Some other polynomial-time reductions
proving NP-completeness is fun
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Classic Nintendo Games are
(Computationally) Hard

Greg Aloupis* Erik D. Demaine! Alan Guo'? Giovanni Viglietta’

February 10, 2015

Abstract

We prove NP-hardness results for five of Nintendo’s largest video game franchises: Mario,
Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to generalized versions
of Super Mario Bros. 1-3, The Lost Levels, and Super Mario World; Donkey Kong Country 1-3;
all Legend of Zelda games; all Metroid games; and all Pokémon role-playing games. In addition,
we prove PSPACE-completeness of the Donkey Kong Country games and several Legend of

Zelda games.




Reduction from: 3-SAT

3-SAT
input: a Boolean formula consisting of 3-literal clauses over n

variables
goal: does there exist a satisfying assignment (making all clauses

true)?

yes instance: x, = true, x, = true, x; = false, x, = false
3-SAT is NP-complete
idea:

given a 3-SAT instance we build a level/instance of Super Mario that is
solvable if and only if the formula is satisfiable
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Clause gadget
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Crossover gadget
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Peg Solitaire

goal: find a sequence of moves from an

initial configuration to a target one



Peg Solitaire




Not so very long ago there became widespread
an excellent kind of game, called Solitaire, where |
play on my own, but as if with a friend as witness
and referee to see that | play correctly. A board is
filled with stones set in holes, which are to be
removed in turn, but none (except the first, which
may be chosen for removal at will) can be
removed unless you are able to jump another
stone across it into an adjacent empty place,
when it is captured as in Draughts. He who
removes all the stones right to the end according
to this rule, wins; [...]. This game can more
elegantly be played backwards [...]Thus we can
either fill the board, or, what would be more
clever, shape a predetermined figure from the
stones; perhaps a triangle, a quadrilateral, an
octagon, or some other, if this be possible; but
such a task is by no means always possible: and
this itself would be a valuable art, to foresee
what can be achieved; and to have some way,
particularly geometrical, of determining this.

Gottfried Wilhelm
von Leibniz
(1646-1716)
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Peg Solitaire

NP-complete to
decide whether the
board can be cleared
[Uehara&Iwata,90]
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Generalized Hi-Q is NP-Complete

Ryuhei UEHARAT and Shigeki INATAT, Members

SUMMARY  This paper deals with a popular puzzle known as
Hi-Q. The puzzle is generalized : the hoard is extended to the size
# X1, an initial position of the puzzle is given, and a place is given
on which only one token is finally placed. The complexity of the
generalized Hi-Q is proved NP-complete.

1. Introduction

In general, combinatorial puzzles and games are
hard to analyze, since we have to cope with enormous
number of positions of the board. It is one of the main
themes in artificial intelligence to solve these problems
by heuristic methods. It is important at the same time to

initial position is given on the extended board of size #
Xn, and a goal is also given on which only one token
will finally be placed. We show that the problem to
determine whether there is an answer for a given gener-
alized Hi-Q is NP-complete. The NP-hardness can be
obtained by reducing from a variation of the
hamiltonian cycle problem.

2. Complexity Result

We extend the size of the board of Hi-Q to nX,
and assume further that hoth a position and a goal of the
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Reduction from:
Hamiltonian Cycle in planar directed graphs with degree 3

it can be drawn in a plane in such
a way that no edges cross each other

input: a directed planar graph G where each vertex has degree
exactly 3
goal: does G has a directed Hamiltonian cycle?

)

G

q

It is NP-complete



Only 2 types of vertices:

1-in 2-out 2-in 1-out
degree vertex degree vertex



1-in 2-out degree vertex gadget

to V'

tov to V' tov «—

from x

from x



2-in 1-out degree vertex gadget

to X

to X

from u from u'’

from u from u’




wire/edge gadgets




Connecting the gadgets
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Connecting the gadgets
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Connecting the gadgets
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Connecting the gadgets
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Connecting the gadgets
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you can clear the board if and only if G has a Hamiltonian cycle



claim:
you can clear the board if and only if G has a Hamiltonian cycle

proof
(<)

if there is a Hamiltonian cycle C:
- first delete/clear the edges that do not belong to C

- clear the remaining pegs by going through C



2-in 1-out degree vertex gadget: intended behavior
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1-in 2-out degree vertex gadget: the intended behavior
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claim:
you can clear the board if and only if G has a Hamiltonian cycle

proof
(<)

if there is a Hamiltonian cycle C:
- first delete/clear the edges that do not belong to C

- clear the remaining pegs by going through C

=)
intuitively: if you want to clear the board you must play the
gadgets in the intended way (otherwise you loose)

Play the reduction here:
https://www.isnphard.com/q/peg-solitaire/









THE GRIAND MAEBSTER 2

PLUS

e&Russian cosmonau’r Aleksandr Serebrov became the first
~person to play a videogame in space when he packed a
Game Boy and his personal copy of Tetris (Nintendo,
1989) for his trip to the MIR Space Station in 1993.



3-Partition problem

« Input: a collection A of n positive integers q; ... a,
 question: is it possible to partition A in n/3 collections A, ... A, /; of

equal sum, i.e.
—_— . — — Za €A =t
a = = a = —

a €eAq a €EAn 3
3

« Fact 1: 3-Partition is NP-complete, even if t/4 <a; < t/2.
- Obs.: if we assume t/4 <a; < t/2 we have |A.[ = 3, for each A,

* Fact 2: 3-Partition is strong NP-hard, i.e. it is NP-complete even if
every a; is polynomially bounded in n (n: the number of numbers).



input: an initial
configuration of the
board, and the entire
(offline) sequence of the
pleces

goal: can you clear all the

TIME
board?

