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Decision problem.
" Problem X is a set of strings.
" Instance sis one string.

" Algorithm A solves problem X: A(s) = { yes ifscX

no ifs¢X

Def. Algorithm A runs in polynomial time if for every string s, A(s)
terminates in < p(lsl) “steps,” where p(-) is some polynomial function.
length of s

Def. P = set of decision problems for which there exists a poly-time algorithm.

I

on a deterministic
e e e e m e e e e e e e e emeoeoeoeoeoeoeeeeaeemeoeoeoeoeoeoeoeoeaesesseseseososososoeos : Turing machine

problem PRIMES: { 2, 3, 5,7, 11, 13,17, 19, 23, 29, 31, ... }
instance s: 592335744548702854681
algorithm: Agrawal-Kayal-Saxena (2002)



Some problems in P

P. Decision problems for which there exists a poly-time algorithm.

problem

description

poly-time algorithm

MULTIPLE

REL-PRIME

PRIMES

EDIT-DISTANCE

L-SOLVE

U-CONN

Is x @ multiple of y?

Are x and y relatively prime ?

Is X prime ?

Is the edit distance between
x and y less than 5 ?

Is there a vector x that
satisfies Ax=Db?

Is an undirected graph
G connected?

grade-school division

Euclid’s algorithm

Agrawal-Kayal-

Saxena

Needleman-Wunsch

Gauss-Edmonds

elimination

depth-first search

51, 17 51, 16
34, 39 34, 51
53 51

niether
_ acgggt ttttta

neither
0 1 1 4 1 00 1
2 4 2,12 11 1], |1
0 3 15| |36 o1 1| |1

oo o P



NP

Def. Algorithm C(s, t) is a certifier for problem X if for every string s:
s € X iff there exists a string t such that C(s, t) = yes.

Def. NP = set of decision problems for which there exists a poly-time certifier.
" C(s, 1) is a poly-time algorithm.
" Certificate tis of polynomial size: Itl < p(isl) for some polynomial p(-).

\

“certificate” or “witness”

problem COMPOSITES: 14,6,8,9,10, 12, 14, 15, 16, 18, 20, .... }
instance s: 437669
certificate t: 541 —— 437.669 = 541 x 809

certifier C(s, t): grade-school division

....................................................................................................................................................



Certifiers and certificates: saftisfiability

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in ® has at least one true literal.

certificatet X1 = true, X2 = true, X3 = false, x4 = false

.......................................................................................................................................................................

Conclusions. SAT € NP, 3-SAT € NP.



Certifiers and certificates: Hamilton path

HAMILTON-PATH. Given an undirected graph G = (V, E), does there exist a
simple path P that visits every node?

Certificate. A permutation = of the n nodes.

Certifier. Check that = contains each node in V exactly once,
and that G contains an edge between each pair of adjacent nodes.

instance s certificate t

Conclusion. HAMILTON-PATH € NP.



Two problems that probably do not belong to NP

CHECKERS. Given a board position in an n-by-n generalization of checkers, can
black guarantee a win?

CO-LONGEST-PATH. Given an undirected graph G = (V, E), is the length of the
longest simple path <k?




Some problems in NP

NP. Decision problems for which there exists a poly-time certifier.

problem description poly-time algorithm

L-SOLVE Is there a vector x Gauss-Edmonds g i _21 | ; 1 ? ? | 1
that satisfies Ax=b? elimination 0 3 15| |36 o1 1| 1
Agrawal-Kayal-
COMPOSITES Is x composite ? J Y 51 53
Saxena
Does x have a nontrivial factor 999
FACTOR less than y ? (56159, 50) (55687, 50)
: ; X1V X2V X3 -1 X2
SAT Given a_t CNF formula, d.oes it have 999 VAV X VX
a satisfying truth assignment? ° e e aX1VaxXeV o X3 X1V X2
HAMILTON- Is there a simple path between

PATH u and v that visits every node? ?2? % Cﬁ\@

10



P, NP, and EXP

P. Decision pro
NP. Decision pro
EXP. Decision pro

D
D

D

ems for w
ems for w

NIC
NIC

ems for w

Proposition. P © NP.
Pf. Consider any problem X € P.

NIC

Nt
Nt

Nt

nere exists a poly-time algorithm.
nere exists a poly-time certifier.

