= 6. DYNAMIC PROGRAMMING I

PEARSON
A

Addison
Wesley

> segquence alignment
>~ Hirschberg's algorithm

>~ Bellman—Ford—Moore algorithm

\ 1 e J
\ = s
P\ JON KLEINBERG - EVA TARDOS

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

6. DYNAMIC PROGRAMMING I

> segquence alignment

SECTION 6.6

String similarity

Q. How similar are two strings?

Ex. ocurrance and occurrence.

6 mismatches, 1 gap 1 mismatch, 1 gap

0 c

0 mismatches, 3 gaps

Edit distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
" Gap penalty 6; mismatch penalty oy,
" Cost = sum of gap and mismatch penalties.

M~ HE- <

cost = & + Og + Orp

~—

assuming oap = dcc = Ogg =07 = 0

Applications. Bioinformatics, spell correction, machine translation,
speech recognition, information extraction, ...

Confusion mafrix for English text

Number of times one letter was substituted for another.

Y (correct)

l

n

m

k

j

oo oo oo oo OO MO MND OO OO~ oo o

N O I Cn OO oMo~ Ccom
— = el N

CO OO0 OO O 0O Q O MNNOCO OO MOS0 O-—T

1874121220402101005m,..200000

CCCmc CoOCCOoOOCOO MO FTFCoOoOOCMNODOOD OO

901050&07000&0900400001050

— ~r o
vt O N T Nt et DO NN T OO N NMODODnon S on
< ™~y — N — — oy v
VNSO N TN INO OO T NSO NO O D -
Lag! o CF) v —i — — (2] Lol o |
SO MmT N MO OO O MN—~OOOOF OO0 O~M
< — o —
CONCOCOCONO OO DO OO o oo

COQC OO OO NYRTOOoOTr~Vo o~ C—o
— -t —

%010%022@022060ﬁ0115%10060

—
0177040201500m0?0409000025

— ——

050333306200450208ﬂ”010007
- O~ N O - NO OO =TT OO NMOO oo —-woCo
CoOoOo O~ oo oL oD D~~~ oo
80009003900301““20200@00050
— [+ a) — —
p—
2105020000566”000815002070
0355250011250105m20w000010
SN AN N CNOO S -TANOOOYO M IT VO onoo oo QO

2020190601003”{”00 -

= Own o
- —

—

1 342

9

-
o1
o

—
L] NOoOO\NT TN n ND CcCoOMNO

P

0 1
11
30 12

—
——

0 16

>
b
=}

7
9

CrH-=—OND

13

.30“00181761113

8 27 33 35

CONOCON—~0 0O~ NOMNS—~—~C
— — — —

14

OO NOO O

DOV IT =D~ N CO OO~ nQONOOO
28 SRS

@0 U O WO - M BE SO TR ® = D> B K NN

BLOSUM matrix for proteins

BLOcks SUbstitution Matrix: is a substitution matrix used for sequence alignment of proteins.

S I W Y 'V

P

K M F

L

G H

E

N D C Q

BLOSUM matrices are used to score alignments between evolutionarily divergent protein sequences.
R

TYTOCANT TV s~ T —NT Do DD N
T YT TN DR M ANTDN DN T »
DORBOTOOTODTOMoR® DL ,u0
OQONQ4Q33Q3444328530
N 0N [l 7 O\ wn s ON SN w00 L O\ EEEE e B O €0
TN T NS D T O cn T ABEEE N o))
TOMNA T OSBIN ToBo SR YT T o w N
NONT O FTOT MmN TODTOMN
T NYNErN TOT oM DNT TO YT Y
DTPRONTOROD O TmoDTODTAN~
oD NN (N DRI N N D TR T N e
PNorfihcoTARODrTANTANNDT MY
ST THONYYTTaTHEENUVUOWOH-rmMOOW
NTTANRNmn ToYP TN TaNOO T
NeoTHEEMm Y — YN TR TSTYYNY
o [SP 10 EEREEE 10 IESADUESI N o0 $BI on T AB o oN I D N
PONESRETNDARRANY® D T B
merenPo T TR THEY oY W
NATONR - T ToDTmMDONND T
NPT NNoNOMOTANY TN DT T
CxEcZOVOoOWUII—dXSWLanekE=>>

Edit distance

One more example.
What is edit distance between these two strings?

PALETTE PALATE

Assume gap penalty = 2 and mismatch penalty = 1.

