PEARSON
Ty

Addison
Wesley

) | v I 1
111111 i 1L !] !
111 !] 1 1] HEIAAEERER

111111 ' i !} 1 I~ \1111 "

; ! | 1 | 1 111 i I 1 1}

111111111 |

1 1 ‘\
el 28 2aa | I
W

2aT%al

‘.”’:va‘!,‘\‘|‘
W ACAVARS BN

§ IR B E R RS EER
N

r\ JON KLEINBERG - EVA TARDOS
\

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

/. NETWORK FLOW |

\/

\/

v

\/

max-flow and min-cut problems
Ford—Fulkerson algorithm
max-flow min-cut theorem

choosing good augmenting paths

http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

/. NETWORK FLOW |

> max-flow and min-cut problems

SECTION 7.1

Flow network

A flow network is a tuple G = (V, E, s, t, ¢).
" Digraph (V, E) with source s €V and sink t e V.
" Capacity c(e) >0 for each e €E. \
assume all nodes are reachable from s
Intuition. Material flowing through a transportation network;
material originates at source and is sent to sink.

TN TN

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with se A and t € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

/

10
Sq t

15

N\

capacity=10+5+15=

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with se A and t € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

10

F 8 é t
\) don’t include edges

from Bto A

Capacity=]o+8+]6= F]Gﬁ

One more example

Capacity of the given st-cut: 20+25=45

capacity

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with se A and t € B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

Min-cut problem. Find a cut of minimum capacity.

/
o—
O

10

10

capacity =10 + 8 + 10=

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

" Foreache€kE: 0 < fe) < c(e) [capacity]

" ForeachveV-{s,t}: Y fle = > f(e [flow conservation]
e in to v e out of v
flow capacity

inflowatv = 5+5+0 =10
5/9 outflowatv = 10+0 =10

N

N $
A\ / 0/15 -
/5 ‘0

Q
N\
0/15

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

" Foreache€kE: 0 < fe) < c(e) [capacity]
" ForeachveV-{s,t}: Y fle = > f(e [flow conservation]
e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) — > fle)

e out of s e in to s
5/9
\Q 5// \5\//
\Q\ $?)

°—5/5—) 5/8 10/ 10 @

‘0

75

~
value=5+10+10=@ \

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

" Foreache€kE: 0 < fe) < c(e) [capacity]
" ForeachveV-{s,t}: Y fle = > f(e [flow conservation]
e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) — > fle)

e out of s e in to s

Max-flow problem. Find a flow of maximum value.

8/9
Q 2 ¢
N\ / -
\Q\ /5 ‘0

°—5/5—) 8/8 10/10 @

73
75

~
value=10+5+13=® \

13/16

10

/. NETWORK FLOW |

>~ Ford—Fulkerson algorithm

SECTION 7.1

Toward a max-flow algorithm

Greedy algorithm.
" Start with f(e) =0 for each edge e € E.

flo capacity
flow network G and flow f \K /a

@ a0

N 0/2 7 0/6

@ 0/10 Q 0/9 Q

0/10

value of flow

oK

12

Toward a max-flow algorithm

Greedy algorithm.

" Find an s~t path P where each edge has f(e) < c(e).

flow network G and flow f

/Q\m
N\ 0/2 0 0/6 —

@/o/m O 0/9\0—0:0—)@ :

13

Toward a max-flow algorithm

Greedy algorithm.

" Augment flow along path P.

flow network G and flow f

/ &
> \\°
&

0/2 Q
/ o

0/10 Q 0/9

8
o/ 10 =—

@ 0O +8=8

14

Toward a max-flow algorithm

Greedy algorithm.

" Repeat until you get stuck.

flow network G and flow f

/

Q O 2 & —

2 10
0/10 %-@-/9*(%-8—/]0#@ 8 +2=10

o4

15

Toward a max-flow algorithm

Greedy algorithm.

