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Algorithm design patterns and anfipatterns

Algorithm design patterns.
" Greedy.

Divide and conquer.

Dynamic programming.
" Duality.
Reductions.
Local search.

Randomization.

Algorithm design antipatterns.
" NP-completeness. O(n*) algorithm unlikely.
" PSPACE-completeness. O(n*) certification algorithm unlikely.
" Undecidability. No algorithm possible.



Classity problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann Nash Godel Cobham Edmonds Rabin
(1953) (1955) (1956) (1964) (1965) (1966)

Turing machine, word RAM, uniform circuits, ...

/

Theory. Definition is broad and robust.

constants tend to be small, e.g., 3n?

Practice. Poly-time algorithms scale to huge problems.



Classity problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes probably no

shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colorability planar 3-colorability
bipartite vertex cover vertex cover
matching 3d-matching
primality testing factoring

linear programming integer linear programming



Classity problems

Desiderata. Classify problems according to those that can be solved in
polynomial time and those that cannot.
input size = ¢ + log k
Provably requires exponential time. /
" Given a constant-size program, does it halt in at most k steps?
" Given a board position in an n-by-n generalization of checkers,
can black guarantee a win? \

using forced capture rule

Frustrating news. Huge number of fundamental problems have defied
classification for decades.



Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

" Polynomial number of standard computational steps, plus

" Polynomial number of calls to oracle that solves problem Y.

\

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

: Algorithm : )
instance | : : solution S to |
: forY :

(of X)

Algorithm for X



Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

" Polynomial number of standard computational steps, plus

" Polynomial number of calls to oracle that solves problem Y.

Notation. X<,Y.

Note. We pay for time to write down instances of Y sent to oracle =
instances of Y must be of polynomial size.

Novice mistake. Confusing X<pY with Y <; X.



Poly-time reductions

Design algorithms. If X<;Y and Y can be solved in polynomial time,
then X can be solved in polynomial time.

Establish intractability. If X<y Y and X cannot be solved in polynomial time,
then Y cannot be solved in polynomial time.

Establish equivalence. If both X<,Y and Y <; X, we use notation X=,Y.
In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
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Independent set

INDEPENDENT-SET. Given a graph G =(V, E) and an integer k, is there
a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size >67?
Ex. Is there an independent set of size >77?

‘ independent set of size 6

® 6 (o O
O—@ @ —0O—=O0
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Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a
subset of k (or fewer) vertices such that each edge is incident to

at least one vertex in the subset?

Ex. Is there a vertex cover of size <47?
Ex. Is there a vertex cover of size <37?

® & (O

O—@ @ —0O—=O0

‘ independent set of size 6

Q vertex cover of size 4
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Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER.
Pf. We show S is an independent set of size k iff V—S is a vertex cover
of size n—k.

‘ independent set of size 6

Q vertex cover of size 4

13



Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER.
Pf. We show S is an independent set of size k iff V—S is a vertex cover
of size n—k.

—
" Let S be any independent set of size k.
" V-Sis of size n—k.

Consider an arbitrary edge (u, v) € E.
S independent = eitheru&sS, orve¢sS, or both.
= eitherue V—-S, orve V-S, or both.

Thus, V—S covers (u, V). =



Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER.
Pf. We show S is an independent set of size k iff V—S is a vertex cover

of size n—k.

—
" Let V-S be any vertex cover of size n—Kk.
" S is of size k.
" Consider an arbitrary edge (u, V) € E.
" V—-Sis avertex cover = eitherueV-S, orveV-S, or both.
= eitheru ¢S, orves, or both.
" Thus, Sis an independent set. =



Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an
integer k, are there <k of these subsets whose union is equal to U?

Sample application.
" m available pieces of software.
" Set U of n capabilities that we would like our system to have.
" The i" piece of software provides the set S; € U of capabilities.
" Goal: achieve all n capabilities using fewest pieces of software.

U={1,273456,7}
: S.={3,7} S,={24}
(Sc={3,4,56}) Si={5}
= Se={1} (Si= {12(37})

a set cover instance

16



One more example

Given the universe U = {1, 2, 3, 4, 5, 6, 7 } and the following sets, which is the

minimum size of a set cover?

U={1,2,34,56,7}
. S,={1,4,6} (S,={16,7} )
(sc={1,2,36}) S4={1,357} |
5.={267}  (5={3.45} ) |

minimum size: 3

17



Vertex cover reduces to set cover

Theorem. VERTEX-COVER <, SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a
SET-COVER instance (U, S, k) that has a set cover of size k iff G has a
vertex cover of size k.

Construction.
" Universe U =E.
" Include one subset for each nodeveV:S,={e € E:eincidenttov }.

O ® e

e, e, oy . U={123456,7}
Sa=1{3,7} Sp,={2,4}
() cs (© | 5={3456} S={5)
e E Se:{l} Sf:{1121617}
el 5
vertex cover instance set cover instance

(k =2) (k = 2)

18



Vertex cover reduces to set cover

Lemma. G =(V, E) contains a vertex cover of size k iff (U, S, k) contains
a set cover of size k.