PALTTE
PAL.ATE

1 gap, 1 mismatch

Sequence alignment

Goal. Given two strings X; X, ... X, and y; ¥, ... y,,, find a min-cost alignment.

Def. An alignment M is a set of ordered pairs x;—y; such that each character
appears in at most one pair and no crossings.

Xi—Yj and xi—yj cross if i<i', butj>j’
Def. The cost of an alignment M is:

cost(tM) =) a,, + Yy o6+ > 6

(xi,yj) eEM i :x; unmatched j LY unmatched

J \ J

i i v
mismatch gap

X1 X2 X3 X4 X5

X6
CTACC.G
.TACATG

Yr Y2 Y3 Y4 Y5 Ve

an alignment of CTACCG and TACATG
M = { Xo-Y1, X3Y2, X4~ Y3, X5 Ya, X6~ Y5}

Sequence alignment: problem structure

Def. OPT(i, j) = min cost of aligning prefix strings x; X, ... x; and y; y, ... y;.
Goal. OPT(m, n).

Case 1. OPT(i, j) matches xi —Y;.
Pay mismatch for x;—y; + min cost of aligning x; x, ... xi; and y; Y, ... yj 1.

Case 2a. OPT(i, j) leaves xi unmatched.
Pay gap for x; + min cost of aligning x; X, ... X ; and y; y, ... y;.

\ optimal substructure property

/ (proof via exchange argument)
Pay gap for y; + min cost of aligning x; x, ... x; and y; y, ... yj 1.

Case 2b. OPT(i, j) leaves y; unmatched.

Bellman equation. (j6 if i =0
) if j =0
OPT(i,) = X (04y, + OPT(i—1,j—1)
min{ § + OPT(i — 1,) otherwise
| |0 + OPT(i,j—1)

10

Sequence alignment: bottom-up algorithm

SEQUENCE-ALIGNMENT(M, N, X1, ..., Xm, Y1, ..., Vn, 0, Q)

FOR 1=0TO M
MIi, 0] < i0.

FOR J=0TON
MO, j] < o.

FORI1=1TO m
FOR j=1TOn
MII, J] < min { axy; + M[I-1, 1],

o+ M [i_l’ J]’ alread
6+M[i,j1]}.> ;

computed

RETURN M [m, n].

11

Seqguence alignment: traceback

0
P 2
A 4
L 6
E 8
T 10
T 12
E 14

10

12

10

10

12

10

P A L A T E

PALTTE

1 gap, 1 mismatch

(gap penalty = 2, mismatch penalty = 1)

12

Sequence alignment: analysis

Theorem. The DP algorithm computes the edit distance (and an optimal

alignment) of two strings of lengths m and n in ®(mn) time and space.
Pf.

" Algorithm computes edit distance.
" Can trace back to extract optimal alignment itself. =

Can we improve the space used by the algorithm?

13

6. DYNAMIC PROGRAMMING I

>~ Hirschberg's algorithm

SECTION 6.7

Sequence alignment in linear space

Theorem. [Hirschberg] There exists an algorithm to find an optimal
alignment in O(mn) time and O(m + n) space.
" Clever combination of divide-and-conquer and dynamic programming.

Programming G. Manacher
Techniques Editor

A Linear Space
Algorithm for
Computing Maximal
Common Subsequences

D.S. Hirschberg
Princeton University

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest
common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25

Improving the space: first frick

P A L A T E

0 2 4 6 8 10 12 To compute the next column/row of the
matrix we need only the previous

2 0 2 4 6 8 10 column/row

4 2 0 2 4 6 8 ‘

maintain only 2 column/row a time

6 4 2 0 2 4 6
8 6 4 2 1 3 4
O(m+n) space
10 8 6 4 3 1 3
12 10 8 6 5 3 2
14 12 10 8 7 5 3

notice: this allows to compute the edit distance but not the alignment

16

Hirschberg's algorithm

Edit distance graph.
" Let f(i, j) denote length of shortest path from (0,0) to (i, j).
" Lemma: f(i,j) = OPT(,j) for all i and j.

Yo Y3 Ya Ys

Y6

17

Hirschberg's algorithm

Edit distance graph.
" Let f(i, j) denote length of shortest path from (0,0) to (i, j).

" Lemma: f(i,j) = OPT(,j) for all i and j.

