
1

Chapter 4

Greedy Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.5 Minimum Spanning Tree

3

Minimum Spanning Tree

Minimum spanning tree. Given a connected undirected graph G = (V, E)

with real-valued edge weights ce, an MST is a subset of the edges T 

E such that T is a spanning tree whose sum of edge weights is

minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

5

23

10

21

14

24

16

6

4

18
9

7

11
8

G = (V, E)

5

6

4

9

7

11
8

T, eT ce = 50

can't solve by brute force

The Minimum Spanning Tree (MST) problem

• Input:

• a connected weighted undirected graph G = (V, E) with real-valued

edge weights ce

• Feasible solution:

• a spanning tree T of G, i.e. a tree with T  E reaching all vertices of G

• measure (to minimize):

• the weight (or cost) of T, i.e c(T)= eT ce

4

5

Applications

MST is fundamental problem with diverse applications.

Network design.

– telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems.

– traveling salesperson problem, Steiner tree

Indirect applications.

– max bottleneck paths

– LDPC codes for error correction

– image registration with Renyi entropy

– learning salient features for real-time face verification

– reducing data storage in sequencing amino acids in a protein

– model locality of particle interactions in turbulent fluid flows

– autoconfig protocol for Ethernet bridging to avoid cycles in a network

Cluster analysis.

Uniqueness of MST

6

The MST is not unique in general

A

B

C1

1 1

A

B

C1

1 1

A

B

C1

1 1

Property: If G has distinct weights then the MST is unique.

exercise: prove it.

7

Greedy Algorithms

Kruskal's algorithm. Start with T = . Consider edges in ascending

order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in

descending order of cost. Delete edge e from T unless doing so would

disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree

T from s outward. At each step, add the cheapest edge e to T that has

exactly one endpoint in T.

Remark. All three algorithms produce an MST.

8

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

A Cut. A cut is a subset of nodes S. (Sometime defined as a partition of V

into S and V\S.)

Cutset. The corresponding cutset D of a cut S is the subset of edges with

exactly one endpoint in S.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

9

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

10

Greedy Algorithms

Cut property. Let S be any subset of nodes, and let e be a min cost

edge with exactly one endpoint in S. Then there exists an MST

containing e.

Cycle property. Let C be any cycle, and let f be a max cost edge

belonging to C. Then there exists an MST that does not contain f.

f
C

S

e is in some MST

e

f is not in some MST

11

Greedy Algorithms

Cut property. Let S be any subset of nodes, and let e be a min cost

edge with exactly one endpoint in S. Then there exists an MST T*

containing e.

Pf. (exchange argument)

Suppose e does not belong to T*.

Adding e to T* creates a cycle C in T*.

Edge e is both in the cycle C and in the cutset D corresponding to S

 there exists another edge, say f, that is in both C and D.

T' = T*  { e } - { f } is also a spanning tree.

Since ce  cf, cost(T')  cost(T*).

Then T’ is an MST containing e
f

T*

e

S

12

Greedy Algorithms

Cycle property. Let C be any cycle in G, and let f be a max cost edge

belonging to C. Then there exists an MST T* that does not contain f.

Pf. (exchange argument)

Suppose f belongs to T*.

Deleting f from T* creates a cut S in T*.

Edge f is both in the cycle C and in the cutset D corresponding to S

 there exists another edge, say e, that is in both C and D.

T' = T*  { e } - { f } is also a spanning tree.

Since ce  cf, cost(T')  cost(T*).

Then T’ is an MST that does not contain f.

f

T*

e

S

Kruskal's algorithm

14

Kruskal's algorithm. Start with T = . Consider edges in ascending

order of cost. Insert edge e in T unless doing so would create a cycle.

Remark.

An efficient implementation of Kruskal’s algorithm uses a Union-Find

data structure:

- to maintain the connected components of the current solutions

- to check whether the current edge forms a cycle (with the current

solution)

A pseudocode

15

algorithm Kruskal (graph G=(V,E,c))

 UnionFind UF

 T=

 sort the edges in ascending order of costs

 for each vertex v do UF.makeset(v)

 for each edge (x,y) in order do

 Tx=UF.find(x)

 Ty=UF.find(y)

 if Tx Ty then

 UF.union(Tx,Ty)

 add edge (x,y) to T

 return T

taken from

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

Copyright © 2004 - The McGraw - Hill Companies, srl17

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

Copyright © 2004 - The McGraw - Hill Companies, srl18

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

Correctness of Kruskal’s algorithm

27

when the algorithm decides to add edge (x,y) to the solution

x

y

since the algorithm look at the
edges in increasing order of costs...

...edge of minimum cost
crossing the cut S,V\S

consider the set S of vertices
belonging to the same
connected component of y

Correctness of Kruskal’s algorithm

28

when the algorithm decides to kick out edge (x,y) from the solution

x

y

since the algorithm look at the
edges in increasing order of costs...