" Repeat until you get stuck.

flow network G and flow f

QO 0

@ 10+6=16

16

Toward a max-flow algorithm

Greedy algorithm.
" Start with f(e) =0 for each edge e € E.
" Find an s~t path P where each edge has f(e) < c(e).
" Augment flow along path P.
" Repeat until you get stuck.

ending flow value = 16

flow network G and flow f

QO o4

2/ 2 =
/ o 6/6)

@ 6/10 Q 8/9 Q 10/10

17

Toward a max-flow algorithm

Greedy algorithm.
" Start with f(e) =0 for each edge e € E.
" Find an s~t path P where each edge has f(e) < c(e).
" Augment flow along path P.
" Repeat until you get stuck.

but max-flow value = 19

flow network G and flow f

QO a0

2 -z —

@ 9/10 Q 9/9 Q 10/10

18

Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.
" The unique max flow f"has f*(v, w) =0.
" Greedy algorithm could choose s—»v—w—t as first path.

flow network G

Bottom line. Need some mechanism to “undo” a bad decision.

19

Residual network

Original edge. e=(u,v) € E.
" Flow f(e).
" Capacity c(e).

Reverse edge. e™V*™* = (v, u).
" “Undo” flow sent.

Residual capacity.

er(e) = {c(e) — f(e) ifee E

Jc(ereverse) if ereverse E E

Residual network. G;=(V, E;, s, t, ;).

original flow network G

(W) 6/17 (v)
/\

flow capacity

residual network Gs residual
capacity

AN

S~

reverse edge

edges with positive
residual capacity

where flow on a reverse edge

tes fl
"B ={e:f(@)< c@} U {e:fE™) > 0p corresponding forward edge
" Key property: f’is a flow in G;iff f+f’is a flow in G.

20

Residual network: an example

network G and flow f ﬂOW\ / capacity

@ 24—

0/2 9 6/6 -,

@ 8/10 Q 8/9 Q 10/10

/ residual capacity

2

residual network Gs Q
z O

Augmenting path

Def. An augmenting path is a simple s~t path in the residual network G;.

Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

Key property. Letf be a flow and let P be an augmenting path in G;.
Then, after calling f ' — AUGMENT(f, c, P), the resulting f’is a flow and
val(f ") = val(f) + bottleneck(Gs, P).

AUGMENT(T, c, P)

0 « bottleneck capacity of augmenting path P.
FOREACH edge e € P :

IF(e€E) f(e) «— f(e) + o.

ELSE f (ereVerse) «— f (ereverse) — 9.

RETURN f.

22

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
" Start with f(e) =0 for each edge e € E.
" Find an s~t path P in the residual network G;:.

" Augment flow along path P.
" Repeat until you get stuck.

FORD—FULKERSON(G)

FOREACHedgee e E: f(e) « O.

Gt « residual network of G with respect to flow f.

WHILE (there exists an s~t path P in G¢)
f «— AUGMENT(T, c, P). \

Update Gr. augmenting path

RETURN f.

23

Ford-Fulkerson algorithm demo

network G and flow f

AL

residual network Gs

10

@

0/2

flow
\

0/4

0/9

/ capacity

0/6

O

value of flow

0s10—— () o

residual capacity

'

—@®

24

Ford-Fulkerson algorithm demo

network G and flow f

p) Q@
0/ /(9

0O 05

residual network Gs

o) ;

0/6

8
©/10

@ O +8=8

10—)®

Ford-Fulkerson algorithm demo

network G and flow f

O 0/4

2
0O o/

residual network Gs

0/6

10 <>_9_)©—2_)®

Ford-Fulkerson algorithm demo

network G and flow f

QO 0/

2/ 2 &
/ o

6 8
O A 2/s

residual network Gs Q
4

6 6/6

10/10

‘0

@ 10+6=16

N\

10

o)

Ford-Fulkerson algorithm demo

network G and flow f

QO s

02/2 9 6/6 -,

8
/10— a0 1010 164218

fixes mistake from
second augmenting path

residual network Gt
4 ﬁ
T ;
2 & 6 ¥
O \

®_4_) 1 Q 10 @

6 8 28

Ford-Fulkerson algorithm demo

network G and flow f

0/2 £ 6/6 -,

9 9
/10— aro(100 1841210

residual network Gs

<

NN

29

Ford-Fulkerson algorithm demo

network G and flow f
/Q —@

™
Mmin cut \Q
/10

‘.

capacity=10+9=19

2 P
0/ /(9 6/6

0_9/9_)0

3
residual network Gs
) | O
nodes reachable from s 5 > 6

O

E——0 : O

9 value of
O max flow

/
Ot

10/10

o)

30

/. NETWORK FLOW |

» max-flow min-cut theorem

\ ' U
‘\ JON KLEINBERG - EVA TARDOS
‘ .