Pf. = Let X € V be a vertex cover of size k in G. “yes” instances of VERTEX-COVER

" ThenY={Sv/:veX}is asetcoverof size k. = are solved correctly

e, e, oy . U={123456,7}
; S,={3,7} S,={2,4}
(0 c O (={3256}) s.={5}
3 . - Se={1} (sf_{1267})
vertex cover instance set cover instance
(k = 2) (k = 2)
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Vertex cover reduces to set cover

Lemma. G =(V, E) contains a vertex cover of size k iff (U, S, k) contains
a set cover of size k.

Pf. « LetY < S be a set cover of size kin (U, S, k). 1o instances of VERTEx. COVER
" Then X={v:Sy/ €Y }is avertex cover of sizekin G. = are solved correctly

e, e, oy . U={123456,7}
E Sa=1{3,7} Sp,={2,4}
O ce © | (G=(3456)) %={5} :
. % Se={1} (St ={1,2,6,7} )
vertex cover instance (k set cover instance
= 2) (k = 2)

20
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Satistiability

Literal. A Boolean variable or its negation. X; Or X,
Clause. A disjunction of literals. C, =x VX, V x5
Conjunctive normal form (CNF). A propositional ® = CAC,A Cyn C,

formula @ that is a conjunction of clauses.

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

...........................................................................................................

yes instance: x, = true, x, = true, x; = false, x, = false

Key application. Electronic design automation (EDA).

22



Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to P # NP conjecture.

23



3-satistfiability reduces to independent set

Theorem. 3-SAT <p INDEPENDENT-SET.
Pf. Given an instance ® of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k=| @l iff @ is
satisfiable.

Construction.
" G contains 3 nodes for each clause, one for each literal.
" Connect 3 literals in a clause in a triangle.
" Connect literal to each of its negations.

X1 A2 X1

24



3-satistfiability reduces to independent set

Lemma. @ is satisfiable iff G contains an independent set of size k=1 ®! .

Pf. = Consider any satisfying assignment for ®.

" Select one true literal from each clause/triangle. | “ves”instances of 3-Sat
are solved correctly

" This is an independent set of size k=1®!. =

25



3-satistfiability reduces to independent set

Lemma. @ is satisfiable iff G contains an independent set of size k=1 ®! .

Pf. < Let S be independent set of size k.

" S must contain exactly one node in each triangle. “no” instances of 3-SAT

- : . . i are solved correctly
Set these literals to true (and remaining literals consistently).

" All clauses in ® are satisfied. =

26



Review

Basic reduction strategies.
" Simple equivalence: INDEPENDENT-SET =, VERTEX-COVER.
" Special case to general case: VERTEX-COVER <, SET-COVER.
" Encoding with gadgets: 3-SAT <, INDEPENDENT-SET.

Transitivity. If X<pY and Y <, Z, then X<, Z.
Pf idea. Compose the two algorithms.

ExX. 3-SAT <, INDEPENDENT-SET <p VERTEX-COVER <, SET-COVER.

27



Poly-time reductions

constraint satisfaction

INDEPENDENT-SET

a

:

VERTEX-COVER

.
SET-COVER

packing and covering

DIR-HAM-CYCLE

\

HAM-CYCLE

sequencing

3-COLOR

partitioning

SUBSET-SUM

KNAPSACK

numerical

28



DECISION, SEARCH, AND OPTIMIZATION PROBLEMJ<3

Decision problem. Does there exist a vertex cover of size < k?
Search problem. Find a vertex cover of size < k.
Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

29



SEARCH PROBLEMS VS. DECISION PROBLEMS Loq

VERTEX-COVER. Does there exist a vertex cover of size < k?
FIND-VERTEX-COVER. Find a vertex cover of size < k.

Theorem. VERTEX-COVER =p FIND-VERTEX-COVER.

Pf. <, Decision problem is a special case of search problem. -

Pf. >;
To find a vertex cover of size < k:
" Determine if there exists a vertex cover of size < k.
" Find a vertex v such that G- {v} has a vertex cover of size < k— 1.
(any vertex in any vertex cover of size < k will have this property)
" Include v in the vertex cover.
" Recursively find a vertex cover of size< k—-1inG—{v}. =

\

delete v and all incident edges 30



OPTIMIZATION PROBLEMS VS. SEARCH PROBLEI\/IS!:TT{'-

FIND-VERTEX-COVER. Find a vertex cover of size < k.
FIND-MIN-VERTEX-COVER. Find a vertex cover of minimum size.

Theorem. FIND-VERTEX-COVER = FIND-MIN-VERTEX-COVER.
Pf. <, Search problem is a special case of optimization problem. -
Pf. >» To find vertex cover of minimum size:

Binary search (or linear search) for size k™ of min vertex cover.
Solve search problem for given k™. =

31
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