Chapter 4

Interval scheduling

' Algnnh Jesinr

JON KLEINBERG - EVA TARDOS

PEARSON Slides by Kevin Wayne.

Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Interval scheduling

" Job j starts at s; and finishes at f;.
" Two jobs are compatible if they don’t overlap.
" Goal: find maximum subset of mutually compatible jobs.

jobs d and g
are incompatible

time

Interval scheduling

* |nput:
® Asetof nintervals |,,...,I
® interval |, has starting time s; and finish time f,
« Feasible solution:
® A subset S of the intervals that are mutually compatible, i.e. for each
I,1;€S, I; does not overlap with |,
« Measure (to maximize):
® number of scheduled intervals, i.e. cardinality of S

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of sj.

[Earliest finish time] Consider jobs in ascending order of fj.

[Shortest interval] Consider jobs in ascending order of fj - sj.

[Fewest conflicts] For each job j, count the number of
conflicting jobs c¢j. Schedule in ascending order of cj.

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (N, S1, S2, ..., Sn, f1, f2, ..., fn)

SORT jobs by finish times and renumber so that f1 < f2 < ... < f.
S «— . < set of jobs selected
FOR j=1 TO n
IF (jJob j is compatible with S)
S —Su{)}

RETURN S.

Earliest-finish-tfime-first algorithm demo

time

Earliest-finish-tfime-first algorithm demo

11

10

11

time

Earliest-finish-tfime-first algorithm demo

time

Earliest-finish-tfime-first algorithm demo

11

10

11

time

10

Earliest-finish-tfime-first algorithm demo

11

10

11

time

11

Earliest-finish-tfime-first algorithm demo

11

10

11

time

12

Earliest-finish-time-first algorithm demo

11

10

11

time

13

Earliest-finish-time-first algorithm demo

11

10

11

time

14

Earliest-finish-time-first algorithm demo

11

10

11

time

15

Earliest-finish-time-first algorithm demo

G
0 1 2 3 4 5 6 / 8 10 11
job D is incompatible (do not add to schedule)
M o B
0 1 2 3 4 5 6 / 8 10 11

time

16

Earliest-finish-time-first algorithm demo

11

10

11

time

17

Earliest-finish-time-first algorithm demo

11

10

11

time

18

Earliest-finish-time-first algorithm demo

11

10

11

time

19

Earliest-finish-time-first algorithm demo

11

10

11

time

20

Earliest-finish-time-first algorithm demo

10

11

10

11

time

21

Earliest-finish-time-first algorithm demo

10

11

10

11

time

22

Earliest-finish-time-first algorithm demo

11

10

11

time

23

Earliest-finish-time-first algorithm demo

10

11

10

11

time

24

Earliest-finish-time-first algorithm demo

10

11

10

11

time

25

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (N, S1, S2, ..., Sn, f1, f2, ..., fn)

SORT jobs by finish times and renumber so that f1 < f2 < ... < f.
S «— . < set of jobs selected
FOR j=1 TO n
IF (jJob j is compatible with S)
S —Su{)}

RETURN S.

Proposition. Can implement earliest-finish-time first in O(n log n) time.
" Keep track of job j* that was added last to S.
" Job j is compatible with S iff 5; > ..
" Sorting by finish times takes O(n log n) time.

26

Interval scheduling: analysis of earliest-finish-time-first algorithm

Let iy, iy, ... i, be set of jobs selected by greedy (ordered by finish times).
Let ji, jo, ... Jm b€ Set of jobs in an optimal solution (ordered by finish times)

denote by f(i;) the finish time of job i, .

Lemma. For every r=1,2...,k, we have f(i,) < f(j,).
Pf. [by induction]
" r=1: Obvious.

job 1, must finish no later than j,

r>1: (j: is available to the greedy algorithm)

|

Greedy: Iy I, -1 I

Optimal:)1 2 Jra Ir

27

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
" Let iy, iy,

... I, be set of jobs selected by greedy (ordered by finish times).

" Letjq, jo, ... j;y D€ set of jobs in an optimal solution (ordered by finish

times)
" Assume greedy is not optimal
" then m>k

Greedy: Iy I

last job of the greedy solution

|

Optimal: 1 J2

j3 =R jk

ra

the optimal solution must have at
least one more jobs scheduled

the greedy algorithm should
select this job for the greedy
as well - a contradiction!