02:40.60
SCORE

15 531,076
LINES @ HIGH SCORE
48 1 Bl 1,480,825

SPEED LV
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3-Partition to Tetris

n/3 buckets
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3-Partition to Tetris

n/3 buckets
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3-Partition to Tetris

a; gadget

initiator filler (a; times) terminator
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris
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3-Partition to Tetris

exactly a; + 1

notches are used

Since each [A,/

3 and

sum(A,) = t then we

need t + 3 notches.
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3-Partition to Tetris
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3-Partition to Tetris
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First two line disappear
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Continue until the entire board is clean...
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3-Partition to Tetris

If you try to position blocks in a different
way into a bucket

I 1|

|| : = =
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(a) (b) * (c) (d) = (e) *

Forced moves - initiator



3-Partition to Tetris

Forced moves - filler (first piece)

j |




3-Partition to Tetris

If you try to position blocks in a different

way into a bucket
|

I = = B =

(d) (e) * (f) * (2) (h) *

Forced moves - filler (second piece)




3-Partition to Tetris

If you try to position blocks in a different
way into a bucket

\] |

(J) (k) = (1)
Forced moves - filler (third piece)



3-Partition to Tetris

If you try to break a element gadget
L L | L L

“unprimed” L
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F {
a (c

(f) * (2) (h) * (1) () (k) *



6.892 Algorithmic Lower Bounds: Fun with Hardness Proofs (Spring 2019)

ALGORITHMIC LOWER BOUNDS:
Prof. Erik Demaine  TAs: Jeffrey Bosboom, Jayson Lynch FUN WITH HARDNESS PROOFS

Super Mario Bros. Rush Hour
[Home] [Lectures] [Problem Sets] [Project] [Coauthor] [Accessibility]

Overview

Need to figure out when to give up the search for efficient algorithms?

Want to know why Tetris and Mario are computationally intractable?

Love seeing the connections between problems and how they can be transformed into each other?
Like solving puzzles that can turn into publishable papers? = s D pka o FERACE s

This class takes a practical approach to proving problems can't be solved efficiently (in polynomial time and assuming standard complexity-theoretic assumptions like Hardness Made Easy*
Learn when to give up the search for

P £ NP). We focus on reductions and techniques for proving problems are computationally hard for a variety of complexity classes. Along the way, we'll create many i
Interesting gadgets, learn many hardness proof styles, explore the connection between games and computation, survey several important problems and complexity [ ] between computational problems;

. . solve puzzles to prove theorems, solve
classes, and crush hopes and dreams (for fast optimal solutions). I 2 g opam probilems, aind wita pepkre

. . . . . . Topies: NP, PSPACE, EXPTIME, EXPSPACE,
The ability to show a problem is computationally hard is a valuable tool for any algorithms designer to have. Lower bounds can tell us when we need to turn to weaker i fixed parameter

goals or stronger models of computation, or to change the problem we're trying to solve. Trying to find lower bounds can help us see what makes a problem difficult or m‘;‘m":f;";ﬂ‘: key problems, gadgecs,
what patterns we might be able to exploit in an algorithm. The hardness perspective can help us understand what makes problems easy, or difficult to solve.

) ) Spring 2019
6.892 taught by Professor Erik Demaine
1L AAGS, and Theorstical S Concentration s ot gt 8
o - o Wednesday 7:00-9:30pm in room 32-082
IHVEI tEd L e(:tul €s bt/ /courses csailmit.edu/6.892/spring 19/
sign up for our mailing st o join the class

This year, we're experimenting with inverted lectures: most material is covered in video lectures recorded in 2014 (already watched by over 14,000 people), which you
can conveniently play at faster speed than real time. In-class time will be focused on in-class problem solving, with some new material presented by the professor

and/or guest lecturers. Particularly unusual is that the problems we'll solve in groups will include a choose-your-own-mix of problem-set style problems with known solutions, coding problems
for those who love programming, and open research problems that no one knows the answer to, with the goal of publishing papers about whatever we discover. (The past offering of this class G ames PU ZZ[ s
led to over a dozen published papers.) You can work on whatever type of problem most interests you. To facilitate collaboration, we'll be using a new open-source software platform called 7 4 St
Coauthor, along with Github for (optional) coding. &Computatlon

Topics

This is an advanced class on algorithmic reduction. We will focus on techniques for proving problems are complete with respect to various complexity classes, not on the complexity theory
itself Here is a tentative list of tonies:

MIT course (video lectures available):
https://courses.csail. mit.edu/6.892/spring19/



ﬁ@EDmFLE}“TH‘ Compendium  Hosting  Contributors

OF GRM=5

Compendium

Here is the list of games and puzzles that are currently in our index.
Is your favorite game missing? Are you aware of a new complexity result for one of the listed games? You are welcome add or edit the listed games by following the instructions on this page.

15-puzzle (n* — 1 puzzle)
n? — 1 numbered tiles can be slid in a = x n board with the goal of arranging them in increasing order.

Amazons
Two players move amazons on a square board. After moving, an amazon shoots an arrow that blocks movement. The last player to move wins.

Bejeweled

A player swaps adjacent items ina n x m grid in order to form as many matches of three as possible.

Boulder Dash
A single-player game in which the character digs through a rectangular grid to find diamonds within a time limit, while avoiding various dangers.

Candy Crush

Avariant of Bejeweled.

Clickomania (SameGame)

A single player game in which the player remaves groups of tiles of the same color in a rectangular board.

Deflektor

compendium on hardness for games and puzzles:
https://www.isnphard.com/i/
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