" By definition, there exists a poly-time algorithm A(s) that solves X.
" Certificate t=¢, certifier C(s, t) = A(s). -

Proposition. NP < EXP.
Pf. Consider any problem X € NP.

" By definition, there exists a poly-time certifier C(s, t) for X,

where certificate t satisfies Itl < p(Isl) for some polynomial p(-).

" To solve instance s, run C(s, t) on all strings t with Itl < p(lsl).

" Return yes iff C(s, t) returns yes for any of these potential certificates. -

Fact. P £ EXP = either P # NP, or NP # EXP, or both.

nere exists an exponential-time algorithm.

11



The main question: P vs. NP

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.

_ J
Y

“intractable”

Found
=

/ Congratulations,\ « ' S
: g
it only took you

65298 seconds £
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The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]
Is the decision problem as easy as the certification problem?

NP

o

If P=NP If P# NP

If yes... Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR, ...

If no... No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, ...

Consensus opinion. Probably no.

13



Possible outcomes

P~ NP

“ I conjecture that there is no good algorithm for the traveling salesman

problem. My reasons are the same as for any mathematical conjecture:

(1) It is a legitimate mathematical possibility and (ii) I do not know.”
— Jack Edmonds 1966

“ In my view, there is no way to even make intelligent guesses about the
answer to any of these questions. If | had to bet now, | would bet that
P Is not equal to NP. | estimate the half-life of this problem at 25-50

more years, but I wouldn’t bet on it being solved before 2100. ”
— Bob Tarjan (2002)

14



Possible outcomes

P

NP

“ I think that in this respect I am on the loony fringe of the mathematical
community: | think (not too strongly!) that P=NP and this will be
proved within twenty years. Some years ago, Charles Read and |
worked on it quite bit, and we even had a celebratory dinner in a

good restaurant before we found an absolutely fatal mistake. ’

— Bela Bollobas (2002)

“ In my opinion this shouldn’t really be a hard problem; it’s just
that we came late to this theory, and haven’t yet developed any
techniques for proving computations to be hard. Eventually, it will

just be a footnote in the books. 7 — John Conway

15



Other possible outcomes

P = NP, but only Q(n*®) algorithm for 3-SAT.
P = NP, but with O(n'®™") algorithm for 3-SAT.

P = NP is independent (of ZFC axiomatic set theory).

“ It will be solved by either 2048 or 4096. I am currently somewhat
pessimistic. The outcome will be the truly worst case scenario:
namely that someone will prove P = NP because there are only
finitely many obstructions to the opposite hypothesis; hence there
exists a polynomial time solution to SAT but we will never know

its complexity! 7 — Donald Knuth

16



Millennium prize

Millennium prize. $1 million for resolution of P = NP problem.

Wmted us ovtanis mpmist e 3hne Binee Mo R I
ﬁ-b“h-“*‘:’“
- Y—_a - tiea

$1,000,000
REwWAaRD

_—Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS

In order to celebrate mathematics in the new millennium, The Clay
Mathematics Institute of Cambridge, Massachusetts {CMI) has named seven
Prize Problems. The Scientific Advisaory Board of CMI selected these problems,
focusing on important classic questions that have resisted solution over the
years. The Board of Directors of CMI designated a $7 million prize fund for the
solution to these problems, with $1 million allocated to each. During the
Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy
Gowers presented a lecture entitled The Importance of Mathematics, aimed for
the general public, while John Tate and Michael Atiyvah spoke on the problems.
The CMI invited specialists to formulate each problem.

SCHOLARS PUBLICATIONS

Birch and Swinnerton-Dyver
Conjecture
Hodge Conjecture

Mavier-Stokes Equations
P vs NP

Poincaré Conjecture

Riemann Hypothesis

Yang-Mills Theory

Rules

Millennium Meeting Videos

17



P vs. NP and pop culture

Some writers for the Simpsons and Futurama.
" J. Steward Burns. M.S. in mathematics (Berkeley ’'93).
" David X. Cohen. M.S. in computer science (Berkeley '92).
" Al Jean. B.S. in mathematics. (Harvard ’'81).
" Ken Keeler. Ph.D. in applied mathematics (Harvard ’90).
" Jeff Westbrook. Ph.D. in computer science (Princeton '89).

Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox

18



-

A,

.
\
\ 5
N\
Sy .
Y
4_...
~
. .’o
-
i A i /
— ‘\ - ‘\ g
" . ®
.v
A
~
L]
ﬂb?
- -— - —
« i \ - &
. = A
2
"
o Bl i

~ -
- "




Princeton CS Building, West Wall, Circa 2001

1010000

0111101

1001110

1010000

0111111




8. INTRACTABILITY |l

» NP-complete

aValBlal a
1111
B 1

I

]

| .
11..

iJ

JON KLEINBERG - EVA TARDOS

SECTION 8.4



Polynomial transformations

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary
instances of problem X can be solved using:

" Polynomial number of standard computational steps, plus

" Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any
instance x of X, we can construct an instance y of Y such that x is a yes
instance of X iff y is a yes instance of Y. [

we require |y| to be of size polynomial in |x|

Note. Polynomial transformation is polynomial reduction with just one call
to oracle for Y, exactly at the end of the algorithm for X. Almost all previous
reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

|

we abuse notation <, and blur distinction
22



NP-complete

NP-complete. A problem Y € NP with the property that for every
problem X € NP, X<, Y.

Proposition. Suppose Y € NP-complete. Then, Y € P iff P = NP.
Pf. &« If P= NP, thenY € P because Y € NP.
Pf. = Suppose Y € P.
" Consider any problem X € NP. Since X<pY, we have X € P.
" This implies NP < P.
" We already know P € NP. Thus P = NP. -

Fundamental question. Are there any “natural” NP-complete problems?

23



The “first” NP-complete problem

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be '"reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced'" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of
strings means a set of strings on
some Elxed, large, finite alphabet I.
This alphabet is large enough to in-
clude symbols for all sets described
here. All Turing machines are deter-

ministic recognition devices, unless
the contrary is explicitly stated.

1. Tautologies and Polynomial Re-
Reducibility.

Let us fix a formalism for
the propositional calculus in
which formulas are written as
strings on E. Since we will re-
quire infinitely many proposition
symbols (atoms), each such symbol
will consist of a member of ¥
followed by a number in binary
notation to distinguish that
symbol. Thus a formula of length
n can only have about n/logn
distinct function and predicate
symbols., The logical connectives
are § (and), v (or), and 7 (not).

The set of tautologies
(denoted by { tautologies}) is a

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle'") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [1].

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguis%ea states called
the query state, yes state, and no
state, respectively. If M 1is a
query machine and T is a set of
strings, then a T-computation of M
is a computation of ~M In which
initially M is in the initial
state and has an input string w on
its input tape, and each time M
assumes the query state there is a
string u on the query tape, and
the next state M assumes is the
yes state if wueT and the no state
if ufT. We think of an "oracle",

which knows T, placing M in the
yes state or no state.

Definition

A set S of strings is P-redu-
cible (P for polynomial) to a set
T of strings iff there is some
query machine M and a polynomial
Q(n) such that for each input string
w, the T-computation of M with in-
put w halts within Q(|w]|) steps
(|w| is the length of w),and ends
in an accepting state iff weS,

It is not hard to see that
P-reducibility is a transitive re-
lation. Thus the relation E on

Theorem. [Cook 1971, Levin 1973] SAT € NP-complete.

IPOBJEMBI HEPEJAYH HHOOPMAIINA

Tom IX 1973 Buin. 3

KPATRHE COOBIDEH HA

YIK 519.14
YHUBEPCAJIDHBIE 3AJIAYH IIEPEBOPA
J. A, JLesun

B crarse paccMaTpuBaeTCA HECKOJBKO H3IBECTHBIX MAacCOBBIX 3aja4q
(tl]Ul:lUGOpllOl'U THOA» H AOKA3BIBACTCH, YTO ITH 3aja4l MOHHO pellaTh JHIIL
da Takoe BpeM#dA, 3a KOTOpOe MOJKHO pellaTh BOOGH.{(! a10051e daja4y yrasaH-
HOro THOA.

