

8. INTRACTABILITY I

poly-time reductions

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

SECTION 8.1

8. INTRACTABILITY I

poly-time reductions

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- **NP**-completeness.
- Undecidability.

$O(n^k)$ algorithm unlikely.

PSPACE-completeness. $O(n^k)$ certification algorithm unlikely. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann (1953)

Nash (1955)

Gödel (1956)

Cobham (1964)

Edmonds (1965)

Rabin (1966)

Turing machine, word RAM, uniform circuits, ...

Theory. Definition is broad and robust.

, constants tend to be small, e.g., $3n^2$

Practice. Poly-time algorithms scale to huge problems.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes	probably no
shortest path	longest path
min cut	max cut
2-satisfiability	3-satisfiability
planar 4-colorability	planar 3-colorability
bipartite vertex cover	vertex cover
matching	3d-matching
primality testing	factoring
linear programming	integer linear programming

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an *n*-by-*n* generalization of checkers, can black guarantee a win?

using forced capture rule

input size = $c + \log k$

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Desiderata'. Suppose we could solve problem *Y* in polynomial time. What else could we solve in polynomial time?

Reduction. Problem *X* polynomial-time (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece of hardware that solves instances of *Y* in a single step

Desiderata'. Suppose we could solve problem *Y* in polynomial time. What else could we solve in polynomial time?

Reduction. Problem *X* polynomial-time (Cook) reduces to problem *Y* if arbitrary instances of problem *X* can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{P} Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_P Y$ with $Y \leq_P X$.

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

SECTION 8.1

8. INTRACTABILITY I

packing and covering problems

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

- **Ex.** Is there an independent set of size ≥ 6 ?
- **Ex.** Is there an independent set of size ≥ 7 ?

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4 ?

Ex. Is there a vertex cover of size ≤ 3 ?

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_{P} VERTEX-COVER.

Pf. We show *S* is an independent set of size *k* iff V - S is a vertex cover of size n - k.

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_{P} VERTEX-COVER.

Pf. We show *S* is an independent set of size *k* iff V - S is a vertex cover of size n - k.

\Rightarrow

- Let S be any independent set of size k.
- V-S is of size n-k.
- Consider an arbitrary edge $(u, v) \in E$.
- S independent \Rightarrow either $u \notin S$, or $v \notin S$, or both.

 \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.

• Thus, V - S covers (u, v). •

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \equiv_{P} VERTEX-COVER.

Pf. We show *S* is an independent set of size *k* iff V - S is a vertex cover of size n - k.

\Leftarrow

- Let V S be any vertex cover of size n k.
- *S* is of size *k*.
- Consider an arbitrary edge $(u, v) \in E$.
- V-S is a vertex cover \Rightarrow either $u \in V-S$, or $v \in V-S$, or both.

 \Rightarrow either $u \notin S$, or $v \notin S$, or both.

Thus, S is an independent set.

SET-COVER. Given a set *U* of elements, a collection *S* of subsets of *U*, and an integer *k*, are there $\leq k$ of these subsets whose union is equal to *U*?

Sample application.

- *m* available pieces of software.
- Set *U* of *n* capabilities that we would like our system to have.
- The *i*th piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all *n* capabilities using fewest pieces of software.

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_a = \{ 3, 7 \}$$

$$S_b = \{ 2, 4 \}$$

$$S_c = \{ 3, 4, 5, 6 \}$$

$$S_d = \{ 5 \}$$

$$S_e = \{ 1 \}$$

$$k = 2$$

One more example

Given the universe U = { 1, 2, 3, 4, 5, 6, 7 } and the following sets, which is the minimum size of a set cover?

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$

$$S_a = \{ 1, 4, 6 \}$$

$$S_b = \{ 1, 6, 7 \}$$

$$S_c = \{ 1, 2, 3, 6 \}$$

$$S_d = \{ 1, 3, 5, 7 \}$$

$$S_e = \{ 2, 6, 7 \}$$

$$S_f = \{ 3, 4, 5 \}$$

minimum size: 3

Theorem. VERTEX-COVER \leq_P SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a SET-COVER instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe U = E.
- Include one subset for each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v\}$.