28

4. GREEDY ALGORITHMS |

A related problem:

> Iinterval partitioning

SECTION 4.1

Interval partitioning

Lecture j starts at s; and finishes at f;.
" Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

jobs e and g
are incompatible

4 € J
3 c d g

2 b h

1 a f |

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

30

Interval partitioning

Lecture j starts at s; and finishes at f;.
" Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 3 classrooms to schedule 10 lectures.

intervals are open
(need only 3, classrooms at 2pm)

3 c d f J
2 b g |
1 a e h

5 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

time

31

Interval partitioning

* |nput:
® Asetof nintervals |,,...,I
® interval |, has starting time s; and finish time f,
« Feasible solution:
® A partition of the intervals into subsets (called classrooms) C,,...,C;
such that each C, contains mutually compatible intervals
* Measure (to minimize):
®* number of classrooms, i.e. d

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each
lecture to an available classroom (which one?); allocate a new classroom
if none are available.

[Earliest start time] Consider lectures in ascending order of s;.

[Earliest finish time] Consider lectures in ascending order of f;.

[Shortest interval] Consider lectures in ascending order of f;—s;.

[Fewest conflicts] For each lecture j, count the number of
conflicting lectures c;. Schedule in ascending order of c;.

33

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each
lecture to an available classroom (which one?); allocate a new classroom
if none are available.

counterexample for earliest finish time

counterexample for shortest interval

counterexample for fewest conflicts

34

Interval partitioning: earliest-start-time-first algorithm

EARLIEST-START-TIME-FIRST (N, S1, S2, ..., Sn, f1, T2, ..., fn)

SORT lectures by start times and renumber so thats: < s2 < ...

d«—0. — number of allocated classrooms
FOR J=1TONn
IF (lecture j i1s compatible with some classroom)
Schedule lecture j in any such classroom k.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.
d«—d+1.

RETURN schedule.

< Sh.

35

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

36

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

37

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

-

jo
jo Iio
jo

[oF)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

38

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

b

[T
yofio
e

N

O

jo
pofo
jo

Q)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

39

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

lecture d is compatible with classrooms 1 and 3

jo
pefio
jo

(09)
N

[T
yofio
e

N

O

jo
pofo
jo

Q)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

40

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

lecture e is compatible with classroom 1

jo
jo Iio
jo
(09)
N
o

[T
o Iio
e

N

O

jo
jo Iio
jo

[oF)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

41

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

lecture f is compatible with classroom 2 and 3

jo
pefio
jo

(09)

N

o

[T
yofio
e

N

O

jo
pofo
jo
Q)
D

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

42

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

lecture g is compatible with classroom 2

jo
pefio
jo
(09)
N
o
*,

[T
yofio
e

N

O

jo
pofo
jo
Q)
D

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

43

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

lecture h is compatible with classroom 1

jo
jo Iio
jo
(09)
N
o
*,

[T
o Iio
e
N
O
(@)

jo
jo Iio
jo
[oF)
0)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

44

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

lecture j is compatible with classrooms 2 and 3

jo
pefio
jo
(09)
N
o
*,

[T
yofio
e

N

O

(@)

jo
pofo
jo
Q)
D
>

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

45

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).
" Otherwise, open up a new classroom.

lecture i is compatible with classroom 2

jo

jo Iio

jo
(09)

N

o
*,

—

[T
o Iio
e
N
O
(@)

jo

jo Iio

jo
[oF)
0)
>

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 330 4 4:30

time

46

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:
" Assign next lecture to any compatible classroom (if one exists).

" Otherwise, open up a new classroom.

done

b

-

b

9

9:30

10

10:30

11

11:30

12

12:30

1

1:30

2

2:30

3:30

4:30

time

47

Interval partitioning: earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in

O(n log n) time.

Pf.
" Sorting by start times takes O(n log n) time.

" Store classrooms in a priority queue (key = finish time of its last lecture).

- to allocate a new classroom, INSERT classroom onto priority queue.
- to schedule lecture j in classroom k, INCREASE-KEY of classroom k to fj.