llocne yTOUHEHMA NOHATHA aaropuiMa Oblla JoKasaHa aJrOpHTMHYECKan Hepaspe-
AUNMOCTL PAJA KJACCMYECKUX MaccOBHIX npobieMm (Hampumep, mpobieM To:JecTBa aJe-
MEHTOB TPy, TOMEOMOP{(HOCTH MHOr000pa3Mil, pa3peliuMocTH AHoMaHTOBLX ypaBHeHHI
u apyrux). Tem campiM OblJl CHAT BOIPOC 0 HAXOMKICHUM IPAKTHYECKOTO cHOCODA MX pe-
wennn.  OJUAKO CyLIecTBOBAHMe AJCOPUTMOB Jif pelleHus JPYruX 3ajay He cHUMaeT
JUISL HIX aHAJOrHYHOTO BONpoca H3-3a (panTacTudecki Goabiioro obbema padoTsl, mpeamil-
-CBHIBACMOTO STHMH anropnTMaMi, TakoBa CHTyanii ¢ TaK Ha3blBACMEIMHE IepeGOPHBIMHE 3a-
AadaMu: MUHAMH3AUMHE OyaeBLIX (QYHKOHi, NolcKa AOKA3aTelLCTE OPAHMYEHHON JJHHLL,
BeIAcHeHNA n3oMopdHOCTH rpadioB M gpyruMu. Bee 9TH 3aJa4l PelIAOTCA TPUBHAILHBIMU
AJTOPATMAMH, COCTOALMUMU B nepebope BeeX BoamozknocTeil. OHAKO 9TH aJrOPHTMEI Tpe-
6y10T SKCHOHEHLHAJLHOTO BPeMEHH pafoThl # § MATEMATHKOB CHOMKILAOCH yOenjeHHe, 4TO
GoJee NPOCTHIe AJTOPHTMEL s HUX HEBO3MO/KHEL BHLI HOJYYeH PAJ CePLe3HBIX apryMen-
TOB B IOJAL3Y ero cupasefausocTn (eM.[! 2]), oguako JoxkasaTs 8TO yTBep:JeHNe He yjAa-
Jock nHKoMy. (Hanpumep, Ao cHX nop He J0Ka3ano, 9To A HaXO:KICHHA MAaTeMaTHYeCKHX
JIOKa3aTeNbCTB HYHKHO G0ablIe BPeMCIH, 4eM /A HX HPOBCPKH.)

OpHaKo ecaH NPeAnoa0KHTh, 4T0 BooDINe cymecTByeT KaRaA-Hubyab (XoTa Obl HCKYC-
CTBCHHO ITOCTPOEHHAA) MaccoBas 3afada nepedOpHOro THIA, HepadpeliiMas HPOCTHIME
(B cMpicae o0beMa BEIYHCACHHI) AJIrOpMTMaMi, TO MOKHO HOKA3aTh, YTO 3THM ’Ke CBOIl-
CTBOM 00JIAJIAl0T ¥ MHOTHE «KJaccMYcckuey Iepefopubic 3aJadun (B TOM 4HcAe 3afada MM-
HUMIBaLMH, 3ajla4a NOMCKA JIOKA3aTCHLCTE M Jp.). BB 9TOM M COCTOAT OCHOBHEIE Pe3dyib-
TATHl CTATEHH,

Gyurpnu f(r) 1 g(r) OyaeM Ha3bpBaTL CPaBHUMBIMH, eCIH IIPH HEKOTOpOM k

fln) < (g(n) +2)* 1 g(n) < (f(n) +2)"
Ananorirano dyieM MOHUMATL TEPMUH «MEHBIIE HIH CPABHIMO».

Onpepgenenne. 3agaveir mepeGopuoro THna (wan mpocro mepeGopHoil sajgadveii)
OyAeM HA3LIBATL 3aa9y BHAA (U0 JANHOMY z MAGTH Kakoe-WAOYAL y AJHHEL, CPABHAMOMK
¢ JuuHoil x, Takoe, yro Bumoansercs A (z, y)», rame A(z, y) — Kakoe-Hubyan cBoiicTBO,
IPOBEPACMOEe aATOPHTMOM, BpeMs padoTsl KOTOporo cpasuumo ¢ aamuoi z. (Ilog aaro-
PUTMOM 3J[ECh MOMKHO HOHMMATh, HanpuMep, aaropuTvel HoiMoroposa — YceneHcKoro uiam
mamuunl TeIOpHHra, HIH HOPMajbHBle aJTOPHTMBI; r, ¥ — ABOMYHBIe cJoBa). Keasume-
pebopHoii dajadeil OyaeM HasbBaTH 3ajlady BHIACHEHNs, CYIIECTBYET JiI TAaKOe .

