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Algorithmic paradigms

Greed. Process the input in some order, myopically making irrevocable

decisions.

Divide-and-conquer. Break up a problem into independent subproblems;
solve each subproblem; combine solutions to subproblems to form solution

to original problem.

Dynamic programming. Break up a problem into a series of overlapping
subproblems)\combine solutions to smaller subproblems to form solution

to large subproblem.

fancy name for
caching intermediate results

in a table for later reuse



Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
" Dynamic programming = planning over time.
" Secretary of Defense had pathological fear of mathematical research.
" Bellman sought a “dynamic” adjective to avoid conflict.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.




| spent the Fall quarter (of 1950) at RAND. [..] The 1950s were not good years for mathematical
T « research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of
\h ﬁ{:, ” Defense, and he actually had a pathological fear and hatred of the word "research"”. I'm not using
wthe term lightly; I'm using it precisely. His face would suffuse, he would turn red, and he would
get violent if people used the term research in his presence. [...] The RAND Corporation was
employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, | felt |
had to do something to shield Wilson and the Air Force from the fact that | was really doing
mathematics inside the RAND Corporation. [...] | decided therefore to use the word
"programming”. | wanted to get across the idea that this was dynamic, this was multistage, this
was time-varying. | thought, let's kill two birds with one stone. Let's take a word that has an
absolutely precise meaning, namely dynamic, in the classical physical sense. It also has a very
interesting property as an adjective, and that is it's impossible to use the word dynamic in a
pejorative sense. Try thinking of some combination that will possibly give it a pejorative
meaning. It's impossible. Thus, | thought dynamic programming was a good name. It was

something not even a Congressman could object to. So | used it as an umbrella for my activities.

Eye of the Hurricane: An Autobiography



Dynamic programming applications

Application areas.

" Computer science: Al, compilers, systems, graphics, theory, ....
" Operations research.

Information theory.

Control theory.

Bioinformatics.

Some famous dynamic programming algorithms.

Avidan-Shamir for seam carving.
" Unix diff for comparing two files.

" Viterbi for hidden Markov models.

De Boor for evaluating spline curves.

Bellman-Ford-Moore for shortest path.

Knuth-Plass for word wrapping text in TgX.
Cocke-Kasami-Younger for parsing context-free grammars.

Needleman-Wunsch/Smith-Waterman for sequence alignment.
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Weighted interval scheduling

" Job j starts at sj, finishes at fj, and has weight w; > 0.
" Two jobs are compatible if they don’t overlap.
" Goal: find max-weight subset of mutually compatible jobs.

time



Earliest-finish-time first algorithm

Earliest finish-time first.
" Consider jobs in ascending order of finish time.
" Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

weight =999 — b

weight = 1
weight=1 — a /
h

time



Weighted interval scheduling

Convention. Jobs are in ascending order of finish time: f, < f, <...<f,.

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex. p(8)=1,p(7)=3,p(2)=0. \ i is rightmost interval

that ends before | begins

time



Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for
subproblem consisting only of jobs 1, 2, ..., j.

Goal. OPT(n) = max weight of any subset of mutually compatible jobs.

Case 1. OPT(j) does not select job j.
" Must be an optimal solution to problem consisting of remaining
jobs 1,2, ..., j—1.
\ optimal substructure property
Case 2. OPT(j) selects job j. /" (proof via exchange argument)
" Collect profit w;.
" Can’t use incompatible jobs {p(j) +1,p(j)+2,..., j—11}.
" Must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j).

0 if j =0
max{ OPT(j — 1), w; + OPT(p(5))} if7>0

10

Bellman equation. OPT(j) = {



Weighted interval scheduling: bottom-up dynamic programming

BoTtTOoM-UP(N, S1, ..., Sn, f1, ..., fn, W1, ..., Wn)

Sort jobs by finish time and renumber sothat f1 < f, < ... < fa.

Compute p[1], p[2], ..., p[n] via binary search.

M [O] — 0. previously computed values
FORj=1TON

M[J] < max { M[J-1], w;j + M[p[]]] }.
RETURN M[n].

Running time. The bottom-up version takes O(n log n) time.
" Sort by finish time: O(nlog n) via mergesort.
" Compute p[j] for each j: O(nlogn) via binary search.
" FOR cycle takes O(n) time

11



Weighted interval scheduling: turning back to recursion

BRUTE-FORCE (N, S1, ..., Sn, f1, ..., fn, W1, ..., Wn)

Sort jobs by finish time and renumber so that f1 < f2 < ... < fa.
Compute p[1], p[2], ..., p[n] via binary search.