SECTION 7.2

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,

the value of the flow f equals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow acrosscut = 5+ 10 + 10 = 25

N
\

. 5/8 .—10/1o7t

® ./

value of flow = 25

32

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

net flow acrosscut = 10 +5 + 10 = 25

5/9
S S
"5 "%
5 / 5 e— 5/8 10/10 t value of flow = 25
>
\Q

10/16

33

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

val(f) =) fle) — Y fle)

e out of A e in to A

net flow acrosscut = (10+10 +5+10+0+0)-(5+5+0+0) = 25

5/ 9
/ I \ edges from B to A

0/4

T ?— 10/10» t value of flow = 25
) \
). vy 0/15 \Q

NN\

10/16

34

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow f equals the net flow across the cut (A, B).

val(f) = Z fle) — Z f(e)

e out of A e in to A

Pr. val(f) = Y. fle) — Y. fle)
e out of s e in to s
by flow conservation, all terms
except for v=sare 0 B :Z (Z fle) — Z f(e))
vEA e out of v e in to v

=) fle = >, fle

e out of A e in to A

35

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, val(f) <cap(A, B).

Pf.
val(f) = :5:: fle) — :E:: f(e)

/ e out of A e in to A
< > fle)
flow value e out of A
lemma
< E c(e)
e out of A
= cap(A,B) =
8/9
2 P /
o s "o 10
AN
s 5/5 7/8 9/10 t < 5 m—
/7
< Q
— < AN
< 6 \Q\ 15 \

12/16

capacity of cut = 30

IA

value of flow = 27

Certificate of optimality

Corollary. Letf be a flow and let (A, B) be any cut.

If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Pf.
" For any flow /. val(f") < cap(A, B) =val(f).
" For any cut (4', B). cap(4',B") > val(f) = cap(A, B). =

8/9
2
& s
\Q
5/5 8/8
Ve
>
— S
13/16

value of flow = 28

weak duality

N\

weak duality

capacity of cut = 28

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

AN

strong duality

f

L. R. FORD, Jr. axp D. R. FULKERSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

“Consider a rail network connecting two cities by way of a number of
intermediate cities, where each link of the network has a number assigned to
it representing its capacity. Assuming a steady state condition, find a maximal L
flow from one given city to the other.” k

G. B. mtzig
D. R. Fulkerson

o6 &

April 15, 1955

=\

MAXIMAL FLOW THROUGH A NETWORK ON THE MAX FLOW MIN CUT THEOREM OF NETWORKS

~

A Note on the Maximum Flow Through a Network™

P. ELIASt, A. FEINSTEIN}, AND C. E. SHANNON§

Summary—This note discusses the problem of maximizing the
rate of flow from one terminal to another, through a network which
consists of a number of branches, each of which has a limited capa-
city. The main result is a theorem: The maximum possible flow from
left to right through a network is equal to the minimum value among
all simple cut-sets. This theorem is applied to solve a more general
problem, in which a number of input nodes and a number of output
nodes are used.

from one terminal to the other in the original network
passes through at least one branch in the cut-set. In the
network above, some examples of cut-sets are (d, e, f),
and (b, ¢, ¢, g, h), (d, g, h, 7). By a stmple cui-set we will
mean a cut-set such that if any branch is omitted it is no
longer a cut-set. Thus (d, e, f) and (b, ¢, ¢, g, h) are simple

nant _anta whila fd a4 b a2V e nat Whan a cimanla ant ent s

38

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A, B) such that cap(A, B) = val(f).
ii. fisamax flow.

iii. There is no augmenting path with respect to f. — 'fFord Fulkerson terminates,
then f is max flow

[i=i]

" This is the weak duality corollary. -

39

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A, B) such that cap(A, B) = val(f).

ii. fisamax flow.

iii. There is no augmenting path with respect to f.