MEr paccMoTpuM IIecTh 3a/1a¥ STHX THHNOB, PaccMaTpuBaeMEle B HHX 0GBEKTH KOJH-
PyloTCA ecTecTBEHHBIM 00pa3oM B BHAe ABOHYHBIX ciaoB. Ilpu sroM BLIGOp ecTecTBeHHO
KOJHPOBKH He CYIECTBCH, Tak Kak BCe OHH 0T CPABHMMBIC JUIMHEL KOIOB.

Jadava 1. 3ajlaHbl COMCKOM KOHEYHOEe MHOKECTBO M HOKpHITHE ero 500-aieMeHTHBIME
noamuokectsaMu, HaifTn mogmoxpsiTHe 3alaHHOi MON[HOCTH (COOTBETCTBEHHO BBIAACHUTE
CYIIECTRBYET JIM OHO).

Jadaua 2. Tabamudo sagmama wacTmaman Oyxesa ¢ymxnua, Halito sagaEmEoro paamepa
JM3BIHKTHBHY HOPMAlbHYK (DOPMY, PEAJM3YIOMYI0 3Ty (DYHKNMIO B 00JacTH ompeje-
JIeHUs (COOTBETCTBEHHO BEUACHHUTH CYLIECTBYET JM OHA).

3adaua 3. BEIACHATH, BRIBOJMMA WJH ONpPOBEP/RHMMA Jlannasg (JOpPMy/Ia HCUNCHEHHI BHI-
ckaasisannit. (Mam, 410 TO e caMoe, paBHA JH KOHCTaHTe janHas Oyaesa (opyyaa.)

Jdadaua 4. Jlans pga rpada. Haitti romomopusm omioro ua Apyroii (BBIACHUTL €ro

CyUlecTBOBaKNE).

Badaua 5. [lansr pBa rpadha. Haiiti maomopdmam opgmoro B Apyroil (Ha ero 9acTs).
Jadaua 6. PaccMaTpUBAOTCA MATPUIEI M3 Nexbix uncena ot 1 1o 100 1 mekoTopoe ycao-
BHE O TOM, KAKHE UMcja B HHX MOFYT COCEJCTBOBATEL IO BEPTHKAAN M KakHe IO TOPH3OH-
TaJn. 3ajaHLl YHMCIA Ha IpaEmie M TpeOyercs OPOJOMMKNATL HX Ha BCIO MATPHIY € CO-

BawIenneM yeI0BH,

24



Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem,
others fall like dominoes.

Recipe. To prove that Y € NP-complete:
" Step 1. Show that Y € NP.
" Step 2. Choose an NP-complete problem X.
" Step 3. Prove that X<;Y.

Proposition. If X € NP-complete, Y € NP, and X<, Y, then Y € NP-complete.
Pf. Consider any problem W € NP. Then, both W<, X and X<,Y.
" By transitivity, W<, Y. ] ]

" Hence Y € NP-Complete_ . by definition of by assumption
NP-complete

25



Implications of Karp
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SAT poly-time reduces to all of

these problems (and many, many more)
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Implications of Cook-Levin

Q
@5 &(’
<3<°$ e&
w &€
A\
L g
INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE KNAPSACK

All of these problems (and many, many more)
SET-COVER poly-time reduce to SAT.

27



Implications of Karp + Cook-Levin

INDEPENEENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM

VERTEX:COVER HAM-CYCLE KNAPSACK

All of these problems are NP-complete; they are
SET-COVER manifestations of the same really hard problem.

28



I’'D TELL YOU ANOTHER
NP-COMPLETE JOKE,
BUT ONCE YOU’VE HEARD ONE,

YOU’VE HEARD THEM
ALL.



Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.
" Packing/covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-SET.
" Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.
" Sequencing problems: HAMILTON-CYCLE, TSP.
" Partitioning problems: 3D-MATCHING, 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are known to be either in P or NP-complete.

NP-intermediate? FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, ....

Theorem. [Ladner 1975] Unless P = NP, there exist problems in NP that
are neither in P nor NP-complete.