Pf of Lemma. [by strong induction oni+j]
" Base case: f(0,0)=0PT (0, 0)=0.
" Inductive hypothesis: assume true for all (i’,j)with i'+j’ < i+]j.
" Last edge on shortest path to (i, j) is from (i—1, j—1), (i—1, j), or (i, j —1).
" Thus,

f(i,) = minfogy, + f(i—1,j=1), 6+ f(i=1,9), 5+ (i, — 1)}
e min{a,,,, + OPT(i — 1,5 — 1), § + OPT(i — 1,j), § + OPT(i,j — 1)}
inductive — OPT(i,j) _
hypothesis
/ o,
Bellman Q 0
equation

—@

0 18

Hirschberg'’s algorithm

Edit distance graph.
" Let f(i,) denote length of shortest path from (0,0) to (i, j).
" Lemma: f(i,j) = OPT(,j) for all i and j.
" Can compute f (+, j) for any j in O(mn) time and O(m + n) space.

J

Yo Y3 Ys

Y6

19

Hirschberg'’s algorithm

Edit distance graph.
" Let g(i, j) denote length of shortest path from (i, j) to (m, n).

Y6

20

Hirschberg'’s algorithm

Edit distance graph.

" Let g(i, j) denote length of shortest path from (i, j) to (m, n).

" Can compute g(i, j) by reversing the edge orientations and
inverting the roles of (0, 0) and (m, n).

Y6

21

Hirschberg'’s algorithm

Edit distance graph.
" Let g(i, j) denote length of shortest path from (i, j) to (m, n).
" Can compute g(-, j) for any j in O(mn) time and O(m + n) space.

Ya Ys

Y6

22

Hirschberg'’s algorithm

Observation 1. The length of a shortest path that uses (i, j) is f(i, j) + g(i, j).

Yo Y3 Ya Ys Y6

23

Hirschberg's algorithm

Observation 2. let g be an index that minimizes f(q,n/2) +g(q, n/2).
Then, there exists a shortest path from (0, 0) to (m, n) that uses (g, n/2).

n/2

Yo Ya Ys Y6

24

Hirschberg's algorithm

Divide. Find index g that minimizes f(q,n/2) +g(q,n/2); save node i as part
of solution.

Conquer. Recursively compute optimal alignment in each piece.

n/2

25

Hirschberg's algorithm: space analysis

Theorem. Hirschberg’s algorithm uses ®(m +n) space.

Pf.
" Each recursive call uses ®(m) space to compute f(-,n/2) and g(-,n/2).
" Only ©(1) space needs to be maintained per recursive call.
" Number of recursive calls < n. =

26

Hirschberg's algorithm: running fime analysis

Theorem. Let T(m, n) = max running time of Hirschberg’s algorithm on

strings of lengths at most m and n. Then, T(m, n) = O(mn).

Pf.

O(mn) time to compute f(-, n/2) and g(-, n/2) and find index g.
T(q,n/2)+ T(m—q, n/2) time for two recursive calls.
Choose constant ¢ so that: 1y 2)

| A\

cm
T(2, n)
T(m,n) < cmn+T(q,n/2)+T(m-q,n/2)

| A\

cn

Claim. T(m,n) < 2cmn.
Base cases: m=2 and n=2.
Inductive hypothesis: T(m',n') < 2cm'n' for all (m’, n) with m’+n' < m+n.

T(m, n)

/

inductive

| A\

T(q,n/2)+T(m—-qg,n/2)+cmn

| A\

2cqn/2 + 2c(m—-qg)n/2 + cmn

cgn + cmn — cqgn + cmn
hypothesis

2cmn =
27

6. DYNAMIC PROGRAMMING Il

>~ Bellman—Ford—Moore algorithm

SECTION 6.8

Shortest paths with negative weights

Shortest-path problem. Given a digraph G = (V, E), with arbitrary edge

lengths tw, find shortest path from source node s to destination node t.

O—->—0Q

4 12

T D S
- @/6 "
<!>/3/ —

length of shortest s~»tpath=9-3 -6 + 11 = 11

29

Shortest paths with negative weights: failed attempfs

Dijkstra. May not produce shortest paths when edge lengths are negative.

N |
o—, —

Reweighting. Adding a constant to every edge length does not necessarily

Dijkstra selects the vertices in the order s, t, w, Vv
But shortest path from s to t is S>vV—w-—t.

make Dijkstra’s algorithm produce shortest paths.

ﬁD),
Adding 8 to each edge weight changes the

shortest path from s—v—w—t to s—ft.
10 12 0

5 . e

30

Negaftive cycles

Def. A negative cycle is a directed cycle for which the sum of its edge
lengths is negative.

