
11. APPROXIMATION ALGORITHMS

‣ load balancing

‣ center selection

SECTION 11.2



k-Center Problem
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k-Center Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum 

distance from a site to nearest center is minimized.

site

k = 4

center
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k-Center Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum 

distance from a site to nearest center is minimized.
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k-Center Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum 

distance from a site to nearest center is minimized.

site

k = 4

center

r(C):
radius

hospital
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k-Center Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum 

distance from a site to nearest center is minimized.

site

k = 4

center

r(C):
radius

fire station
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k-Center Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum 

distance from a site to nearest center is minimized.

site

k = 4

center

r(C):
radius

A variant:
centers are constrained to 
be placed on site locations
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k-Center Problem

Input.  Set of n sites s1, …, sn and integer k > 0.

Center selection problem.  Select k centers C so that maximum 

distance from a site to nearest center is minimized.

Notation.  

dist(x, y) = distance between x and y.

dist(si, C) = min c  C dist(si, c)  = distance from si to closest center.

r(C) = maxi dist(si, C) = smallest covering radius.

Goal.  Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

dist(x, x) = 0    (identity)

dist(x, y) = dist(y, x)   (symmetry)

dist(x, y)  dist(x, z) + dist(z, y) (triangle inequality)
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center
site

k-Center Problem

Ex:  each site is a point in the plane, a center can be any point in the 

plane, dist(x, y) = Euclidean distance.

r(C)
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center
site

k-Center Problem

Ex:  each site is a vertex in undirected weighted graph, a center can be 

any vertex, dist(x, y) = (weighted) distance in G between x and y.

edges with 
no labels 
have weight 1

5

4

3

5

2
2

2

2
2 2



17

center
site

k-Center Problem

Ex:  each site is a vertex in undirected weighted graph, a center can be 

any vertex, dist(x, y) = (weighted) distance in G between x and y.

5

4

3

5

2
2

2

2
2 2

edges with 
no labels 
have weight 1



18

center
site

k-Center Problem

Ex:  each site is a vertex in undirected weighted graph, a center can be 

any vertex, dist(x, y) = (weighted) distance in G between x and y.
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edges with 
no labels 
have weight 1

r=2

r=1

r=2

r=3

r(C)=3
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Center Selection:  Greedy Algorithm

Greedy algorithm.  Repeatedly choose the next center to be the site 

farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C) 

apart.

Pf.  By construction of algorithm.

Greedy-Center-Selection(k, n, s1,s2,…,sn) {

   C = 

   repeat k times {

      Select a site si with maximum dist(si, C)

      Add si to C

   }

   return C

}

site farthest from any center



example of execution
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sitek = 4
center

r(C):
radius
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Center Selection:  Analysis of Greedy Algorithm

Theorem.  Let C* be an optimal set of centers. Then r(C)  2r(C*).

Pf.  (by contradiction)  Assume r(C*) < ½ r(C).

For each site ci in C, consider ball of radius ½ r(C) around it.

Exactly one ci* in each ball; 

– each ball with center ciC must contain a center in C* 

(otherwise dist(ci, C*)  ½ r(C) > r(C*) );

– balls are disjoint and |C|=|C*|.

C*
sites

½ r(C)

ci

ci*
s

½ r(C)

½ r(C)

balls are disjoint since all centers in C 
are pairwise at distance at least r(C) 
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Center Selection:  Analysis of Greedy Algorithm

Theorem.  Let C* be an optimal set of centers. Then r(C)  2r(C*).

Pf.  (by contradiction)  Assume r(C*) < ½ r(C).

For each site ci in C, consider ball of radius ½ r(C) around it.

Exactly one ci* in each ball; let ci be the site paired with ci*.

Consider any site s and its closest center ci* in C*.

dist(s, C)    dist(s, ci)    dist(s, ci*) + dist(ci*, ci)    2r(C*).

Thus r(C)   2r(C*).  

C*
sites

½ r(C)

ci

ci*
s

  r(C*) since ci* is closest center

½ r(C)

½ r(C)

-inequality
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Center Selection

Theorem.  Let C* be an optimal set of centers. Then r(C)  2r(C*).

Theorem.  Greedy algorithm is a 2-approximation for center selection 

problem.

Remark.  Greedy algorithm always places centers at sites, but is still 

within a factor of 2 of best solution that is allowed to place centers 

anywhere.

Question.  Is there hope of a better approximation?

…very unlikely:

 

e.g., points in the plane

Theorem.  Unless P = NP, there no -approximation for center-selection
problem for any  < 2.
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