...edge of maximum
weight in the cycle
that (x,y) forms with
the current solution

x y

Running time of Kruskal’s algorithm

- sorting the edges: O(m log m)=O(m log n)

- Union-Find operations:

 -n makeset ops

 -n-1 union ops

 -2m find ops

 O(m log n + UF(m,n))

-using QuickFind with union by size

 O(m log n + m + n log n)=O(m log n)

-using QuickUnion with union by size

 O(m log n + m log n + n)=O(m log n)

29

algorithm Kruskal (graph G=(V,E,c))

 UnionFind UF

 T=

 sort the edges in ascending order of costs

 for each vertex v do UF.makeset(v)

 for each edge (x,y) in order do

 Tx=UF.find(x)

 Ty=UF.find(y)

 if Tx Ty then

 UF.union(Tx,Ty)

 add edge (x,y) to T

 return T

O(m log n)

Prim's algorithm

The Minimum Spanning Tree (MST) problem

• Input:

• a connected weighted undirected graph G = (V, E) with real-

valued edge weights ce

• Feasible solution:

• a spanning tree T of G, i.e. a tree T=(V,F) with T  E

(reaching all vertices of G)

• measure (to minimize):

• the weight (or cost) of T, i.e c(T)= eT ce

31

5

23

10

21

14

24

16

6

4

18
9

7

11
8

G = (V, E)

5

6

4

9

7

11
8

T, eT ce = 50

32

Greedy Algorithms

Cut property. Let S be any subset of nodes, and let e be a min cost

edge with exactly one endpoint in S. Then there exists an MST

containing e.

Cycle property. Let C be any cycle, and let f be a max cost edge

belonging to C. Then there exists an MST that does not contain f.

f
C

S

e is in some MST

e

f is not in some MST

Prim's algorithm [Jarník 1930, Dijkstra 1957, Prim 1959].

Start with some root node s and greedily grow a tree T from s outward.

At each step, add the cheapest edge e to T that has exactly one

endpoint in T.

Correctness.

Immediate consequence of the cut property, used exactly n-1 times.

33

Euclidean complete graph

- vertices placed on the
plane
- for each pair of
vertices u and v the cost
of edge (u,v) is the
Euclidean distance
between u and v.

source

B

D

EC14

30

1

7

10

6

9

4

21
F

G

A

B

D

EC14

30

1

7

10

6

9

4

21
F

G

s A

D

EC14

30

1

7

10

6

9

4

21
F

G

s A

B

D

E14

30

1

7

10

6

9

4

21
F

G

s A

B

C

D

14

30

1

7

10

6

9

4

21
F

G

s A

B

C E

D

14

30

1

7

10

6

9

4

21

G

s A

B

C E

F

D

14

30

1

7

10

6

9

4

21

s A

B

C E

F

G

14

30

1

7

10

6

9

4

21

s A

B

C E

F

GD

Running time

A simple (and inefficient) implementation:

For n-1 times, find a cheapest edge crossing the cut induced by the

current partial tree in O(m) time.

Total running time: O(mn).

A much faster implementation:

• Maintain set of explored nodes S.

• Use a priority queue to maintain unexplored nodes.

• For each unexplored node v, the priority is the attachment cost

a[v] = cost of a cheapest edge incident in v having the other endpoint

in S.

43

44

Prim(G, s) {

 foreach (v  V) a[v]  

 a[s]  0

 Initialize an empty priority queue Q

 foreach (v  V) insert v onto Q with priority a[v]

 Initialize set of explored nodes S  

 Initialize T to the tree containing only s.

 while (Q is not empty) {

 u  delete min element from Q

 S  S  { u }

 foreach (edge e = (u, v) incident to u)

 if ((v  S) and (ce < a[v]))

 make u parent of v in T

 decrease priority a[v] to ce

 return T

}

Running time.

O(m+n) time plus the cost of the priority queue operations

n inserts, n delete min ops, m decrease key ops

O(n2) with an array; O(m log n) with a binary heap;

O(m + n log n) with Fibonacci’s heaps

45

Prim(G, s) {

 foreach (v  V) a[v]  

 a[s]  0

 Initialize an empty priority queue Q

 foreach (v  V) insert v onto Q with priority a[v]

 Initialize set of explored nodes S  

 Initialize T to the tree containing only s.

 while (Q is not empty) {

 u  delete min element from Q

 S  S  { u }

 foreach (edge e = (u, v) incident to u)

 if ((v  S) and (ce < a[v]))

 make u parent of v in T

 decrease priority a[v] to ce

 return T

}

Running time.