31

Shortest paths and negative cycles

Lemma 1. If some vt path contains a negative cycle, then there does not
exist a shortest vt path.

Pf. If there exists such a cycle W, then can build a va»t path of arbitrarily
negative length by detouring around W as many times as desired. -

LW) < 0

32

Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a shortest vt path
that is simple (and has < n—1 edges).

Pf.

" Among all shortest vat paths, consider one that uses the fewest edges.
" If that path P contains a directed cycle W, can remove the portion of P
corresponding to W without increasing its length. -

@) @

W

LUW) > 0

33

Shortest-paths and negative-cycle problems

Single-destination shortest-paths problem. Given a digraph G = (V, E) with

edge lengths ¢, (but no negative cycles) and a distinguished node t,
find a shortest vant path for every node v. ~~_ equivalent to the single-source

shortest-paths problem

Negative-cycle problem. Given a digraph G = (V, E) with edge lengths ¢,,,
find a negative cycle (if one exists).

-3
(reverse) shortest-paths tree negative cycle

34

Shortest paths with negative weights: dynamic programming

Def. OPT(i, v) = length of shortest va»t path that uses <i edges.

Goal. OPT(n o 11 V) fOI’ eaCh V. ~ by Lemma 2, if no negative cycles,

there exists a shortest v~t path that is simple

Case 1. Shortest va»t path uses <i—1 edges.
" OPT(i,v) = OPT(i — 1, v). AN

optimal substructure property
/ (proof via exchange argument)

Case 2. Shortest va»t path uses exactly i edges.
" if (v, w) is first edge in shortest such v~t path, incur a cost of ¢,,.
" Then, select best wt path using <i-1 edges.

Bellman equation.

(0 ifi=0andv=t

OPT(i,v) = { if i =0 and v #t

N

min { OPT(i —1,v), (mi)nE {OPT (i — 1,w) + £y } } ifi>0
\ v, w)eE

35

Shortest paths with negative weights: implementation

SHORTEST-PATHS(V, E, ¢, 1)

FOREACH nodev eV :
MO, v] « .
M [0, t] < O.
FORI=1TONn-1
FOREACH nodev eV :
MIi, v] «— M[i-1, v].
FOREACH edge (v, w) EE:
MTi, V] « min { M[i,v], M[i—1, w] + £, }.

36

Shortest paths with negative weights: implementation

Theorem 1. Given a digraph G = (V, E) with no negative cycles, the DP
algorithm computes the length of a shortest vt path for every node v
in ®(mn) time and ®(n?) space.

Pf.
" Table requires ®(n?) space.

" Each iteration i takes ®(m) time since we examine each edge once. -

Finding the shortest paths.
" Approach 1: Maintain successor[i, v] that points to next node
on a shortest va~t path using <i edges.
" Approach 2: Compute optimal lengths M[i, v] and consider
only edges with M[i, v] = M[i - 1, w] + £,,,- Any directed path in this
subgraph is a shortest path.

37

Shortest paths with negative weights: practical improvements

Space optimization. Maintain two 1D arrays (instead of 2D array).

" d[v] = length of a shortest va~t path that we have found so far.
" successor[v] = next node on a va»t path.

Performance optimization. If d[w] was not updated in iteration i -1,
then no reason to consider edges entering w in iteration i.

38

Bellman-Ford-Moore: efficient implementation

BELLMAN-FORD-MOORE(V, E, ¢, t)

FOREACH nodev eV :
d[v] « .
successor[v] < null.
d[t] < 0.
FORI=1TONn-1
FOREACH nodew € V :
IF (d[w] was updated Iin previous pass)
FOREACH edge (v, w) EE:
IF(d[v] > dw] + L)
dlv] «d[w] + €.

successor[v] «— w.

IF (no d[] value changed in pass i) STor.

pass I
O(m) time

39

Example: try to run Bellman-Ford algorithm on the following graph.

Order of the nodes: t, D, C, B, E

Bellman-Ford-Moore: analysis

Lemma 3. For each node v: d[v] is the length of some v~»t path.
Lemma 4. For each node v: d[v] is monotone non-increasing.

Lemma 5. After pass i, d[v] < length of a shortest va»t path using <i edges.

