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3-SAT poly-time reduces to all of

these problems (and many, many more)

Recap
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P

Decision problem.

・Problem X is a set of strings.

・Instance s is one string.

・Algorithm A solves problem X :

Def.  Algorithm A runs in polynomial time if for every string s, A(s)

terminates in ≤ p( ⎢s ⎢) “steps,” where p(⋅) is some polynomial function. 

Def.  P = set of decision problems for which there exists a poly-time algorithm.
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length of s

problem PRIMES: { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … }

instance s: 592335744548702854681

algorithm: Agrawal–Kayal–Saxena (2002)

on a deterministic

Turing machine



P.  Decision problems for which there exists a poly-time algorithm.

problem description poly-time algorithm yes no

MULTIPLE Is x a multiple of y ? grade-school division 51, 17 51, 16

REL-PRIME Are x and y relatively prime ? Euclid’s algorithm 34, 39 34, 51

PRIMES Is x prime ?
Agrawal–Kayal–

Saxena

53 51

EDIT-DISTANCE

Is the edit distance between 

x and y less than 5 ?
Needleman–Wunsch

niether 

neither
acgggt ttttta

L-SOLVE

Is there a vector x that

satisfies Ax = b ?

Gauss–Edmonds 

elimination

U-CONN

Is an undirected graph

G connected?
depth-first search

Some problems in P

5



NP

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s :

s ∈ X iff there exists a string t such that C(s, t) = yes.

Def.  NP = set of decision problems for which there exists a poly-time certifier.

・C(s, t) is a poly-time algorithm.

・Certificate t is of polynomial size:  ⎢t ⎢ ≤  p(⎢s ⎢) for some polynomial p(⋅).

6

“certificate” or “witness”

problem COMPOSITES: { 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, …. }

instance s: 437669

certificate t: 541

certifier C(s, t): grade-school division

437,669 = 541 × 809



Certifiers and certificates:  satisfiability

SAT.  Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT.  SAT where each clause contains exactly 3 literals.

Certificate.  An assignment of truth values to the Boolean variables.

Certifier.  Check that each clause in Φ has at least one true literal.

Conclusions.  SAT ∈ NP, 3-SAT ∈ NP.
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instance s

certificate t x1 = true,  x2 = true,  x3 = false,  x4 = false



Certifiers and certificates:  Hamilton path

HAMILTON-PATH.  Given an undirected graph G = (V, E), does there exist a 

simple path P that visits every node?

Certificate.  A permutation π of the n nodes.

Certifier.  Check that π  contains each node in V exactly once,

and that G contains an edge between each pair of adjacent nodes.

Conclusion.  HAMILTON-PATH ∈ NP.

instance s certificate t

8



Two problems that probably do not belong to NP

CHECKERS. Given a board position in an n-by-n generalization of checkers, can 

black guarantee a win?

CO-LONGEST-PATH.  Given an undirected graph G = (V, E), is the length of the 

longest simple path ≤ k ?

9



NP.  Decision problems for which there exists a poly-time certifier.

problem description poly-time algorithm yes no

L-SOLVE

Is there a vector x

that satisfies Ax = b ?

Gauss–Edmonds 

elimination

COMPOSITES Is x composite ?

Agrawal–Kayal–

Saxena

51 53

FACTOR

Does x have a nontrivial factor 

less than y ?
(56159, 50) (55687, 50)

SAT

Given a CNF formula, does it have 

a satisfying truth assignment?

¬ x1 ∨ ¬ x2 ∨ ¬ x3 

¬ x1 ∨ ¬ x2 ∨ ¬ x3 

¬ x1 ∨ ¬ x2 ∨ ¬ x3

¬ x1 ∨ ¬ x2 

¬ x1 ∨ ¬ x2 

¬ x1 ∨ ¬ x2 

HAMILTON-

PATH

Is there a simple path between

u and v that visits every node?

Some problems in NP
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P, NP, and EXP

P.    Decision problems for which there exists a poly-time algorithm.

NP.  Decision problems for which there exists a poly-time certifier.

EXP.  Decision problems for which there exists an exponential-time algorithm.

Proposition.  P ⊆ NP.

Pf.  Consider any problem X ∈ P.

・By definition, there exists a poly-time algorithm A(s) that solves X.

・Certificate t = ε, certifier C(s, t) = A(s).   

Proposition.  NP ⊆ EXP.

Pf.  Consider any problem X ∈ NP.

・By definition, there exists a poly-time certifier C(s, t) for X,

where certificate t satisfies ⎢t ⎢ ≤  p(⎢s ⎢) for some polynomial p(⋅).

