
Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

http://www.cs.pr inceton.edu/~wayne/kleinberg -tardos

8. INTRACTABILITY I

‣ poly-time reductions

http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

8. INTRACTABILITY I

‣ poly-time reductions

SECTION 8.1

Algorithm design patterns and antipatterns

Algorithm design patterns.

・Greedy.

・Divide and conquer.

・Dynamic programming.

・Duality.

・Reductions.

・Local search.

・Randomization.

Algorithm design antipatterns.

・NP-completeness. O(nk) algorithm unlikely.

・PSPACE-completeness. O(nk) certification algorithm unlikely.

・Undecidability. No algorithm possible.

3

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

4

constants tend to be small, e.g., 3 n 2

von Neumann

(1953)

Gödel

(1956)

Edmonds

(1965)

Rabin

(1966)

Cobham

(1964)

Nash

(1955)

Turing machine, word RAM, uniform circuits, …

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

5

yes probably no

shortest path longest path

min cut max cut

2-satisfiability 3-satisfiability

planar 4-colorability planar 3-colorability

bipartite vertex cover vertex cover

matching 3d-matching

primality testing factoring

linear programming integer linear programming

Classify problems

Desiderata. Classify problems according to those that can be solved in

polynomial time and those that cannot.

Provably requires exponential time.

・Given a constant-size program, does it halt in at most k steps?

・Given a board position in an n-by-n generalization of checkers,

can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied

classification for decades.

6

input size = c + log k

using forced capture rule

Poly-time reductions

Desiderata′. Suppose we could solve problem Y in polynomial time.

What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if

arbitrary instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

7

computational model supplemented by special piece

of hardware that solves instances of Y in a single step

instance I

(of X)

solution S to I
Algorithm

for Y

Algorithm for X

Poly-time reductions

Desiderata′. Suppose we could solve problem Y in polynomial time.

What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if

arbitrary instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

Notation. X ≤ P Y.

Note. We pay for time to write down instances of Y sent to oracle

instances of Y must be of polynomial size.

Novice mistake. Confusing X ≤ P Y with Y ≤ P X.

8

Poly-time reductions

Design algorithms. If X ≤ P Y and Y can be solved in polynomial time,

then X can be solved in polynomial time.

Establish intractability. If X ≤ P Y and X cannot be solved in polynomial time,

then Y cannot be solved in polynomial time.

Establish equivalence. If both X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y.

In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

9

8. INTRACTABILITY I

‣ packing and covering problems

SECTION 8.1

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there

a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6 ?

Ex. Is there an independent set of size ≥ 7 ?

Independent set

11

independent set of size 6

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a

subset of k (or fewer) vertices such that each edge is incident to

at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4 ?

Ex. Is there a vertex cover of size ≤ 3 ?

12

vertex cover of size 4

independent set of size 6

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

13

independent set of size 6

vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

・Let S be any independent set of size k.

・V − S is of size n – k.

・Consider an arbitrary edge (u, v) ∈ E.

・S independent ⇒ either u ∉ S, or v ∉ S, or both.

⇒ either u ∈ V − S, or v ∈ V − S, or both.

・Thus, V − S covers (u, v).

14

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET ≡ P VERTEX-COVER.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

・Let V − S be any vertex cover of size n – k.

・S is of size k.

・Consider an arbitrary edge (u, v) ∈ E.

・V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both.

⇒ either u ∉ S, or v ∉ S, or both.

・Thus, S is an independent set.

15

Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an

integer k, are there ≤ k of these subsets whose union is equal to U ?

Sample application.

・m available pieces of software.

・Set U of n capabilities that we would like our system to have.

・The ith
piece of software provides the set Si ⊆ U of capabilities.

・Goal: achieve all n capabilities using fewest pieces of software.

16

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

k = 2

a set cover instance

One more example

Given the universe U = { 1, 2, 3, 4, 5, 6, 7 } and the following sets, which is the

minimum size of a set cover?

17

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 1, 4, 6 } Sb = { 1, 6, 7 }

Sc = { 1, 2, 3, 6 } Sd = { 1, 3, 5, 7 }

Se = { 2, 6, 7 } Sf = { 3, 4, 5 }

minimum size: 3

Vertex cover reduces to set cover

Theorem. VERTEX-COVER ≤ P SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a

SET-COVER instance (U, S, k) that has a set cover of size k iff G has a

vertex cover of size k.

Construction.

・Universe U = E.

・Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

18

vertex cover instance

(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

c

set cover instance

(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains

a set cover of size k.

Pf. Let X ⊆ V be a vertex cover of size k in G.

・Then Y = { Sv : v ∈ X } is a set cover of size k.

19

set cover instance

(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

vertex cover instance

(k = 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

ccff

“yes” instances of VERTEX-COVER

are solved correctly

Vertex cover reduces to set cover

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S, k) contains

a set cover of size k.

Pf. Let Y ⊆ S be a set cover of size k in (U, S, k).