Pf.
" Base case: 1=0.
" Assume true after pass i.
" Let P be any vt path with < i+ 1 edges.
" Let (v, w) be first edge in P and let P’ be subpath from w to t.
" By inductive hypothesis, at the end of pass i, djw] < ¢(P ")
because P’ is a w~t path with <i edges. \

and by Lemma 4,

" After considering edge (v, w) in pass i+ 1: d[w] does not increase

VAN

d[v] Uy + d[W]

/St (P
and by Lemma 4,
t(P) -

d[v] does not increase

41

Bellman-Ford-Moore: analysis

Theorem 2. Assuming no negative cycles, Bellman-Ford-Moore computes
the lengths of the shortest va~t paths in O(mn) time and ®(n) extra space.
Pf. Lemma 2 + Lemma 5. -

/ \

shortest path exists and after i passes,
has at most n—1 edges d[v] < length of shortest path
that uses <iedges

Remark. Bellman-Ford-Moore is typically faster in practice.
" Edge (v, w) considered in pass i +1 only if d[w] updated in pass i.
" If shortest path has k edges, then algorithm finds it after <k passes.

what about the shortest paths?

42

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford-Moore, following the successor[v]
pointers gives a directed path from vto t of length d[v].

Counterexample. Claim is false!
" Length of successor va~t path may be strictly shorter than d[v].

consider nodes in order: t, 1, 2,

successor[2] =1 successor[1l] =t
d[2] = 20 d[1] =10 d[t]=0

‘]

successor[3] =t
d[3] =1

43

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford-Moore, following the successor[v]
pointers gives a directed path from vto t of length d[v].

Counterexample. Claim is false!
" Length of successor va~t path may be strictly shorter than d[v].

consider nodes in order: t, 1, 2, 3

successor[2] =1 successor[1] =3
d[1] =2 d[t]=0

successor[3] =t
d[3] =1

44

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford-Moore, following the successor[v]
pointers gives a directed path from vto t of length d[v].

Counterexample. Claim is false!

" If negative cycle, successor graph may have directed cycles.

consider nodes in order: t, 1, 2, 3,

d[3] = d[2] =

P
Lo

d[4] =

45

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford-Moore, following the successor[v]
pointers gives a directed path from vto t of length d[v].

Counterexample. Claim is false!

" If negative cycle, successor graph may have directed cycles.

consider nodes in order: t, 1, 2, 3, 4

T
TR

d[4] = d[1] =

d[t] 0

46

Bellman—-Ford—Moore: finding the shortest paths

Lemma 6. Any directed cycle W in the successor graph is a negative cycle.
Pf.

" If successor[v] =w, we must have d[v] > d[w] + L.
(LHS and RHS are equal when successor[v] is set; d[w] can only decrease;
d[v] decreases only when successor[v] is reset)
Let vi— v2— ... — vk — v1 be the sequence of nodes in a directed cycle W.
" Assume that (vg, v1) is the last edge in W added to the successor graph.
" Just prior to that: d[vi] > d[va] + &(v1, V2)

d[v2] > d[vs] + L(v2, v3)

d[vk-1] d[vk] + L(Vi1, VK)

holds with strict inequality
> + —_—
d[Vk] d[Vl] E(Vk’ Vl) since we are updating d[vi]

|V

" Adding inequalities yields £(vi, v2) + £(v2, v3) + ... + 8(Vk-1, Vk) + £(Vk, V1) < O. =

W is a negative cycle

47

Bellman—-Ford—Moore: finding the shortest paths

Theorem 3. Assuming no negative cycles, Bellman-Ford-Moore finds
shortest va»t paths for every node v in O(mn) time and ©(n) extra space.
Pf.

" The successor graph cannot have a directed cycle. [Lemma 6]

letv=vi—>Vv2— ... > w =t be the nodes along this path P.
Upon termination, if successor[v] = w, we must have d[v] = d[w] + Cw.
(LHS and RHS are equal when successor[v] is set; d[-] did not change)
" Thus, d[v1] = dvz] + £(vi, Vo) \
in lgorithm
div] = divsl + Lz, Vo) " erminatec

divii] = d[w] + £(Vk-1, VK)

" Adding equations yields d[v] = d[t] + €(v1, v2) + £(v2, V3) + ... + £(Vk-1, Vk). *

/|

min length of any vt path 0
(Theorem 2)

length of path P

Thus, following the successor pointers from v yields a directed path to t.

48

what if the graph has a negative cycle (the can reach t)¢

BELLMAN—FORD-MOORE(V, E, ¢, t)

FOREACH nodev eV :
d[v] « .
successor[v] « null.

d[t] < 0.