[ii = iii] We prove contrapositive: =iii = .
" Suppose that there is an augmenting path with respect to f.
" Can improve flow f by sending flow along this path.
" Thus, f is not a max flow. =

40

Max-flow min-cut theorem

[iii =]
" Letf be a flow with no augmenting paths.
" Let A=set of nodes reachable from s in residual network Gt.
By definition of A: s € A.
By definition of flow f: t & A.

edgee = (v,w) withveB,weA
must have f(e) =0

original flow network G

val(f) = Z fle) — Z f(e)

e out of A e in to A A B

flow value _ Z c(e) 0 @

lemma

edge e = (v, w) withve A ,we B
must have f(e) = c(e)

e out of A

= cap(A,B) =

41

Computing a minimum cut from a maximum flow

Theorem. Given any max flow f, can compute a min cut (A, B) in O(m) time.
Pf. Let A = set of nodes reachable from s in residual network Gs. =

N

argument from previous slide implies that
capacity of (A, B) = value of flow f

—

NSNS
e \ N

8
1

/

1
8
! /

5
o 3

/
g

Analysis of Ford—-Fulkerson algorithm (for infegral capacities)

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e)
and residual capacity c;(e) is an integer.

Pf. By induction on the number of augmenting paths. - consider cut A={s}
(assumes no parallel edges)

/

Theorem. Ford-Fulkerson terminates after at most val(f*) < nC
augmenting paths, where f* is a max flow.
Pf. Each augmentation increases the value of the flow by at least 1. =

Corollary. The running time of Ford-Fulkerson is O(m val(f*))=O(mn C).

Pf. Can use either BFS or DFS to find an augmenting path in O(m) time. =
- f(@is an integer for every e

Integrality theorem. There exists an integral max flow f~,

Pf. Since Ford-Fulkerson terminates, theorem follows from integrality

invariant (and augmenting path theorem). -

43

Ford—-Fulkerson: exponential example

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?
7

m, n, and log C
A. No. It is pseudo-polynomial.

If max capacity is C, then algorithm can take > C iterations.

" S—HV—oW—t
n each augmenting path

SHW—V—L «—— sends only 1 unit of flow
" o, V—W—t (# augmenting paths = 2C)
" S—HW—V—t
- C G
" svVow—t /
" S—H>W—V—t

\" 1
& C

44

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

initialize with 0 flow

N o
Q flow
Q Ve
A © capacity
/ 0
Vv 1 >
o Q
7, Q
00 ,\Q

45

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

1st augmenting path

N
L & 7000
VAR
| —
5 N
Z ol S

46

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

2"d augmenting path

N
KON 700& 7
/ -+ 0
Gr 1 —
®Q N
% 7\ &

W

47

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

3'Y augmenting path

X Vv
7
'\QQ 700
/ o 1 \
1 ﬁ
7 X v

48

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

4t augmenting path

('1/
&> ¢ OOX 2
/ -+ 0 \
Gr 1 —
X
700 \QQ

49

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

50

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

199t augmenting path

Q
A .
9
Q 9
'\Q 700
/ 6 1 \
1 ﬁ
Q
N
5 % £ S
Q Q

51

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

200" augmenting path

52

Ford-Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

Q
'\Q 00
/ 0
Vv 1 >
7, Q
7 X2 N S
00 N

53

/. NETWORK FLOW |

>~ choosing good augmenting paths

SECTION 7.3

Choosing good augmenting paths

Use care when selecting augmenting paths.
" Some choices lead to exponential algorithms.
" Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee
that Ford-Fulkerson terminates (or converges to a maximum flow)!

Goal. Choose augmenting paths so that:
" Can find augmenting paths efficiently.
" Few iterations.

55

Choosing good augmenting paths

Choose augmenting paths with:
" Sufficiently large bottleneck capacity.
" Fewest edges.

Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems

JACK EDMONDS

Untversity of Waterloo, Waterloo, Ontario, Canada

AND

RICHARD M. KARP

['niversity of California, Berkeley, California

ABsTHACT, This paper presents new algorithms for the maximum flow problem, the Hitcheock
transportation problem, and the general minimum-cost flow problem. Upper bounds on the

numbers of steps in these algorithms are derived, and are shown to compare favorably with
upper bounds on the numbers of steps required by earlier algorithms.

Edmonds-Karp 1972 (USA)

56

Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.
" Maintain scaling parameter A. ™~ |
though not necessarily largest
" Let G:(A) be the part of the residual network containing
only those edges with capacity > A.

" Any augmenting path in G;(A) has bottleneck capacity > A.

Gs Gs(A), A =100

57

Capacity-scaling algorithm

CAPACITY-SCALING(G)

FOREACH edgee e E: f(e) « 0.

A « largest power of 2 < C.

WHILE (A > 1)

Gt (A) « A-residual network of G with respect to flow f .
WHILE (there exists an s~t path P In Gt (A))

f «— AUGMENT(T, c, P).
Update Gt (A).
A—A/2.

A-scaling phase

RETURN f.

58

Capacity-scaling algorithm: analysis of running time (sketch)

It can be proved the following:

Lemma 1. There are 1+ llog2 CJ scaling phases.

Lemma 2. There are < 2m augmentations per scaling phase.

‘ total number of augmentations: O(m log C)

Theorem. The capacity-scaling algorithm takes O(m? log C) time.

59

Shortest augmenting path

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

AN

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACHe e E: f(e) — 0.

Gt « residual network of G with respect to flow f.
WHILE (there exists an s~t path in Gy)

(P — BREADTH-FIRST-SEARCH(Gf).)
f — AUGMENT(f, c, P).
Update Gt.

RETURN f.

60

Shortest augmenting path: running time

It can be proved the following:

Lemma 1. The total number of augmentations is at most m n.

Theorem. The shortest-augmenting-path algorithm takes O(m?n) time.

61

Augmenting-path algorithms: summary

1955

1972

1972

1985

1970

1970

1983

augmenting path

fattest path

capacity scaling

improved capacity scaling

shortest augmenting path

level graph

dynamic trees

m log (mC)
m log C

m log C

m n

m n

m n

O(mn C)
O(m? log n log (MC))
O(m? log C)
O(mn log C)
O(m?n)
O(mn?)

O(mnlogn)

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

fat paths

shortest paths

62

Maximum-flow algorithms: theory highlights

1951

1955

1970

1974

1983

1985

1988

1998

2013

2014

2016

20xx

simplex
augmenting paths
shortest augmenting paths
blocking flows
dynamic trees
improved capacity scaling
push-relabel
binary blocking flows
compact networks
interior-point methods

electrical flows

max-flow algorithms with m edges

O(m n? C)
O(m n C)
O(mn?)
o(n’)

O(m n log n)
O(m n log C)
O(m nlog (n*/ m))
O(m*?log (n*/ m) log C)
O(m n)
A(mn*?log C)
Om™" ct'h

277

Dantzig
Ford-Fulkerson
Edmonds—Karp, Dinitz
Karzanov
Sleator-Tarjan
Gabow
Goldberg-Tarjan
Goldberg-Rao
Orlin
Lee-Sidford

Madry

, h nodes, and integer capacities between 1 and C

63

Maximum-flow algorithms: theory highlights FOCS 2022

- 125% + | & ©

Maximum Flow and Minimum-Cost Flow in Almost-Linear Time

Li Chen*
Georgia Tech
lichen@gatech.edu

Richard Peng
University of Waterloo 9
yopeng@uwaterloo.ca

Rasmus Kyng' Yang P. Liu
ETH Zurich Stanford University
kyng@inf.ethz.ch yangplin@stanford.edu

Maximilian Probst Gutenberg! Sushant Sachdeva’
ETH Zurich University of Toronto
maxprobst@ethz.ch sachdeva@cs.toronto.edu

April 26, 2022

Abstract

We give an algorithm that computes exact maximum flows and minimum-cost flows on
directed graphs with m edges and polynomially bounded integral demands, costs, and capacities
in m!*°() time. Our algorithm builds the flow through a sequence of m!+°(1) approximate

undirected minimum-ratio cycles, each of which is computed and processed in amortized me)
time using a new dynamic graph data structure.