$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$	
$S_a = \{ 3, 7 \}$	$S_b = \{ 2, 4 \}$
$S_c = \{ 3, 4, 5, 6 \}$	$S_d = \{ 5 \}$
$S_e = \{ 1 \}$	$S_f = \{ 1, 2, 6, 7 \}$

set cover instance

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

• Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. •

"yes" instances of VERTEX-COVER are solved correctly

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S, k).

■ Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. •

"no" instances of VERTEX-COVER are solved correctly

SECTION 8.2

8. INTRACTABILITY I

constraint satisfaction problems

Literal. A Boolean variable or its negation. x_i or x_i Clause. A disjunction of literals. $C_j = x_1 \vee x_2 \vee x_3$

Conjunctive normal form (CNF). A propositional formula Φ that is a conjunction of clauses.

 $\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$

SAT. Given a CNF formula Φ , does it have a satisfying truth assignment? 3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$$

yes instance: $x_1 = true, x_2 = true, x_3 = false, x_4 = false$

Key application. Electronic design automation (EDA).

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

Pvs. NP. This hypothesis is equivalent to $P \neq NP$ conjecture.

Theorem. $3-SAT \leq_P INDEPENDENT-SET.$

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

- *G* contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

k = 3

G

 $\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$

Lemma. Φ is satisfiable iff *G* contains an independent set of size $k = |\Phi|$.

Pf. \Rightarrow Consider any satisfying assignment for Φ .

- Select one true literal from each clause/triangle.
- This is an independent set of size $k = |\Phi|$. •

"yes" instances of 3-SAT are solved correctly

k = 3

G

Lemma. Φ is satisfiable iff *G* contains an independent set of size $k = |\Phi|$.

Pf. \leftarrow Let *S* be independent set of size *k*.

- *S* must contain exactly one node in each triangle.
- Set these literals to *true* (and remaining literals consistently).
- All clauses in Φ are satisfied.

k = 3

G

"no" instances of 3-SAT are solved correctly

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \equiv_{P} VERTEX-COVER.
- Special case to general case: VERTEX-COVER \leq_P SET-COVER.
- Encoding with gadgets: $3-SAT \leq_P INDEPENDENT-SET$.

```
Transitivity. If X \leq_P Y and Y \leq_P Z, then X \leq_P Z.
Pf idea. Compose the two algorithms.
```

```
Ex. 3-Sat \leq_P Independent-Set \leq_P Vertex-Cover \leq_P Set-Cover.
```

Poly-time reductions

DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

Decision problem. Does there exist a vertex cover of size $\leq k$? Search problem. Find a vertex cover of size $\leq k$. Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

VERTEX-COVER. Does there exist a vertex cover of size $\leq k$? FIND-VERTEX-COVER. Find a vertex cover of size $\leq k$.

Theorem. VERTEX-COVER \equiv_{P} FIND-VERTEX-COVER.

Pf. \leq_{P} Decision problem is a special case of search problem. •

$\textbf{Pf.} \geq_{P}$

To find a vertex cover of size $\leq k$:

- Determine if there exists a vertex cover of size $\leq k$.
- Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k 1$. (any vertex in any vertex cover of size $\leq k$ will have this property)
- Include v in the vertex cover.
- Recursively find a vertex cover of size $\leq k 1$ in $G \{v\}$.

FIND-VERTEX-COVER. Find a vertex cover of size $\leq k$. FIND-MIN-VERTEX-COVER. Find a vertex cover of minimum size.

Theorem. FIND-VERTEX-COVER \equiv_{P} FIND-MIN-VERTEX-COVER.

Pf. \leq_P Search problem is a special case of optimization problem. •

- **Pf.** \geq_P To find vertex cover of minimum size:
 - Binary search (or linear search) for size k^* of min vertex cover.
 - Solve search problem for given k^{*}.