・Then X = { v : Sv ∈ Y } is a vertex cover of size k in G.

20

set cover instance

(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }

Sa = { 3, 7 } Sb = { 2, 4 }

Sc = { 3, 4, 5, 6 } Sd = { 5 }

Se = { 1 } Sf = { 1, 2, 6, 7 }

vertex cover instance (k

= 2)

e1

e2 e3

e5

e4

e6

e7

a b

e

f

d

ccff

“no” instances of VERTEX-COVER

are solved correctly

8. INTRACTABILITY I

‣ constraint satisfaction problems

SECTION 8.2

Satisfiability

Literal. A Boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form (CNF). A propositional

formula Φ that is a conjunction of clauses.

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

Key application. Electronic design automation (EDA).

22

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to P ≠ NP conjecture.

23

3-satisfiability reduces to independent set

Theorem. 3-SAT ≤ P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k = ⎜Φ⎜ iff Φ is

satisfiable.

Construction.

・G contains 3 nodes for each clause, one for each literal.

・Connect 3 literals in a clause in a triangle.

・Connect literal to each of its negations.

24

k = 3

G

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size k = ⎜Φ⎜.

Pf. Consider any satisfying assignment for Φ.

・Select one true literal from each clause/triangle.

・This is an independent set of size k = ⎜Φ⎜.

25

k = 3

G

“yes” instances of 3-SAT

are solved correctly

3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size k = ⎜Φ⎜.

Pf. Let S be independent set of size k.

・S must contain exactly one node in each triangle.

・Set these literals to true (and remaining literals consistently).

・All clauses in Φ are satisfied.

26

k = 3

G

“no” instances of 3-SAT

are solved correctly

Review

Basic reduction strategies.

・Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.

・Special case to general case: VERTEX-COVER ≤ P SET-COVER.

・Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

Pf idea. Compose the two algorithms.

Ex. 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.

27

Poly-time reductions

28

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

numerical

constraint satisfaction

packing and covering sequencing partitioning

3-SAT

DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

Decision problem. Does there exist a vertex cover of size ≤ k ?

Search problem. Find a vertex cover of size ≤ k.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

29

SEARCH PROBLEMS VS. DECISION PROBLEMS

VERTEX-COVER. Does there exist a vertex cover of size ≤ k ?

FIND-VERTEX-COVER. Find a vertex cover of size ≤ k.

Theorem. VERTEX-COVER ≡ P FIND-VERTEX-COVER.

Pf. ≤ P Decision problem is a special case of search problem.

Pf. ≥ P

To find a vertex cover of size ≤ k :

・Determine if there exists a vertex cover of size ≤ k.

・Find a vertex v such that G − { v } has a vertex cover of size ≤ k − 1.

(any vertex in any vertex cover of size ≤ k will have this property)

・Include v in the vertex cover.

・Recursively find a vertex cover of size ≤ k − 1 in G − { v }.

30delete v and all incident edges

OPTIMIZATION PROBLEMS VS. SEARCH PROBLEMS

FIND-VERTEX-COVER. Find a vertex cover of size ≤ k.

FIND-MIN-VERTEX-COVER. Find a vertex cover of minimum size.

Theorem. FIND-VERTEX-COVER ≡ P FIND-MIN-VERTEX-COVER.

Pf. ≤ P Search problem is a special case of optimization problem.

Pf. ≥ P To find vertex cover of minimum size:

・Binary search (or linear search) for size k*
of min vertex cover.

・Solve search problem for given k*
.

31

	Slide 1: 8. Intractability I
	Slide 2: 8. Intractability I
	Slide 3: Algorithm design patterns and antipatterns
	Slide 4: Classify problems according to computational requirements
	Slide 5: Classify problems according to computational requirements
	Slide 6: Classify problems
	Slide 7: Poly-time reductions
	Slide 8: Poly-time reductions
	Slide 9: Poly-time reductions
	Slide 10: 8. Intractability I
	Slide 11: Independent set
	Slide 12: Vertex cover
	Slide 13: Vertex cover and independent set reduce to one another
	Slide 14: Vertex cover and independent set reduce to one another
	Slide 15: Vertex cover and independent set reduce to one another
	Slide 16: Set cover
	Slide 17: One more example
	Slide 18: Vertex cover reduces to set cover
	Slide 19: Vertex cover reduces to set cover
	Slide 20: Vertex cover reduces to set cover
	Slide 21: 8. Intractability I
	Slide 22: Satisfiability
	Slide 23: Satisfiability is hard
	Slide 24: 3-satisfiability reduces to independent set
	Slide 25: 3-satisfiability reduces to independent set
	Slide 26: 3-satisfiability reduces to independent set
	Slide 27: Review
	Slide 28: Poly-time reductions
	Slide 29: Decision, search, and optimization problems
	Slide 30: Search problems vs. decision problems
	Slide 31: Optimization problems vs. search problems