On the Structure of Polynomial Time Reducibility

RICHARD E. LADNER

Unaversity of Washington, Seattle, Washington

30



More hard computational problems

Garey and Johnson. Computers and Intractability.
" Appendix includes over 300 NP-complete problems.
" Most cited reference in computer science literature.

10.

. J Pearl

. E Gamma, R Helm, R Johnson, J Vlissides

. C E Shannon

Most Cited Computer Science Citations

This list is generated from documents in the CiteSeer* database as of January 17, 2013. This list is automatically generated and may contain errors. The list is generated in batch

mode and citation counts may differ from those CUI’I’EI"IH‘;" in the CiteSeer* database, since the database is CDI"ItiI"IUDUSP_y’ UDUEEBU.
All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013

. M R Garey, D S Johnson

Computers and Intractability. A Guide to the Theory of NP-Completeness 1979
8665

T Cormen, G E Leiserson, R Rivest

Introduction to Algorithms 1890

7210

V N Vapnik

The nature of statistical learning theory 1988 COMPUTERS AND INTRACTABILITY
0580 A Guide to the Theory of NP-Completeness

A P Dempster, N M Laird, D B Rubin
Maximum likelihood from incomplete data via the EM algorithm. Journal of the RD}'E| Statistical SDCiEf."f, 1977
6082

T Cover, J Thomas

Elements of Information ThEDI’}" 1991

6075

D E Goldberg

Genetic NQDI’i!th in Search, Dptimizatinn, and Machine LEEI’HH"IQ, 1989

5998

Michael R. Garey / David S. Johnson

Probabilistic Reasoning in Intelligent Systems: Metworks of Plausible Inference 1988
5582

Design Patterns: Elements of Reusable Object-Oriented Software 1995
4614

A mathematical theory of communication Bell Syst. Tech. J, 1948
4118

J R Quinlan

C4.5: Programs for Machine Learning 1983

4018
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More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer ai, ..., a,, cOmpute _/O% cos(a10) x cos(azf) X - - - x cos(anb) db
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.

32



8. INTRACTABILITY |l

» cCO-NP

aValBlal a
1111
B 1

I

]

| .
11..

iJ

JON KLEINBERG - EVA TARDOS

SECTION 8.9



Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 1. SAT vs. UN-SAT.
" Can prove a CNF formula is satisfiable by specifying an assignment.
" How could we prove that a formula is not satisfiable?

SAT. Given a CNF formula @, is there a satisfying truth assignment?

UN-SAT. Given a CNF formula @, is there no satisfying truth assignment?
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 2. HAMILTON-CYCLE vs. NO-HAMILTON-CYCLE.
" Can prove a graph is Hamiltonian by specifying a permutation.
" How could we prove that a graph is not Hamiltonian?

HAMILTON-CYCLE. Given a graph G = (V, E), is there a simple
cycle I" that contains every node in V ?

4 )

\_ J

NO-HAMILTON-CYCLE. Given a graph G =(V, E), is there no

simple cycle T that contains every node in V ?
\_

4 )
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Q. How to classify UN-SAT and NO-HAMILTON-CYCLE ?
" SAT € NP-complete and SAT =p UN-SAT.
" HAMILTON-CYCLE € NP-complete and HAMILTON-CYCLE =p NO-HAMILTON-CYCLE.
" But neither UN-SAT nor NO-HAMILTON-CYCLE are known to be in NP.
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NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAMILTON-CYCLE, and COMPOSITES.

Def. Given a decision problem X, its complement X is the same problem
with the yes and no answers reversed.

Ex. X=1{4,6,8,9,10,12, 14, 15, ...}
X=1{23,57,11,13,17,23,29, ...}

— ignore 0 and 1

(neither prime nor composite)

co-NP. Complements of decision problems in NP.
Ex. UN-SAT, NO-HAMILTON-CYCLE, and PRIMES.
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NP = co-NP ¢

Fundamental open question. Does NP = co-NP?
" Do yes instances have succinct certificates iff no instances do?
" Consensus opinion: no.

Theorem. If NP = co-NP, then P = NP.
Pf idea.
" Pis closed under complementation.
" If P = NP, then NP is closed under complementation.
" In other words, NP = co-NP.
" This is the contrapositive of the theorem.
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