RETURN COMPUTE-OPT(N).

COMPUTE-OPT(])

IF(j=0)
RETURN O.

ELSE
RETURN max {CoMPUTE-OPT(]J—1), wj + CoMPUTE-OPT(p[]]) }.

.

O(1) if n =1
T(n) = | T(n)=6(2")
oT(n—1) + (1) ifn>1

\

12



Weighted interval scheduling: turning back to recursion

Observation. Recursive algorithm is spectacularly slow because of
overlapping subproblems = exponential-time algorithm.

Ex. Number of recursive calls for family of “layered” instances grows like
Fibonacci sequence.

! ONONONBONONO
p(1) = 0, p(j) = j-2 | @ @

T(nN)=T(n-1)+T(n-2)+B(1)

13



Weighted interval scheduling: memoization

Top-down dynamic programming (memoization).
" Cache result of subproblem jin M[j].
" Use MJj] to avoid solving subproblem j more than once.

TopP-DOWN(N, S1, ..., Sn, f1, ..., fa, W1, ..., Wn)

Sort jobs by finish time and renumber so that f1 < f» < ...

VAN

fn.
Compute p[1], p[2], ..., p[n] via binary search.
M[O] < O.

RETURN M-COMPUTE-OPT(N).

global array

M-COMPUTE-OPT( )

IF (M[j] 1s uninitialized)
M[]] < max { M-CoMPUTE-OPT (j—1), w; + M-ComMPUTE-OPT(P[]j]) }.
RETURN MJ[]j].

14



Weighted interval scheduling: running time

Claim. Memoized version of algorithm takes O(n log n) time.

Pf.
" Sort by finish time: O(nlog n) via mergesort.

Compute p[j] for each j : O(nlogn) via binary search.

" M-CompUTE-OPT(j): each invocation takes O(1) time and either
- (1) returns an initialized value M[j]
- (2) initializes M[j] and makes two recursive calls

Progress measure ® = # initialized entries among MJ[1..n].
- initially ® =0; throughout ® < n.
- (2) increases ® by 1 = < 2n recursive calls.

Overall running time of M-CompPUTE-OPT(n) is O(n). =

15



Weighted interval scheduling: finding a solution

Q. DP algorithm computes optimal value. How to find optimal solution?
A. Make a second pass by calling FIND-SoLUTION(N).

FIND-SOLUTION(])

IF (j=0)
RETURN @.
ELsE IR (wj + M[p[]]] > M[]-1])
RETURN { ] } U FIND-SOLUTION(p[]]).
ELSE
RETURN FIND-SOLUTION(]—1).

M[JI=max{M)-1], w; + M[p[j]] }.

Analysis. # of recursive calls <n = O(n).

16



Memoization (tfop-down) V3

Table-based (bottom-up)

« Top-Down approach (more intuitive)

« Easier to index subproblems by
other objects (e.g., sets).

 Only computes necessary
subproblems

« Function calls overhead

 Time complexity is harder to
analyze

Harder to grasp

Need to index subproblems with
Integers

Always computes all
subproblems

No recursion. More cache
efficient.

Time complexity is easy to
analyze

Short and clean code
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Drink as much as possible

Robert wants to drink as much as possible

« Robert walks through the streets of
King's Landing and encounters N taverns
t,, 4, ..., L, inorder

+ When Robert encounters a tavern i, he
can either stop for a drink or continue
walking

» The wine served in tavern [, has strength

S; (the higher, the stronger)
« The strength of Robert's drinks must

InCrease over time
« Goal: Compute the maximum number of
drinking stops of Robert



An example




An example

optimal solution: 6

This is a problem known as
Longest Increasing Subsequence



A DP algorithm: first attempt

Subproblem definition:

OPTIi]: length of the LIS of S[1],...,S][i]

Base case:

OPT[1]=1

Solution:

OPTI[n]

Recursion formula:




A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]




A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!

OPT

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]

£

10

11

12




A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]

10

11

12

OPT [1 11212 | 3| 4

Possible lengths: 3




A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]

f

~

S[4]11]8 6 | 9| 8
2 3 6 9 10 11 12
OPT [ 1112 4 4

Possible lengths: 3




A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]
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A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!
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A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]
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A DP algorithm: second attempt

Tip: sometimes adding constraints to subproblems can help!

