
Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley

http://www.cs.pr inceton.edu/~wayne/kleinberg -tardos

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ image segmentation

‣ baseball elimination

http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model.

・Data mining.

・Open-pit mining.

・Bipartite matching.

・Network reliability.

・Baseball elimination.

・Image segmentation.

・Network connectivity.

・Markov random fields.

・Distributed computing.

・Security of statistical data.

・Egalitarian stable matching.

・Network intrusion detection.

・Multi-camera scene reconstruction.

・Sensor placement for homeland security.

・Many, many, more.

2

liver and hepatic vascularization segmentation

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ image segmentation

‣ baseball elimination

SECTION 7.5

Def. Given an undirected graph G = (V, E), subset of edges M ⊆ E

is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.

Matching

4

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets

L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G = (L ∪ R, E), find a max-

cardinality matching.

5

RL

1

2

3

4

5

1'

2'

3'

4'

5'

matching: 1-1', 2-2', 3-4', 4-5'

Perfect matching (in bipartite graphs)

Def. Given a graph G = (V, E), a subset of edges M ⊆ E is a perfect matching

if each node appears in exactly one edge in M.

Perfect matching problem. Given a bipartite graph G = (L ∪ R, E), find a

perfect matching or correctly report it does not exist.

6

RL

1

2

3

4

5

1'

2'

3'

4'

5'

matching: 1-1', 2-2', 3-4', 4-5'

no perfect matching here:

Bipartite matching: max-flow formulation

Formulation.

・Create digraph G′ = (L ∪ R∪ {s, t}, E ′).

・Direct all edges from L to R, and assign infinite (or unit) capacity.

・Add unit-capacity edges from s to each node in L.

・Add unit-capacity edges from each node in R to t.

7

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1
1



R

G′

L

Max-flow formulation: proof of correctness

Theorem. 1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Pf. ⇒

・Let M be a matching in G of cardinality k.

・Consider flow f that sends 1 unit on each of the k corresponding paths.

・f is a flow of value k. ▪

10

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1
1



G′G

1

3

5

1'

3'

5'

2

4

2'

4'

for each edge e: f(e) ∈ { 0, 1 }

Max-flow formulation: proof of correctness

Theorem. 1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Pf. ⇐

・Let f be an integral flow in G ′ of value k.

・Consider M = set of edges from L to R with f (e) = 1.

- each node in L and R participates in at most one edge in M

- ⎢M ⎢ = k : apply flow-value lemma to cut (L∪ {s}, R∪ {t}) ▪

11

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1
1



G′ G

1

3

5

1'

3'

5'

2

4

2'

4'

for each edge e: f(e) ∈ { 0, 1 }

Max-flow formulation: proof of correctness

Theorem. 1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Corollary. Can solve bipartite matching problem via max-flow formulation.

Pf.

・Integrality theorem  there exists a max flow f *
in G ′ that is integral.

・1–1 correspondence  f *
corresponds to max-cardinality matching. ▪

12

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1
1



G′ G

1

3

5

1'

3'

5'

2

4

2'

4'

Max-flow formulation: running time

Theorem. 1–1 correspondence between matchings of cardinality k in G

and integral flows of value k in G ′.

Corollary. Can solve bipartite matching problem via max-flow formulation.

Running time:

・Using Ford-Fulkerson:

・ n augmentations  O (m n) time.

13

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1
1



G′ G

1

3

5

1'

3'

5'

2

4

2'

4'

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ image segmentation

‣ baseball elimination

SECTION 7.6

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes

s and t, find the max number of edge-disjoint s↝t paths.

Ex. Communication networks.

15

s

2

3

4

5

6

7

t

digraph G

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes

s and t, find the max number of edge-disjoint s↝t paths.

Ex. Communication networks.

digraph G

2 edge-disjoint paths

s

2

3

4

5

6

7

t

Edge-disjoint paths

16

s

2

3

4

5

6

7

t

Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Pf. ⇒

・Let P1, …, Pk be k edge-disjoint s↝t paths in G .

・Set

・Since paths are edge-disjoint, f is a flow of value k. ▪

17

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Pf. ⇐

・Let f be an integral flow in G ′ of value k.

・Consider edge (s, u) with f (s, u) = 1.

- by flow conservation, there exists an edge (u, v) with f (u, v) = 1

- continue until reach t, always choosing a new edge

・Produces k (not necessarily simple) edge-disjoint paths. ▪

18

can eliminate cycles

to get simple paths

in O(mn) time if desired

(flow decomposition)

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Corollary. Can solve edge-disjoint paths problem via max-flow formulation.

Pf.

・Integrality theorem  there exists a max flow f *
in G ′ that is integral.

・1–1 correspondence  f *
corresponds to max number of edge-disjoint

s↝t paths in G . ▪

19

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Edge-disjoint paths: running time

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1–1 correspondence between k edge-disjoint s↝t paths in G

and integral flows of value k in G ′.

Corollary. Can solve edge-disjoint paths problem via max-flow formulation.

Running time:

・Using Ford-Fulkerson:

・ n augmentations  O (m n) time.

20

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E)

and two nodes s and t, find the max number of edge-disjoint s–t paths.

21

digraph G

s

2

3

4

5

6

7

t

Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E)

and two nodes s and t, find the max number of edge-disjoint s–t paths.

