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Approximation algorithms: well-established field

VIJAY V. VAZIRANI

Approximation
Algorithms

@ Springer
U

THE DESIGN oF
APPROXIMATION L/
ALGORITHMS --
- and Approxi matlon
'"l" ? Combinatorial
AT Optimization Problems
:'\ 2 r:,'::.?.:flj and Their
g Approximability Properties

P e
(P20 el A |
RSy Bad Tl i

-~ (BN e
PN 4 At Springer (o]
e RS

CAMMI DG RN AR




Coping with NP-completeness

Q. Suppose | need to solve an NP-hard optimization problem.
What should | do?

A. Sacrifice one of three desired features.
i. Runs in polynomial time.
ii. Solves arbitrary instances of the problem.

p-approximation algorithm.
" Runs in polynomial time.
" Solves arbitrary instances of the problem
" Finds solution that is within ratio p of optimum.

Challenge. Need to prove a solution’s value is close to optimum,
without even knowing what is optimum value.



Def.
An a-approximation algorithm for an optimization problem is a polynomial-time

algorithm that for all instances of the problem produces a solution whose value is
within a factor of a the value of an optimal solution.

L. or

minimization problem:
- o1
- for each returned solution x, cost(x)< oo OPT(x)

maximization problem:
- o<l
- for each returned solution x, value(x) > o OPT(x)
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Load balancing

Input. m identical machines; n>m jobs, job j has processing time t;.
" Job j must run contiguously on one machine.
" A machine can process at most one job at a time.

Def. Let S[i] be the subset of jobs assigned to machine i.
The load of machine i is L[i] =Z; ¢ g ;-

Def. The makespan is the maximum load on any machine L = max; L[i].

Load balancing. Assign each job to a machine to minimize makespan.

machine 1 a d f

machine 2 b C e g

0 L[1] L[2] time




Load balancing on 2 machines is NP-hard

Claim. Load balancing is hard even if m =2 machines.
Pf. PARTITION <, LOAD-BALANCE.

\

NP-complete by Exercise 8.26
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Load balancing: list scheduling

List-scheduling algorithm.
" Consider n jobs in some fixed order.
" Assign job j to machine i whose load is smallest so far.

LIST-SCHEDULING (m, n, t1, to, ..., tn)

FOR I=1TOm

L[i] <~ 0. <—— 10ad on machine |

S[i] <« (J. <— jobs assigned to machine i

FOR J=1TON
i < argmin « L[k]. “— machine i has smallest load

S[ij ST u {J} — assign job j to machine i
L[] — L[i] + 8.

update load of machine i

RETURN S[1], S[2], ..., S[m].

Implementation. O(nlog m) using a priority queue for loads L[K].



List scheduling demo
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List scheduling demo
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List scheduling demo
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List scheduling demo
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List scheduling demo
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List scheduling demo
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List scheduling demo
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List scheduling demo
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List scheduling demo
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Load balancing: list scheduling analysis

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.
" First worst-case analysis of an approximation algorithm.
" Need to compare resulting solution with optimal makespan L*.

Lemma 1. For all k: the optimal makespan L™ > t,.
Pf. Some machine must process the most time-consuming job. -

Lemma 2. The optimal makespan L* > 1 E 1y -
m
Pf. ’C

" The total processing time is X t, .

" One of m machines must do at least a 1/ m fraction of total work.

21



Load balancing: list scheduling analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L[i] of bottleneck machine i. —— machine that ends up
" Let j be last job scheduled on machine i. with highest load

" When job j assigned to machine i, i had smallest load.

Its load before assignment is L[i] - t;; hence L[i] - t; < L[k] for all 1<k<m.

blue jobs scheduled before |

|

0 L[] - L=L[]  time .



Load balancing: list scheduling analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L[i] of bottleneck machine i. —— machine that ends up
" Let j be last job scheduled on machine i. with highest load

" When job j assigned to machine i, i had smallest load.

Its load before assignment is L[i] - t;; hence L[i] - t; < L[k] for all 1<k<m.
" Sum inequalities over all k and divide by m:

1
Ly — t; < — L|k
=t < o LI
1
= — ) ¢
Lemma 2 SL*.

above inequality Lemma 1



Load balancing: list scheduling analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, first m (m—1) jobs have length 1, last job has length m.

list scheduling makespan = 19 = 2m - 1

machine 2 idle

machine 3 idle

machine 4 idle

m-=10 machine 5 idle

machine 6 idle

machine 7 idle

machine 8 idle

machine 9 idle

machine 10 idle




Load balancing: list scheduling analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, first m (m—1) jobs have length 1, last job has length m.

optimal makespan = 10 = m
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Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in decreasing order of processing
times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING (m, n, t1, t2, ..., tn)
SORT jobs and renumber so thattys > t2 > ... > tn.

FOR I=1TOm

L[i] < 0. «<— load on machine i

S[I] «— . < jobs assigned to machine i

FOR J=1TONn
[ «— argmin k L[k]. <— machine i has smallest load

S[I] — S[I] U {J } < assign job j to machine |
L[i] — L[]+t

update load of machine |

RETURN S[1], S[2], ..., S[m].



Load balancing: LPT rule

Observation. If bottleneck machine i has only 1 job, then optimal.
Pf. Any solution must schedule that job. -

Lemma 3. If there are more than m jobs, L™ > 2t..;.
Pf.
" Consider processing times of first m+1 jobs t; > t,> ... > t.1.
" Each takes at least t,.; time.
" There are m+1 jobs and m machines, so by pigeonhole principle,
at least one machine gets two jobs. =

Theorem. LPT rule is a 3/2-approximation algorithm.
Pf. [ similar to proof for list scheduling ]
" Consider load LJi] of bottleneck machine i.
" Letj be last job scheduled on machine i. —— wehavej =m+1
L = Lfi| = (L[] —t;) +t; < gL* _
-

— <L <% L < Lemma 3 (since t 4 > 1)

as before

assuming machine i has at least 2 jobs,
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Load balancing: LPT rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham’s 4/3 analysis tight?
A. Essentially yes.

EX.

" m machines

" n=2m+1 jobs
2 jobs of length m,m+1, ....,2m -1 and one more job of length m.
" Then,L/L"=(@4m~—-1)/(3m)

28
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