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]

10

11

12

OPT [1 11212 | 3| 4

Possible lengths: 3 4 3 2 2

OPT[9]=4




A DP algorithm: second attempt

Subproblem definition:

OPTIi]: length of the LIS of S[1],...,5[i] that ends with S[i]
« Base case:
OPT[1]=1

e Solution:

maxi_; , , OPT[i]

« subproblem order:
OPTI[1], OPTI[2],..., OPTI[n]

« Recursion formula:

OPTIil=1 + max{O, _ max, OPTIj] }



Longest Increasing Subsequence

LIS(S[1:n])

OPT[1]=1

FORI=2TON

OPTIi]= 1 + max { 0, max OPT[j] }
j=1,2,...i-1

st S[j]<S[i]

RETURN max; OPT[1].

Running time.
" each OPTIi] is computed in O(i))=0(n) time.
" O(n?) time

32



HOUSE COLORING PROBLEM

Goal. Paint a row of n houses red, green, or blue so that
" No two adjacent houses have the same color.
" Minimize total cost, where cost(i, color) is cost to paint i given color.

adddda

cost to paint house i the given color

33



HOUSE COLORING PROBLEM

Subproblems.

" R[i] = min cost to paint houses 1, ..., i with i red.

" GJ[i] = min cost to paint houses 1, ..., i wit
" B[i] = min cost to paint houses 1, ..., 1 wit

" Optimal cost = min { R[n], G[n], B[n] }.

Dynamic programming equation.

"R
"G
" B

1] = cost(l, red) + min{B[i-1]
1] = cost(i, green) + min { R[i -1]

1] = cost(i, blue) + min { R[i-1]

Running time. O(n).

¥
1}
}

=

N 1 green.
n i blue.

overlapping

subproblems

34
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Least squares

Least squares. Foundational problem in statistics.
" Given n points in the plane: (xi, y1), (X2, y2), ..., (Xn, Yn).
" Find a line y=ax + b that minimizes the sum of the squared error:

n

SSE = Z (y; — ax; — b)?

=1

Solution. Calculus = min error is achieved when

_ nzz LilYi — (Zz 33'@)(2@ Yi) h — ZZ Yi — azi L
ny o xi — (30 %) ’ n

36



Segmented least squares

Segmented least squares.
" Points lie roughly on a sequence of several line segments.
" Given n points in the plane: (x1, y1), (X2, y2), ..., (Xn, Yn) With
X1 < X2 <..<Xn, find a sequence of lines that minimizes f(x).

Q. What is a reasonable choice for f(x) to balance accuracy and parsimony?

I I

goodness of fit number of lines

37



Segmented least squares

Segmented least squares.
" Points lie roughly on a sequence of several line segments.
" Given n points in the plane: (x1, y1), (X2, y2), ..., (Xn, Yn) With
X1 < X2 <..<Xn, find a sequence of lines that minimizes f(x).

Goal. Minimize f(x)=E +c L for some constant ¢ >0, where

" E =sum of the sums of the squared errors in each segment.

" L = number of lines.

38



Dynamic programming: mulfiway choice

Notation.
" OPT(j) = minimum cost for points p1, p2, ..., pj.
" ejj = SSE for for points pi, pi+1, ..., pj.

To compute OPT()):
" Last segment uses points pi, pi+1, ..., pj for some i <j.
"“ Cost=e¢jj + c + OPT(i—1). —
optimal substructure property
(proof via exchange argument)

Bellman equation.

\ 1<:<;

39



Segmented least squares algorithm

SEGMENTED-LEAST-SQUARES(N, p1, ..., Pn, C)

FOR J=1TO n
FOR 1=1TO |

Compute the SSE ejj for the points pi, pi+1, ..., pj.

M[O] < O.
FOR J=1TO n
M[J] < mini<i<j {ej +c+M[iI-1] }.

previously computed value

RETURN M[n].

40



Segmented least squares analysis

Theorem. [Bellman 1961] DP algorithm solves the segmented least squares
problem in O(n®) time and O(n%) space.

Pf.

" Bottleneck = computing SSE ej for each i and j.

n ) ok TkYk — Ok Th)(D g ’yk:) b — Dk Yk — Qij D Tk
nY o Ti — O, Tk)? Y n

Q;5 =
“ O(n) to compute ejj. -

Remark. Can be improved to O(n%) time.