O(m+n) time plus the cost of the priority queue operations

n inserts, n delete min ops, m decrease key ops

O(n2) with an array; O(m log n) with a binary heap;

O(m + n log n) with Fibonacci’s heaps

O(m + n log n)

4.7 Clustering

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

47

Clustering

Clustering. Given a set U of n objects labeled p1, …, pn, classify into

coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem. Divide into clusters so that points in different

clusters are far apart.

Routing in mobile ad hoc networks.

Identify patterns in gene expression.

Document categorization for web search.

Similarity searching in medical image databases

Skycat: cluster 109 sky objects into stars, quasars, galaxies.

photos, documents, micro-organisms

number of corresponding pixels whose

intensities differ by some threshold

48

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.

d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)

d(pi, pj)  0 (nonnegativity)

d(pi, pj) = d(pj, pi) (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering

of maximum spacing.

spacing

k = 4

49

Greedy Clustering Algorithm

Single-linkage k-clustering algorithm.

Form a graph on the vertex set U, corresponding to n clusters.

Find the closest pair of objects such that each object is in a

different cluster, and add an edge between them (and merge the

corresponding clusters).

Repeat n-k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm

(except we stop when there are k connected components).

Remark. Equivalent to finding an MST and deleting the k-1 most

expensive edges.

Hierarchical Clustering. Running Kruskal’s algorithm until the end

implicitly produces a Hierarchical Clustering, i.e. a k-clustering for each

value of k=n,n-1,...,1.

{BOS} {NY} {CH} {DEN} {SF} {SEA}

Single linkage

k=6

{BOS} {NY} {CH} {DEN} {SF} {SEA}

{BOS,NY}

Single linkage

k=5

{BOS} {NY} {CH} {DEN} {SF} {SEA}

{BOS,NY}

{BOS,NY,CH}

Single linkage

k=4

{BOS} {NY} {CH} {DEN} {SF} {SEA}

{BOS,NY}

{BOS,NY,CH}

{SF,SEA}

Single linkage

k=3

{BOS} {NY} {CH} {DEN} {SF} {SEA}

{BOS,NY}

{BOS,NY,CH}

{SF,SEA}

{BOS,NY,CH,DEN}

Single linkage

k=2

{BOS} {NY} {CH} {DEN} {SF} {SEA}

{BOS,NY}

{BOS,NY,CH}

{SF,SEA}

{BOS,NY,CH,DEN}

{BOS,NY,CH,DEN,SF,SEA}

Single linkage

k=1

56

Greedy Clustering Algorithm: Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting the

k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C1, …, Ck.

The spacing of C* is the length d* of the (k-1)st most expensive edge

of the MST.

Since C*C, there must exist pi, pj in the same cluster in C*, say C*r,

but in different clusters in C, say Cs and Ct.

Some edge (p, q) on pi-pj path in C*r spans two different clusters in C.

All edges on pi-pj path have length  d*

since Kruskal chose them.

Spacing of C is  d* since p and q

are in different clusters.

p qpi pj

Cs Ct

C*r

Extra Slides

58

MST Algorithms: Theory

Deterministic comparison based algorithms.

O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]

O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]

O(m (m, n)). [Fredman-Tarjan 1987]

O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]

O(m  (m, n)). [Chazelle 2000]

O(T*(m,n))=O(m  (m, n)). [Pettie-Ramachandran 2000]

Holy grail. O(m).

Notable.

O(m) randomized. [Karger-Klein-Tarjan 1995]

O(m) verification. [Dixon-Rauch-Tarjan 1992]

	Slide 1: Chapter 4 Greedy Algorithms
	Slide 2: 4.5 Minimum Spanning Tree
	Slide 3: Minimum Spanning Tree
	Slide 4: The Minimum Spanning Tree (MST) problem
	Slide 5: Applications
	Slide 6: Uniqueness of MST
	Slide 7: Greedy Algorithms
	Slide 8: Cycles and Cuts
	Slide 9: Cycle-Cut Intersection
	Slide 10: Greedy Algorithms
	Slide 11: Greedy Algorithms
	Slide 12: Greedy Algorithms
	Slide 13
	Slide 14
	Slide 15: A pseudocode
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Correctness of Kruskal’s algorithm
	Slide 28: Correctness of Kruskal’s algorithm
	Slide 29: Running time of Kruskal’s algorithm
	Slide 30
	Slide 31: The Minimum Spanning Tree (MST) problem
	Slide 32: Greedy Algorithms
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Running time
	Slide 44
	Slide 45
	Slide 46: 4.7 Clustering
	Slide 47: Clustering
	Slide 48: Clustering of Maximum Spacing
	Slide 49: Greedy Clustering Algorithm
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Greedy Clustering Algorithm: Analysis
	Slide 57: Extra Slides
	Slide 58: MST Algorithms: Theory

