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Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model.

Data mining.

Open-pit mining.

Bipartite matching.

Network reliability.

Baseball elimination.

Image segmentation.
Network connectivity.
Markov random fields.
Distributed computing.
Security of statistical data.
Egalitarian stable matching.
Network intrusion detection.
Multi-camera scene reconstruction.

Sensor placement for homeland security.

Many, many, more.

liver and hepatic vascularization segmentation
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Matching

Def. Given an undirected graph G = (V, E), subset of edges M S E
is @ matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.




Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G=(L UR, E), find a max-
cardinality matching.
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Perfect matching (in bipartite graphs)

Def. Given a graph G = (V, E), a subset of edges M € E is a perfect matching
if each node appears in exactly one edge in M.

Perfect matching problem. Given a bipartite graph G=(L UR, E), find a
perfect matching or correctly report it does not exist.

no perfect matching here:
perfect matching iff

the cardinality of maximum matching
is =|L|=|R|
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Bipartite matching: max-flow formulation

Formulation.
" Create digraph G'=(LURU {s,t}, E").
" Direct all edges from L to R, and assign infinite (or unit) capacity.
" Add unit-capacity edges from s to each node in L.
" Add unit-capacity edges from each node in R to t.
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Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality k in G
and integral flows of value k in G".
Pf. = ™ for each edge e: f(e) € { 0,1}
" Let M be a matching in G of cardinality k.
" Consider flow f that sends 1 unit on each of the k corresponding paths.
" fis a flow of value k. -
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Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality k in G
and integral flows of value k in G".
Pf. ™ for each edge e: f(e) € { 0,1}
" Let f be an integral flow in G’ of value k.
" Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- IMI =k : apply flow-value lemma to cut (LU {s},Ru {t}) =

)
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Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality k in G
and integral flows of value k in G".

Corollary. Can solve bipartite matching problem via max-flow formulation.

Pf.

" Integrality theorem = there exists a max flow f"in G’ that is integral.

" 1-1 correspondence = f~ corresponds to max-cardinality matching. -

)

12



Max-flow formulation: running fime

Theorem. 1-1 correspondence between matchings of cardinality k in G
and integral flows of value k in G".

Corollary. Can solve bipartite matching problem via max-flow formulation.
Running time:

" Using Ford-Fulkerson:

" < N augmentations = O(mn) time.
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Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes
s and t, find the max number of edge-disjoint s~t paths.

Ex. Communication networks.

() © (&) O

digraph G
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Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes
s and t, find the max number of edge-disjoint s~t paths.

Ex. Communication networks.

digraph G

2 edge-disjoint paths
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Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~t paths in G
and integral flows of value k in G".
Pf. =

" Let Pq, ..., P, be k edge-disjoint s~t paths in G.

" Set ¢ (e) = 1 edge e participates in some path P;
|10 otherwise

" Since paths are edge-disjoint, f is a flow of value k. =

O O
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Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~t paths in G
and integral flows of value k in G".
Pf.
" Let f be an integral flow in G’ of value k.
" Consider edge (s, u) with f(s, u) = 1.
- by flow conservation, there exists an edge (u, v) with f(u,v) =1
- continue until reach t, always choosing a new edge
" Produces k (not necessarily simple) edge-disjoint paths. =

\ can eliminate cycles

Q Q to get simple paths

! in O(mn) time if desired
(flow decomposition)
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Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~t paths in G
and integral flows of value k in G".

Corollary. Can solve edge-disjoint paths problem via max-flow formulation.
Pf.
" Integrality theorem = there exists a max flow f“in G’ that is integral.

" 1-1 correspondence = f” corresponds to max number of edge-disjoint
st paths in G. =



Edge-disjoint paths: running time

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~t paths in G
and integral flows of value k in G".

Corollary. Can solve edge-disjoint paths problem via max-flow formulation.
Running time:

" Using Ford-Fulkerson:
" < Nn augmentations = O(mn) time.

20



Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G =(V, E)
and two nodes s and t, find the max number of edge-disjoint s—t paths.

() © (&) O

digraph G
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Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G =(V, E)
and two nodes s and t, find the max number of edge-disjoint s—t paths.

() 3) (&) (D)

digraph G

(2 edge-disjoint paths) @ @
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Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G =(V, E)
and two nodes s and t, find the max number of edge-disjoint s—t paths.

Exercise: design a max-flow-based algorithm for the problem.

(2) ()

(s) 3) &) (D)

digraph G

(3 edge-disjoint paths) @ @
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Image segmentation

Image segmentation.
" Divide image into coherent regions.
" Central problem in image processing.

Ex. Separate human and robot from background scene.
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Image segmentation

Foreground / background segmentation.