22

digraph G

(2 edge-disjoint paths)

s

2

3

4

5

6

7

t

Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E)

and two nodes s and t, find the max number of edge-disjoint s–t paths.

Exercise: design a max-flow-based algorithm for the problem.

23

digraph G

(3 edge-disjoint paths)

s

2

3

4

5

6

7

t

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ image segmentation

‣ baseball elimination

SECTION 7.10

Image segmentation

Image segmentation.

・Divide image into coherent regions.

・Central problem in image processing.

Ex. Separate human and robot from background scene.

25

Image segmentation

Foreground / background segmentation.

・Label each pixel in picture as belonging to

foreground or background.

・V = set of pixels, E = pairs of neighboring pixels.

・ai ≥ 0 is likelihood pixel i in foreground.

・bi ≥ 0 is likelihood pixel i in background.

・pij ≥ 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.

・Accuracy: if ai > bi in isolation, prefer to label i in foreground.

・Smoothness: if many neighbors of i are labeled foreground,

we should be inclined to label i as foreground.

・Find partition (A, B) that maximizes:

26

foreground background

Formulate as min-cut problem.

・Maximization.

・No source or sink.

・Undirected graph.

Turn into minimization problem.

・Maximizing

・is equivalent to minimizing

・or alternatively

Image segmentation

27

a constant

Image segmentation

Formulate as min-cut problem G ′ = (V ′, E ′).

・Include node for each pixel.

・Use two antiparallel edges instead of

undirected edge.

・Add source s to correspond to foreground.

・Add sink t to correspond to background.

28

s ti j

G′

pij

pij

pij

pij

aj

bi

two antiparallel edges in G′

edge in G

Image segmentation

Consider min cut (A, B) in G ′.

・ A = foreground.

・Precisely the quantity we want to minimize.

29

s ti j

G′

A

if i and j on different sides,

pij counted exactly once

pij

aj

bi

Grabcut. [Rother–Kolmogorov–Blake 2004]

Grabcut image segmentation

30

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ image segmentation

‣ baseball elimination

SECTION 7.12

Baseball elimination

32

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

Montreal is mathematically eliminated.

・Montreal finishes with ≤ 80 wins.

・Atlanta already has 83 wins.

Remark. This is the only reason sports writers appear to be aware of —

conditions are sufficient but not necessary!

33

i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

Philadelphia is mathematically eliminated.

・Philadelphia finishes with ≤ 83 wins.

・Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won

and left to play, but on whom they’re against.

34

i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –

Baseball elimination problem

Current standings.

・Set of teams S.

・Distinguished team z ∈ S.

・Team x has won wx games already.

・Teams x and y play each other rxy additional times.

Baseball elimination problem. Given the current standings, is there any

outcome of the remaining games in which team z finishes with the most

(or tied for the most) wins?

35

Baseball elimination problem: max-flow formulation

Can team 4 finish with most wins?

・W.l.o.g. assume team 4 wins all remaining games ⇒ w4 + r4 wins.

・Divvy remaining games so that all teams have ≤ w4 + r4 wins.

36

s g12
t

game nodes

(each pair of teams other than 4)

team nodes

(each team other than 4)

w4 + r4 – w2

1

0

3

2

0–2

0–3

1–3

0–1

2–3





1–2

games left

between 1 and 2

team 2 can still win

this many more games

Baseball elimination problem: max-flow formulation

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving s.

Pf.

・Integrality theorem ⇒ each remaining game between x and y added to

number of wins for team x or team y.

・Capacity on (x, t) edges ensure no team wins too many games. ▪

37

s t

game nodes

(each pair of teams other than 4)

team nodes

(each team other than 4)

1

0

3

2

0–2

0–3

1–3

0–1

2–3





1–2

games left

between 1 and 2

g12 w4 + r4 – w2

team 2 can still win

this many more games

	Slide 1: 7. Network Flow II
	Slide 2: Max-flow and min-cut applications
	Slide 3: 7. Network Flow II
	Slide 4: Matching
	Slide 5: Bipartite matching
	Slide 6: Perfect matching (in bipartite graphs)
	Slide 7: Bipartite matching: max-flow formulation
	Slide 10: Max-flow formulation: proof of correctness
	Slide 11: Max-flow formulation: proof of correctness
	Slide 12: Max-flow formulation: proof of correctness
	Slide 13: Max-flow formulation: running time
	Slide 14: 7. Network Flow II
	Slide 15: Edge-disjoint paths
	Slide 16: Edge-disjoint paths
	Slide 17: Edge-disjoint paths
	Slide 18: Edge-disjoint paths
	Slide 19: Edge-disjoint paths
	Slide 20: Edge-disjoint paths: running time
	Slide 21: Edge-disjoint paths in undirected graphs
	Slide 22: Edge-disjoint paths in undirected graphs
	Slide 23: Edge-disjoint paths in undirected graphs
	Slide 24: 7. Network Flow II
	Slide 25: Image segmentation
	Slide 26: Image segmentation
	Slide 27: Image segmentation
	Slide 28: Image segmentation
	Slide 29: Image segmentation
	Slide 30: Grabcut image segmentation
	Slide 31: 7. Network Flow II
	Slide 32: Baseball elimination
	Slide 33: Baseball elimination problem
	Slide 34: Baseball elimination problem
	Slide 35: Baseball elimination problem
	Slide 36: Baseball elimination problem: max-flow formulation
	Slide 37: Baseball elimination problem: max-flow formulation

