LPT). Sort n jobs in decreasing order of processing

times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING (m, n, t1, t2, …, tn)
__ __ ___

SORT jobs and renumber so that t1 ≥ t2 ≥ … ≥ tn.

FOR i = 1 TO m

L[i] ← 

S[i] ← 

FOR j = 1 TO n

i ← argmin k L[k]

S[i] ← S[i] ∪ { j }

L[i] ← L[i] + tj

RETURN S[1], S[2], …, S[m].

Load balancing: LPT rule

26

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i

Load balancing: LPT rule

Observation. If bottleneck machine i has only 1 job, then optimal.

Pf. Any solution must schedule that job.

Lemma 3. If there are more than m jobs, L* ≥ 2 tm+1 .

Pf.

・Consider processing times of first m+1 jobs t1 ≥ t2 ≥ … ≥ tm+1.

・Each takes at least tm+1 time.

・There are m + 1 jobs and m machines, so by pigeonhole principle,

at least one machine gets two jobs.

Theorem. LPT rule is a 3/2-approximation algorithm.

Pf. [similar to proof for list scheduling]

・Consider load L[i] of bottleneck machine i.

・Let j be last job scheduled on machine i.

27

as before ≤ L*
Lemma 3 (since tm+1 ≥ tj)≤ ½ L*

assuming machine i has at least 2 jobs,

we have j ≥ m + 1

Load balancing: LPT rule

Q. Is our 3/2 analysis tight?

A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.

Pf. More sophisticated analysis of same algorithm.

Q. Is Graham’s 4/3 analysis tight?

A. Essentially yes.

Ex.

・m machines

・n = 2m + 1 jobs

・2 jobs of length m, m + 1, …, 2m – 1 and one more job of length m.

・Then, L / L* = (4m − 1) / (3m)

28

11. APPROXIMATION ALGORITHMS

‣ load balancing

‣ center selection

SECTION 11.2

	Slide 1: 11. Approximation Algorithms
	Slide 2
	Slide 3: Coping with NP-completeness
	Slide 4
	Slide 5: 11. Approximation Algorithms
	Slide 6: Load balancing
	Slide 7: Load balancing on 2 machines is NP-hard
	Slide 8: Load balancing: list scheduling
	Slide 9: List scheduling demo
	Slide 10: List scheduling demo
	Slide 11: List scheduling demo
	Slide 12: List scheduling demo
	Slide 13: List scheduling demo
	Slide 14: List scheduling demo
	Slide 15: List scheduling demo
	Slide 16: List scheduling demo
	Slide 17: List scheduling demo
	Slide 18: List scheduling demo
	Slide 19: List scheduling demo
	Slide 20: List scheduling demo
	Slide 21: Load balancing: list scheduling analysis
	Slide 22: Load balancing: list scheduling analysis
	Slide 23: Load balancing: list scheduling analysis
	Slide 24: Load balancing: list scheduling analysis
	Slide 25: Load balancing: list scheduling analysis
	Slide 26: Load balancing: LPT rule
	Slide 27: Load balancing: LPT rule
	Slide 28: Load balancing: LPT rule
	Slide 29: 11. Approximation Algorithms

