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7.  NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ image segmentation

‣ baseball elimination
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Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model.

・Data mining.

・Open-pit mining.

・Bipartite matching.

・Network reliability.

・Baseball elimination.

・Image segmentation.

・Network connectivity.

・Markov random fields.

・Distributed computing.

・Security of statistical data.

・Egalitarian stable matching.

・Network intrusion detection.

・Multi-camera scene reconstruction.

・Sensor placement for homeland security.

・Many, many, more.

2

liver and hepatic vascularization segmentation



7.  NETWORK FLOW II
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‣ baseball elimination

SECTION 7.5



Def. Given an undirected graph G = (V, E), subset of edges M ⊆ E 

is a matching if each node appears in at most one edge in M.

Max matching.  Given a graph G, find a max-cardinality matching.

Matching
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Bipartite matching

Def.  A graph G is bipartite if the nodes can be partitioned into two subsets 

L and R such that every edge connects a node in L with a node in R.

Bipartite matching.  Given a bipartite graph G = (L ∪ R, E), find a max-

cardinality matching.
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Perfect matching (in bipartite graphs)

Def. Given a graph G = (V, E), a subset of edges M ⊆ E is a perfect matching

if each node appears in exactly one edge in M.

Perfect matching problem.  Given a bipartite graph G = (L ∪ R, E), find a 

perfect matching or correctly report it does not exist.
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Bipartite matching:  max-flow formulation

Formulation.

・Create digraph G′ = (L ∪ R∪ {s, t},  E ′ ).

・Direct all edges from L to R, and assign infinite (or unit) capacity.

・Add unit-capacity edges from s to each node in L.

・Add unit-capacity edges from each node in R to t.
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Pf.  ⇒

・Let M be a matching in G of cardinality k.

・Consider flow f that sends 1 unit on each of the k corresponding paths.

・f is a flow of value k.   ▪
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Pf.  ⇐

・Let f be an integral flow in G ′ of value k.

・Consider M = set of edges from L to R with f (e) = 1.

- each node in L and R participates in at most one edge in M

- ⎢M ⎢ = k : apply flow-value lemma to cut (L∪ {s}, R∪ {t}) ▪
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Corollary.  Can solve bipartite matching problem via max-flow formulation.

Pf.

・Integrality theorem  there exists a max flow f * 
in G ′ that is integral.

・1–1 correspondence  f *
corresponds to max-cardinality matching.  ▪
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Max-flow formulation:  running time

Theorem.  1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Corollary.  Can solve bipartite matching problem via max-flow formulation.

Running time:

・Using Ford-Fulkerson:  

・ n augmentations  O ( m n ) time.  
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7.  NETWORK FLOW II

‣ bipartite matching
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‣ image segmentation

‣ baseball elimination

SECTION 7.6



Edge-disjoint paths

Def.  Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem.  Given a digraph G = (V, E) and two nodes

s and t, find the max number of edge-disjoint s↝t paths.

Ex.  Communication networks.
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Def.  Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem.  Given a digraph G = (V, E) and two nodes

s and t, find the max number of edge-disjoint s↝t paths.

Ex.  Communication networks.

digraph G
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge.

Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Pf.  ⇒

・Let P1, …, Pk be k edge-disjoint s↝t paths in G .

・Set

・Since paths are edge-disjoint, f is a flow of value k.   ▪
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge.

Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Pf.  ⇐

・Let f be an integral flow in G ′ of value k.

・Consider edge (s, u) with f (s, u) = 1.

- by flow conservation, there exists an edge (u, v) with f (u, v) = 1

- continue until reach t, always choosing a new edge

・Produces k (not necessarily simple) edge-disjoint paths.   ▪
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge.

Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Corollary.  Can solve edge-disjoint paths problem via max-flow formulation.

Pf.

・Integrality theorem  there exists a max flow f * 
in G ′ that is integral.

・1–1 correspondence  f *
corresponds to max number of edge-disjoint 

s↝t paths in G . ▪
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Edge-disjoint paths: running time

Max-flow formulation.  Assign unit capacity to every edge.

Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Corollary.  Can solve edge-disjoint paths problem via max-flow formulation.

Running time:

・Using Ford-Fulkerson:  

・ n augmentations  O ( m n ) time.
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Edge-disjoint paths in undirected graphs

Def.  Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs.  Given a graph G = (V, E)

and two nodes s and t, find the max number of edge-disjoint s–t paths.
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Edge-disjoint paths in undirected graphs

Def.  Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs.  Given a graph G = (V, E)

and two nodes s and t, find the max number of edge-disjoint s–t paths.
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Edge-disjoint paths in undirected graphs

Def.  Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs.  Given a graph G = (V, E)

and two nodes s and t, find the max number of edge-disjoint s–t paths.

Exercise:  design a max-flow-based algorithm for the problem.
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Image segmentation

Image segmentation.

・Divide image into coherent regions.

・Central problem in image processing.

Ex.  Separate human and robot from background scene.

25



Image segmentation

Foreground / background segmentation.

・Label each pixel in picture as belonging to

foreground or background.

・V = set of pixels, E = pairs of neighboring pixels.

・ai ≥ 0 is likelihood pixel i in foreground.

・bi ≥ 0 is likelihood pixel i in background.

・pij ≥ 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.

・Accuracy:  if ai > bi in isolation, prefer to label i in foreground.

・Smoothness: if many neighbors of i are labeled foreground,

we should be inclined to label i as foreground.

・Find partition (A, B) that maximizes:  
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Formulate as min-cut problem.

・Maximization.

・No source or sink.

・Undirected graph.

Turn into minimization problem.

・Maximizing

・is equivalent to minimizing

・or alternatively

Image segmentation
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Image segmentation

Formulate as min-cut problem G ′ = (V ′, E ′).

・Include node for each pixel.

・Use two antiparallel edges instead of

undirected edge. 

・Add source s to correspond to foreground.

・Add sink t to correspond to background.
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Image segmentation

Consider min cut (A, B) in G ′.

・ A = foreground.

・Precisely the quantity we want to minimize.
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Grabcut.  [ Rother–Kolmogorov–Blake 2004 ]

Grabcut image segmentation
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Baseball elimination
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Baseball elimination problem

Q.  Which teams have a chance of finishing the season with the most wins?

Montreal is mathematically eliminated.

・Montreal finishes with ≤ 80 wins.

・Atlanta already has 83 wins.

Remark.  This is the only reason sports writers appear to be aware of —

conditions are sufficient but not necessary!
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Baseball elimination problem

Q.  Which teams have a chance of finishing the season with the most wins?

Philadelphia is mathematically eliminated.

・Philadelphia finishes with ≤ 83 wins.

・Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won 

and left to play, but on whom they’re against.
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Baseball elimination problem

Current standings.

・Set of teams S.

・Distinguished team z ∈ S.

・Team x has won wx games already.

・Teams x and y play each other rxy additional times.

Baseball elimination problem.  Given the current standings, is there any 

outcome of the remaining games in which team z finishes with the most

(or tied for the most) wins?
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Baseball elimination problem:  max-flow formulation

Can team 4 finish with most wins?

・W.l.o.g. assume team 4 wins all remaining games  ⇒ w4 + r4 wins. 

・Divvy remaining games so that all teams have ≤ w4 + r4 wins.
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Baseball elimination problem:  max-flow formulation

Theorem.  Team 4 not eliminated iff max flow saturates all edges leaving s.

Pf.

・Integrality theorem  ⇒ each remaining game between x and y added to 

number of wins for team x or team y.

・Capacity on (x, t) edges ensure no team wins too many games.  ▪
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