" For eachi: precompute cumulative sums Z:L‘k Zyk, Z:L‘k, > Ty
k=1 k=1 k=1 k=1

" Using cumulative sums, can compute ejj in O(1) time.

41
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Knapsack problem

Goal. Pack knapsack so as to maximize total value of items taken.
" There are n items: item i provides value vi >0 and weighs wi > 0.
" Value of a subset of items = sum of values of individual items.
" Knapsack has weight limit of W.

Ex. The subset {1,2,5} has value $35 (and weight 10).
Ex. The subset {3,4} has value $40 (and weight 11).

Assumption. All values and weights are integral.

I Vi Wi
1 1USD 1kg

weights and values
2 6 USD 2 kg can be arbitrary
3 18 USD 5 kg / positive integers
4  22USD 6 kg
5  28USD 7kg

knapsack instance
(weight limit W = 11)

Creative Commons Attribution-Share Alike 2.5
by Dake

43



Dynamic programming:. false start

Def. OPT(i) = optimal value of knapsack problem with items 1, ..., i.
Goal. OPT(n).

Case 1. OPT(i) does not select item 1.
" OPT selects bestof {1,2,...,i—-1}.
optimal substructure property
Case 2. OPT(i) selects itemi. (proof via exchange argument)
" Selecting item i does not immediately imply that we will have
to reject other items.
" Without knowing which other items were selected before i,
we don’t even know if we have enough room for i.

Conclusion. Need more subproblems!

44



Dynamic programming: two variables

Def. OPT(i, w) = optimal value of knapsack problem with items 1, ..., i,

subject to weight limit w.
Goal. OPT(n, W).

e possibly because wi >w
Case 1. OPT(i, w) does not select item .

" OPT(i, w) selects bestof {1,2,...,i—1} subject to weight limit w.

Case 2. OPT(i, w) selects item i. AN Sntmal bt nronarey
- CO“ect Value Vi. / (proof via exchange argument)

" New weight limit =w —wi.
" OPT(i, w) selects best of {1,2,...,i—1} subject to new weight limit.

Bellman equation.

(0 if i =0
OPT(i,w) = ¢ OPT(i—1,w) if w; > w
| max{ OPT(i —1,w), v; + OPT(i —1,w —w;) } otherwise

45



Knapsack problem: bottom-up dynamic programming

KNAPSACK(N, W, wy, ..., Wn, V1, ..., Vn)

FOR w=0TO W

M[O, w] « 0.
FOR i=1TON previously computed values
FOR w=0TOW / \
IF (wi>w) M[I,w] «— M[i—1, w]. |
ELSE MI[i,w] «— max { M[i-1,w], vi + M[i-1, w—wi] }.

RETURN M[n, W].

(0 if i =0
OPT(i,w) = ¢ OPT(i—1,w) if w; > w
| max{ OPT(i —1,w), v; + OPT(i —1,w —w;) } otherwise

46



Knapsack problem: bottom-up dynamic programming demo

i Vi Wi
1 1USD 1kg (0 if =0
2 6USD 2kg  OPT(i,w) = { OPT(i—1,w) if w; > w
3 18USD 5kg | max {OPT (i — 1,w), v + OPT (i — 1,w — w;}  otherwise
4 22 USD 6 kg
5 28 USD 7 kg
weight limit w
subset
of items

OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w

47



Knapsack problem: running time

Theorem. The DP algorithm solves the knapsack problem with n items
and maximum weight W in ®(n W) time and ®(n W) space.
Pf.
" Takes O(1) time per table entry.
" There are ®(n W) table entries.
" After computing optimal values, can trace back to find solution:
OPT(i, w) takes item i iff M[i,w] > M[i—1,w]. =

weights are integers
between 1 and W

Remarks.
" Algorithm depends critically on assumption that weights are integral.
" Assumption that values are integral was not used.

48



Is the running time of the DP algorithm for the knapsack problem polynomial?

No, because ®(n W) is not a polynomial function of the input size.

« Itis pseudo-polynomial.

Pseudo-polynomial algorithm: an algorithm whose running time is
polynomial in the values of the input (e.g. the largest integer present in
the input).

« efficient when numbers involved in the input are reasonably small (e.qg.,

in the knapsack problem when w; are small)

« not necessary polynomial in the input size (number of bits required to
represent the input)

49
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