・To solve instance s, run C(s, t) on all strings t with ⎢t ⎢ ≤  p(⎢s ⎢).

・Return yes iff C(s, t) returns yes for any of these potential certificates.  

Fact.  P ≠  EXP  ⇒ either P ≠ NP, or NP ≠ EXP, or both.
11



The main question:  P vs. NP

Q.  How to solve an instance of 3-SAT with n variables?

A.  Exhaustive search:  try all 2n
truth assignments.

Q.  Can we do anything substantially more clever?

Conjecture.  No poly-time algorithm for 3-SAT.

12

“intractable”



The main question:  P vs. NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

If yes…  Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR,  …

If no…  No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, …

Consensus opinion.   Probably no.

EXP NP

P

If  P ≠ NPIf  P = NP

EXP

P = NP

13



Possible outcomes

P ≠ NP

14

“ I conjecture that there is no good algorithm for the traveling salesman

problem. My reasons are the same as for any mathematical conjecture:  

(i) It is a legitimate mathematical possibility and (ii) I do not know.”  

— Jack Edmonds 1966

“ In my view, there is no way to even make intelligent guesses about the

answer to any of these questions. If I had to bet now, I would bet that

P is not equal to NP. I estimate the half-life of this problem at 25–50

more years, but I wouldn’t bet on it being solved before 2100. ”

— Bob Tarjan (2002)



Possible outcomes

P = NP

15

“  I think that in this respect I am on the loony fringe of the mathematical

community: I think (not too strongly!) that P=NP and this will be

proved within twenty years. Some years ago, Charles Read and I

worked on it quite bit, and we even had a celebratory dinner in a

good restaurant before we found an absolutely fatal mistake. ”

— Béla Bollobás (2002)

“ In my opinion this shouldn’t really be a hard problem; it’s just

that we came late to this theory, and haven’t yet developed any

techniques for proving computations to be hard.  Eventually, it will

just be a footnote in the books. ” — John Conway



Other possible outcomes

P = NP, but only Ω(n100) algorithm for 3-SAT.

P ≠ NP, but with O(nlog*n) algorithm for 3-SAT.

P = NP is independent (of ZFC axiomatic set theory).

16

“ It will be solved by either 2048 or 4096. I am currently somewhat

pessimistic. The outcome will be the truly worst case scenario:

namely that someone will prove P = NP because there are only

finitely many obstructions to the opposite hypothesis; hence there

exists a polynomial time solution to SAT but we will never know

its complexity! ” — Donald Knuth



Millennium prize

Millennium prize.  $1 million for resolution of P ≠ NP problem. 

17



Some writers for the Simpsons and Futurama.

・J. Steward Burns.  M.S. in mathematics (Berkeley ’93).

・David X. Cohen.  M.S. in computer science (Berkeley ’92).

・Al Jean.  B.S. in mathematics. (Harvard ’81).

・Ken Keeler.  Ph.D. in applied mathematics (Harvard ’90).

・Jeff Westbrook.  Ph.D. in computer science (Princeton ’89).

P vs. NP and pop culture

Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox
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Princeton CS Building, West Wall, Circa 2001
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Princeton CS Building, West Wall, Circa 2001
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Polynomial transformations

Def.  Problem X polynomial (Cook) reduces to problem Y if arbitrary 

instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

Def.  Problem X polynomial (Karp) transforms to problem Y if given any 

instance x of X, we can construct an instance y of Y such that x is a yes

instance of X iff y is a yes instance of Y. 

Note.  Polynomial transformation is polynomial reduction with just one call 

to oracle for Y, exactly at the end of the algorithm for X. Almost all previous 

reductions were of this form. 

Open question.  Are these two concepts the same with respect to NP?

we require ⎢y⎢ to be of size polynomial in ⎢x⎢

we abuse notation ≤
P

and blur distinction

22



NP-complete

NP-complete.  A problem Y ∈ NP with the property that for every

problem X ∈ NP, X ≤ P Y.

Proposition.  Suppose Y ∈ NP-complete. Then, Y ∈ P iff P = NP.

Pf.  ⇐ If P = NP, then Y ∈ P because Y ∈ NP.

Pf.  ⇒ Suppose Y ∈ P.

・Consider any problem X ∈ NP.  Since X ≤ P Y, we have X ∈ P.

・This implies NP ⊆ P.

・We already know P ⊆ NP. Thus P = NP.  

Fundamental question. Are there any “natural” NP-complete problems?