" Label each pixel in picture as belonging to

foreground or background. o

V = set of pixels, E = pairs of neighboring pixels. o——¢

a; > 0 is likelihood pixel i in foreground. °

b; > 0 is likelihood pixel i in background.

pjj= 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
" Accuracy: if a; >b; in isolation, prefer to label i in foreground.
" Smoothness: if many neighbors of i are labeled foreground,
we should be inclined to label i as foreground.

" Find partition (A, B) that maximizes: Za’@' 4 ij _ Z Dij

/N i€ A jEB (4,§)€E
foreground background |AN{i,5}|=1

26




Image segmentation

Formulate as min-cut problem.
* Maximization.
" No source or sink.
" Undirected graph.

Turn into minimization problem

" Maximizing Za@- + Z

i€EA jEB

is equivalent to minimizing

Z a; + Z b;
eV JjeVv

a constant

" or alternatively Zaj +
JEB

bj — > Py
(i,j)EE
ANi,j} =1

—Za@- — ij +

i€A jEB

SUTED DS
icA (i,j)€E
|[An{i,j}=1

2

(i,5)EE
|[AN{4,5} =1

Dij
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Image segmentation

Formulate as min-cut problem G'=(V', E’). edge in G

Include node for each pixel. o o ®
" Use two antiparallel edges instead of

undirected edge_ two antiparallel edges in G’
" Add source s to correspond to foreground.

Pij
" Add sink tto correspond to background. ( )D

O
S
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Image segmentation

Consider min cut (A,B) in G'.

A = foreground.

capA B) ZGJ + Zb + Z Dij

jEB 1€EA (i,j)€E if 1 and J on different sides,
i€A, jEB Pij counted exactly once

" Precisely the quantity we want to minimize.

O
Q
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Grabcut image segmentation

Grabcut. [ Rother-Kolmogorov-Blake 2004 ]

“GrabCut” — Interactive Foreground Extraction using lterated Graph Cuts

Carsten Rother* Vladimir Kolmogorov' Andrew Blake*
Microsoft Research Cambridge, UK

Figure 1: Three examples of GrabCut . The user drags a rectangle loosely around an object. The object is then extracted automatically.

30
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Baseball elimination
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Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

0 A 83 71 8 - 1 6 1

Atlanta

1 Philly 80 79 3 ] - 0 2
2 New York 78 78 6 6 0 - 0
3 Montreal 77 82 3 1 2 0 -

Montreal is mathematically eliminated.
" Montreal finishes with <80 wins.
" Atlanta already has 83 wins.

Remark. This is the only reason sports writers appear to be aware of —
conditions are sufficient but not necessary!
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Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

0 A 83 71 8 - 1 6 1

Atlanta

1 Philly 80 79 3 ] - 0 2
2 New York 78 78 6 6 0 - 0
3 Montreal 77 82 3 1 2 0 -

Philadelphia is mathematically eliminated.
" Philadelphia finishes with <83 wins.
" Either New York or Atlanta will finish with > 84 wins.

Observation. Answer depends not only on how many games already won
and left to play, but on whom they’re against.
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Baseball elimination problem

Current standings.
" Set of teams S.
" Distinguished team z € S.
" Team x has won w, games already.
" Teams x and y play each other r,, additional times.

Baseball elimination problem. Given the current standings, is there any
outcome of the remaining games in which team z finishes with the most

(or tied for the most) wins?

SIAM ReviEw
Vol. 8, No. 3, July, 1966

POSSIBLE WINNERS IN PARTIALLY COMPLETED TOURNAMENTS*

BENJAMIN L. SCHWARTZt

1. Introduction. In this paper, we shall investigate certain questions in tourna-
ment scheduling. For definiteness, we shall use the terminology of baseball. We
shall be concerned with the categorization of teams into three classes during
the closing days of the season. A team may be definitely eliminated from pen-
nant possibility; it may be in contention, or it may have clinched the champion-
ship. It will be our convention that a team that can possibly tie for the pennant
is considered still in contention. In this paper necessary and sufficient conditions
are developed to classify any team properly into the appropriate category.
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Baseball elimination problem: max-flow formulation

Can team 4 finish with most wins?
" W.l.o.g. assume team 4 wins all remaining games = w, +r, wins.
" Divvy remaining games so that all teams have <w, + r,wins.

games left team 2 can still win

between 1 and 2 this many more games

©
—O
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team nodes

ON6

(each team other than 4)

game nodes
(each pair of teams other than 4) 36



Baseball elimination problem: max-flow formulation

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving s.

Pf.
" Integrality theorem = each remaining game between x and y added to
number of wins for team x or teamy.
" Capacity on (x, t) edges ensure no team wins too many games. -

games left team 2 can still win
between 1 and 2 @ this many more games
00
®_912_) 1-2 00 )@7 Wy + Iy — W, _)®

team nodes

@ (each team other than 4)

game nodes

(each pair of teams other than 4)
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