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Coping with NP-completeness

Q.  Suppose I need to solve an NP-hard optimization problem.

What should I do?

A.  Sacrifice one of three desired features.

i. Runs in polynomial time.

ii. Solves arbitrary instances of the problem.

iii. Finds optimal solution to problem.

-approximation algorithm.

・Runs in polynomial time.

・Solves arbitrary instances of the problem

・Finds solution that is within ratio  of optimum.

Challenge. Need to prove a solution’s value is close to optimum,

without even knowing what is optimum value.
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Def.

An -approximation algorithm for an optimization problem is a polynomial-time 

algorithm that for all instances of the problem produces a solution whose value is 

within a factor of  the value of an optimal solution.

: approximation ratio or approximation factor

minimization problem:

- 1 

- for each returned solution x, cost(x)  OPT(x)  

maximization problem:

- 1 

- for each returned solution x, value(x)   OPT(x)  
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Load balancing

Input.  m identical machines; n ≥ m jobs, job j has processing time tj.

・Job j must run contiguously on one machine.

・A machine can process at most one job at a time.

Def.  Let S[i] be the subset of jobs assigned to machine i.

The load of machine i is L[i] = Σj ∈ S[i] tj. 

Def. The makespan is the maximum load on any machine L = maxi L[i].

Load balancing.  Assign each job to a machine to minimize makespan.
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Load balancing on 2 machines is NP-hard

Claim.  Load balancing is hard even if m = 2 machines.

Pf.  PARTITION ≤ P LOAD-BALANCE.
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Load balancing:  list scheduling

List-scheduling algorithm.

・Consider n jobs in some fixed order.

・Assign job j to machine i whose load is smallest so far.

Implementation. O(n log m) using a priority queue for loads L[k].
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LIST-SCHEDULING (m, n, t1, t2, …, tn)
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ _________________________________________________________________________________________________________________________________________________________________________________________________________________________

FOR i = 1 TO m

L[i] ← 

S[i] ← 

FOR j = 1 TO n

i ← argmin k L[k]

S[i] ← S[i]  ∪ { j }

L[i] ← L[i] + tj

RETURN S[1], S[2], …, S[m].

jobs assigned to machine i

load on machine i

machine i has smallest load

assign job j to machine i

update load of machine i



List scheduling demo
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Load balancing:  list scheduling analysis

Theorem.  [Graham 1966] Greedy algorithm is a 2-approximation.

・First worst-case analysis of an approximation algorithm.

・Need to compare resulting solution with optimal makespan L*.

Lemma 1.  For all k :  the optimal makespan L* ≥  tk .

Pf.  Some machine must process the most time-consuming job.  

Lemma 2.  The optimal makespan                        .

Pf.  

・The total processing time is Σk  tk .

・One of m machines must do at least a 1 / m fraction of total work.  
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Load balancing:  list scheduling analysis

Theorem.  Greedy algorithm is a 2-approximation.

Pf.  Consider load L[i] of bottleneck machine i.

・Let j be last job scheduled on machine i.

・When job j assigned to machine i, i had smallest load.

Its load before assignment is L[i] – tj ; hence L[i] – tj ≤ L[k] for all 1 ≤ k ≤ m.
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Theorem.  Greedy algorithm is a 2-approximation.

Pf.  Consider load L[i] of bottleneck machine i.

・Let j be last job scheduled on machine i.

・When job j assigned to machine i, i had smallest load.

Its load before assignment is L[i] – tj ; hence L[i] – tj ≤ L[k] for all 1 ≤ k ≤ m. 

・Sum inequalities over all k and divide by m:

・Now,

Load balancing:  list scheduling analysis
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Load balancing:  list scheduling analysis

Q.  Is our analysis tight?

A.  Essentially yes.

Ex:  m machines, first m (m – 1) jobs have length 1, last job has length m.
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Load balancing:  list scheduling analysis

Q.  Is our analysis tight?

A.  Essentially yes.

Ex:  m machines, first m (m – 1) jobs have length 1, last job has length m.
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Longest processing time (LPT).  Sort n jobs in decreasing order of processing 

times; then run list scheduling algorithm.

LPT-LIST-SCHEDULING (m, n, t1, t2, …, tn)


SORT jobs and renumber so that t1 ≥  t2 ≥  …  ≥  tn.

FOR i = 1 TO m

L[i] ← 

S[i] ← 

FOR j = 1 TO n

i ← argmin k L[k]

S[i] ← S[i]  ∪ { j }

L[i] ← L[i] + tj

RETURN S[1], S[2], …, S[m].

Load balancing:  LPT rule
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Load balancing:  LPT rule

Observation.  If bottleneck machine i has only 1 job, then optimal.

Pf.  Any solution must schedule that job.  

Lemma 3.  If there are more than m jobs, L* ≥  2 tm+1 .

Pf. 

・Consider processing times of first m+1 jobs t1  ≥  t2 ≥  … ≥  tm+1.

・Each takes at least tm+1 time. 

・There are m + 1 jobs and m machines, so by pigeonhole principle,

at least one machine gets two jobs.  

Theorem.  LPT rule is a 3/2-approximation algorithm.

Pf.  [ similar to proof for list scheduling ]

・Consider load L[i] of bottleneck machine i.

・Let j be last job scheduled on machine i.
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Load balancing:  LPT rule

Q.  Is our 3/2 analysis tight?

A.  No.

Theorem.  [Graham 1969] LPT rule is a 4/3-approximation.

Pf.  More sophisticated analysis of same algorithm. 

Q.  Is Graham’s 4/3 analysis tight?

A.  Essentially yes.

Ex.

・m machines

・n = 2m + 1 jobs

・2 jobs of length m, m + 1, …, 2m – 1 and one more job of length m.

・Then, L / L* = (4m − 1) / (3m)
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