- to determine whether lecture j is compatible with any classroom,

compare sj to FIND-MIN
" Total # of priority queue operations is O(n); each takes O(log n) time. -

Remark. This implementation chooses a classroom k whose finish time
of its last lecture is the earliest.

48

Interval partitioning: lower bound on opfimal solutfion

Def. The depth of a set of open intervals is the maximum number of
intervals that contain any given point.

Key observation. Number of classrooms needed > depth.
Q. Does minimum number of classrooms needed always equal depth?

A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule
whose number of classrooms equals the depth.

depth =3

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

49

Interval partitioning: analysis of earliest-start-time-first algorithm

Observation. The earliest-start-time first algorithm never schedules two
incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal.
Pf.

Let d = number of classrooms that the algorithm allocates.

Classroom d is opened because we needed to schedule a lecture, say j,
that is incompatible with a lecture in each of d — 1 other classrooms.
Thus, these d lectures each end after s;.

Since we sorted by start time, each of these incompatible lectures start
no later than s;.

Thus, we have d lectures overlapping at time s; + «.
Key observation = all schedules use > d classrooms. =

50

	Slide 1: Chapter 4 Interval scheduling
	Slide 2: Interval scheduling
	Slide 3: Interval scheduling
	Slide 4: Interval scheduling: greedy algorithms
	Slide 5: Interval scheduling: greedy algorithms
	Slide 6: Interval scheduling: earliest-finish-time-first algorithm
	Slide 7: Earliest-finish-time-first algorithm demo
	Slide 8: Earliest-finish-time-first algorithm demo
	Slide 9: Earliest-finish-time-first algorithm demo
	Slide 10: Earliest-finish-time-first algorithm demo
	Slide 11: Earliest-finish-time-first algorithm demo
	Slide 12: Earliest-finish-time-first algorithm demo
	Slide 13: Earliest-finish-time-first algorithm demo
	Slide 14: Earliest-finish-time-first algorithm demo
	Slide 15: Earliest-finish-time-first algorithm demo
	Slide 16: Earliest-finish-time-first algorithm demo
	Slide 17: Earliest-finish-time-first algorithm demo
	Slide 18: Earliest-finish-time-first algorithm demo
	Slide 19: Earliest-finish-time-first algorithm demo
	Slide 20: Earliest-finish-time-first algorithm demo
	Slide 21: Earliest-finish-time-first algorithm demo
	Slide 22: Earliest-finish-time-first algorithm demo
	Slide 23: Earliest-finish-time-first algorithm demo
	Slide 24: Earliest-finish-time-first algorithm demo
	Slide 25: Earliest-finish-time-first algorithm demo
	Slide 26: Interval scheduling: earliest-finish-time-first algorithm
	Slide 27: Interval scheduling: analysis of earliest-finish-time-first algorithm
	Slide 28: Interval scheduling: analysis of earliest-finish-time-first algorithm
	Slide 29: 4. Greedy Algorithms I
	Slide 30: Interval partitioning
	Slide 31: Interval partitioning
	Slide 32: Interval partitioning
	Slide 33: Interval partitioning: greedy algorithms
	Slide 34: Interval partitioning: greedy algorithms
	Slide 35: Interval partitioning: earliest-start-time-first algorithm
	Slide 36: Earliest-start-time-first algorithm demo
	Slide 37: Earliest-start-time-first algorithm demo
	Slide 38: Earliest-start-time-first algorithm demo
	Slide 39: Earliest-start-time-first algorithm demo
	Slide 40: Earliest-start-time-first algorithm demo
	Slide 41: Earliest-start-time-first algorithm demo
	Slide 42: Earliest-start-time-first algorithm demo
	Slide 43: Earliest-start-time-first algorithm demo
	Slide 44: Earliest-start-time-first algorithm demo
	Slide 45: Earliest-start-time-first algorithm demo
	Slide 46: Earliest-start-time-first algorithm demo
	Slide 47: Earliest-start-time-first algorithm demo
	Slide 48: Interval partitioning: earliest-start-time-first algorithm
	Slide 49: Interval partitioning: lower bound on optimal solution
	Slide 50: Interval partitioning: analysis of earliest-start-time-first algorithm