23



The “first” NP-complete problem

Theorem. [Cook 1971, Levin 1973] SAT ∈ NP-complete.

24



Establishing NP-completeness

Remark.  Once we establish first “natural” NP-complete problem,

others fall like dominoes.

Recipe.  To prove that Y ∈ NP-complete:

・Step 1.  Show that Y ∈ NP.

・Step 2.  Choose an NP-complete problem X.

・Step 3.  Prove that X ≤ P Y. 

Proposition.  If X ∈ NP-complete, Y ∈ NP, and X ≤ P Y, then Y ∈ NP-complete.

Pf. Consider any problem W ∈ NP.  Then, both W ≤ P X and X ≤ P Y.

・By transitivity, W ≤ P Y. 

・Hence Y ∈ NP-complete.  by definition of

NP-complete

25

by assumption



SAT poly-time reduces to all of

these problems (and many, many more)

Implications of Karp

26

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

SAT



SAT

Implications of Cook–Levin
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3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

All of these problems (and many, many more)

poly-time reduce to SAT.



Implications of Karp + Cook–Levin
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3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

SAT

All of these problems are NP-complete; they are 

manifestations of the same really hard problem.
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I’D TELL YOU ANOTHER

NP-COMPLETE JOKE,

BUT ONCE YOU’VE HEARD ONE,

YOU’VE HEARD THEM 

ALL.



Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

・Packing/covering problems:  SET-COVER, VERTEX-COVER,INDEPENDENT-SET.

・Constraint satisfaction problems:  CIRCUIT-SAT, SAT, 3-SAT.

・Sequencing problems:  HAMILTON-CYCLE, TSP.

・Partitioning problems: 3D-MATCHING, 3-COLOR.

・Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice.  Most NP problems are known to be either in P or NP-complete.

NP-intermediate?  FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, ….

Theorem. [Ladner 1975] Unless P = NP, there exist problems in NP that

are neither in P nor NP-complete.
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More hard computational problems

Garey and Johnson.  Computers and Intractability.

・Appendix includes over 300 NP-complete problems.

・Most cited reference in computer science literature.
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More hard computational problems

Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout.

Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley–Shubik voting power.

Recreation.  Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics.  Optimal experimental design.

32
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Asymmetry of NP

Asymmetry of NP.  We need short certificates only for yes instances.

Ex 1.  SAT vs. UN-SAT.

・Can prove a CNF formula is satisfiable by specifying an assignment.

・How could we prove that a formula is not satisfiable? 

34

SAT.  Given a CNF formula Φ, is there a satisfying truth assignment?

UN-SAT.  Given a CNF formula Φ, is there no satisfying truth assignment?



Asymmetry of NP

Asymmetry of NP.  We need short certificates only for yes instances.

Ex 2.  HAMILTON-CYCLE vs. NO-HAMILTON-CYCLE.

・Can prove a graph is Hamiltonian by specifying a permutation.

・How could we prove that a graph is not Hamiltonian?

35

HAMILTON-CYCLE.  Given a graph G = (V, E), is there a simple 

cycle Γ that contains every node in V ?

NO-HAMILTON-CYCLE.  Given a graph G = (V, E), is there no 

simple cycle Γ that contains every node in V ?



Asymmetry of NP

Asymmetry of NP.  We need short certificates only for yes instances.

Q.  How to classify UN-SAT and NO-HAMILTON-CYCLE ?

・SAT ∈ NP-complete and SAT ≡ P UN-SAT.

・HAMILTON-CYCLE ∈ NP-complete and HAMILTON-CYCLE ≡ P NO-HAMILTON-CYCLE.

・But neither UN-SAT nor NO-HAMILTON-CYCLE are known to be in NP.

36



NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.

Ex.  SAT, HAMILTON-CYCLE, and COMPOSITES.

Def.  Given a decision problem X, its complement X is the same problem 

with the yes and no answers reversed.

Ex.  X = { 4, 6, 8, 9, 10, 12, 14, 15, … }

X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP.  Complements of decision problems in NP.

Ex.  UN-SAT, NO-HAMILTON-CYCLE, and PRIMES.

37

ignore 0 and 1

(neither prime nor composite)



NP = co-NP ?

Fundamental open question.  Does NP = co-NP?

・Do yes instances have succinct certificates iff no instances do?

・Consensus opinion:  no.

Theorem.  If NP ≠ co-NP, then P ≠ NP.

Pf idea.

・P is closed under complementation.

・If P = NP, then NP is closed under complementation.

・In other words, NP = co-NP.

・This is the contrapositive of the theorem.
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