FORI=1TONn-1

FOREACH nodew € V :

IF (d[w] was updated in previous pass)

FOREACH edge (v, w) EE :

IF (d[v] > d
dlv] «d

SUCCessor

IF (no d[-] value changed in pass i) STOP.

W]+ L)

W]+ Lo

V] «— W.

49

Bellman-Ford-Moore: checking for negative cycle

BELLMAN-FORD-MOORE(V, E, ¢, 1)

FOREACH nodev eV :
d[v] « .
successor[v] « null.
d[t] < 0.
FORI=1TONn-1
FOREACH node w € V :
IF (d[w] was updated in previous pass)
FOREACH edge (v, w) EE :
IF(d[v] > d[w] +)
dlv] «d[w] + €.

SUCCessor[v] «— w.

IF (no d[-] value changed in pass i) STOP.

FOREACH edge (v, w) € E
pass N

O(m) time IF (d[v] > d[w] + £,,,) THEN return “there is a negative cycle”

Lemma 6. If there is a negative cycle (that can reach t) the (modified)

algorithm report it.
Pf.

If there is no negative cycle the pass #n do nothing
Let vi— v2— ... —» vk —> V1 a directed negative cycle W.
assume by contradiction that the algorithm does not return it
Then: condition of the last IF is always false.
Hence: d[v1] < d[ve] + U(vi, V2)
d[v2] < d[vs] + £(v2, v3)

divkca] < dfw] + €(Vk-1, W)
d[vk] < d[vi] + £(Vk, V1)

Adding inequalities yields €(vi, v2) + €(v2, v3) + ... + €(Vk-1, Vk) + £(Vk, V1) > 0. =

W is cannot be a negative cycle: a contradiction

51

	Slide 1: 6. Dynamic Programming II
	Slide 2: 6. Dynamic Programming II
	Slide 3: String similarity
	Slide 4: Edit distance
	Slide 5: Confusion matrix for English text
	Slide 6: BLOSUM matrix for proteins
	Slide 7: Edit distance
	Slide 8: Sequence alignment
	Slide 10: Sequence alignment: problem structure
	Slide 11: Sequence alignment: bottom-up algorithm
	Slide 12: Sequence alignment: traceback
	Slide 13: Sequence alignment: analysis
	Slide 14: 6. Dynamic Programming II
	Slide 15: Sequence alignment in linear space
	Slide 16: Improving the space: first trick
	Slide 17: Hirschberg′s algorithm
	Slide 18: Hirschberg′s algorithm
	Slide 19: Hirschberg’s algorithm
	Slide 20: Hirschberg’s algorithm
	Slide 21: Hirschberg’s algorithm
	Slide 22: Hirschberg’s algorithm
	Slide 23: Hirschberg’s algorithm
	Slide 24: Hirschberg’s algorithm
	Slide 25: Hirschberg’s algorithm
	Slide 26: Hirschberg’s algorithm: space analysis
	Slide 27: Hirschberg′s algorithm: running time analysis
	Slide 28: 6. Dynamic Programming II
	Slide 29: Shortest paths with negative weights
	Slide 30: Shortest paths with negative weights: failed attempts
	Slide 31: Negative cycles
	Slide 32: Shortest paths and negative cycles
	Slide 33: Shortest paths and negative cycles
	Slide 34: Shortest-paths and negative-cycle problems
	Slide 35: Shortest paths with negative weights: dynamic programming
	Slide 36: Shortest paths with negative weights: implementation
	Slide 37: Shortest paths with negative weights: implementation
	Slide 38: Shortest paths with negative weights: practical improvements
	Slide 39: Bellman–Ford–Moore: efficient implementation
	Slide 40
	Slide 41: Bellman–Ford–Moore: analysis
	Slide 42: Bellman–Ford–Moore: analysis
	Slide 43: Bellman–Ford–Moore: analysis
	Slide 44: Bellman–Ford–Moore: analysis
	Slide 45: Bellman–Ford–Moore: analysis
	Slide 46: Bellman–Ford–Moore: analysis
	Slide 47: Bellman–Ford–Moore: finding the shortest paths
	Slide 48: Bellman–Ford–Moore: finding the shortest paths
	Slide 49: what if the graph has a negative cycle (the can reach t)?
	Slide 50: Bellman–Ford–Moore: checking for negative cycle
	Slide 51

