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k-Center Problem




k-Center Problem

Input. Set of nsites s, ..., s, and integer k > O.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.
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Center selection problem. Select k centers C so that maximum
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Input. Set of nsites s, ..., s, and integer k > O.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

k=4
r(C):
r'adius/ - |
- "
=
= - B m
|
|
m B
]
@ center I ® -

W Ssite 1

10



k-Center Problem

Input. Set of nsites s, ..., s, and integer k > O.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.
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k-Center Problem

Input. Set of nsites s, ..., s, and integer k > O.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.
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k-Center Problem

Input. Set of nsites s, ..., s, and integer k > O.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

A variant:

centers are constrained to
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k-Center Problem

Input. Set of nsites s, ..., s, and integer k > O.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
. dist(x, y) = distance between x and y.

. dist(s;, C) = min . _ . dist(s;, ¢) = distance from s; to closest center.

. r(C) = max; dist(s;, C) = smallest covering radius.
Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
. dist(x,x)=0 (identity)
. dist(x, y) = dist(y, x) (symmetry)
. dist(x, y) < dist(x, z) + dist(z, y) (triangle inequality)
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k-Center Problem

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.
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k-Center Problem

Ex: each site is a vertex in undirected weighted graph, a center can be
any vertex, dist(x, y) = (weighted) distance in G between x and y.
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k-Center Problem

Ex: each site is a vertex in undirected weighted graph, a center can be
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Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.
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Center Selection: Analysis of Greedy Algorithm

balls are disjoint since all centersin C
are pairwise at distance at least r(C)

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < % r(C).
. For each site ¢, in C, consider ball of radius % r(C) around it.
. Exactly one ¢* in each ball;
- each ball with center c,eC must contain a center in C*
(otherwise dist(c;, C*) > £ r(C) > r(C*) );
- balls are disjoint and |C|=|C*|.
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Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).
Pf. (by contradiction) Assume r(C*) < % r(C).

. For each site ¢, in C, consider ball of radius % r(C) around it.

. Exactly one ¢* in each ball; let ¢; be the site paired with ¢;*.

. Consider any site s and its closest center ¢;* in C*.

. dist(s, C) < dist(s, ¢;) < dist(s, ¢*) + dist(c*, c;)) < 2r(C*).

. Thus r(C) < 2r(C*). = \ ~

A-inequality < r(C*) since ¢;* is closest center
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Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) < 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers aft sites, but is still
within a factor of 2 of best solution that is allowed to place centers
anywhere.

\

e.g., points in the plane

Question. Is there hope of a better approximation?

..very unlikely:

Theorem. Unless P = NP, there no p-approximation for center-selection
problem for any p < 2.
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