Our framework extends to algorithms running in m e time for computing flows that
minimize general edge-separable convex functions to high accuracy. This gives almost-linear
time algorithms for several problems including entropy-regularized optimal transport, matrix
scaling, p-norm flows, and p-norm isotonic regression on arbitrary directed acyclic graphs.

64

	Slide 1: 7. Network Flow I
	Slide 2: 7. Network Flow I
	Slide 3: Flow network
	Slide 4: Minimum-cut problem
	Slide 5: Minimum-cut problem
	Slide 6: One more example
	Slide 7: Minimum-cut problem
	Slide 8: Maximum-flow problem
	Slide 9: Maximum-flow problem
	Slide 10: Maximum-flow problem
	Slide 11: 7. Network Flow I
	Slide 12: Toward a max-flow algorithm
	Slide 13: Toward a max-flow algorithm
	Slide 14: Toward a max-flow algorithm
	Slide 15: Toward a max-flow algorithm
	Slide 16: Toward a max-flow algorithm
	Slide 17: Toward a max-flow algorithm
	Slide 18: Toward a max-flow algorithm
	Slide 19: Why the greedy algorithm fails
	Slide 20: Residual network
	Slide 21: Residual network: an example
	Slide 22: Augmenting path
	Slide 23: Ford–Fulkerson algorithm
	Slide 24: Ford–Fulkerson algorithm demo
	Slide 25: Ford–Fulkerson algorithm demo
	Slide 26: Ford–Fulkerson algorithm demo
	Slide 27: Ford–Fulkerson algorithm demo
	Slide 28: Ford–Fulkerson algorithm demo
	Slide 29: Ford–Fulkerson algorithm demo
	Slide 30: Ford–Fulkerson algorithm demo
	Slide 31: 7. Network Flow I
	Slide 32: Relationship between flows and cuts
	Slide 33: Relationship between flows and cuts
	Slide 34: Relationship between flows and cuts
	Slide 35: Relationship between flows and cuts
	Slide 36: Relationship between flows and cuts
	Slide 37: Certificate of optimality
	Slide 38: Max-flow min-cut theorem
	Slide 39: Max-flow min-cut theorem
	Slide 40: Max-flow min-cut theorem
	Slide 41: Max-flow min-cut theorem
	Slide 42: Computing a minimum cut from a maximum flow
	Slide 43: Analysis of Ford–Fulkerson algorithm (for integral capacities)
	Slide 44: Ford–Fulkerson: exponential example
	Slide 45: Ford–Fulkerson algorithm: exponential-time example
	Slide 46: Ford–Fulkerson algorithm: exponential-time example
	Slide 47: Ford–Fulkerson algorithm: exponential-time example
	Slide 48: Ford–Fulkerson algorithm: exponential-time example
	Slide 49: Ford–Fulkerson algorithm: exponential-time example
	Slide 50: Ford–Fulkerson algorithm: exponential-time example
	Slide 51: Ford–Fulkerson algorithm: exponential-time example
	Slide 52: Ford–Fulkerson algorithm: exponential-time example
	Slide 53: Ford–Fulkerson algorithm: exponential-time example
	Slide 54: 7. Network Flow I
	Slide 55: Choosing good augmenting paths
	Slide 56: Choosing good augmenting paths
	Slide 57: Capacity-scaling algorithm
	Slide 58: Capacity-scaling algorithm
	Slide 59: Capacity-scaling algorithm: analysis of running time (sketch)
	Slide 60: Shortest augmenting path
	Slide 61: Shortest augmenting path: running time
	Slide 62: Augmenting-path algorithms: summary
	Slide 63: Maximum-flow algorithms: theory highlights
	Slide 64: Maximum-flow algorithms: theory highlights

