

Chapter 4

Interval scheduling

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Interval scheduling

- Job j starts at s_j and finishes at f_j .
- Two jobs are compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval scheduling

- Input:
 - A set of n intervals $I_1,...,I_n$
 - interval I_i has starting time s_i and finish time f_i
- Feasible solution:
 - A subset S of the intervals that are mutually compatible, i.e. for each $I_i, I_j \in S$, I_i does not overlap with I_j
- Measure (to maximize):
 - number of scheduled intervals, i.e. cardinality of S

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of sj.
- [Earliest finish time] Consider jobs in ascending order of fj.
- [Shortest interval] Consider jobs in ascending order of fj sj.
- [Fewest conflicts] For each job j, count the number of conflicting jobs cj. Schedule in ascending order of cj.

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.

Take each job provided it's compatible with the ones already taken.

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$ SORT jobs by finish times and renumber so that $f_1 \le f_2 \le ... \le f_n$. $S \leftarrow \emptyset$. \longleftarrow set of jobs selected

FOR j = 1 TO nIF (job j is compatible with S) $S \leftarrow S \cup \{j\}$.

RETURN S.

job B is compatible (add to schedule)

job C is incompatible (do not add to schedule)

job A is incompatible (do not add to schedule)

job E is compatible (add to schedule)

job D is incompatible (do not add to schedule)

job F is incompatible (do not add to schedule)

job G is incompatible (do not add to schedule)

job G is incompatible (do not add to schedule)

job H is compatible (add to schedule)

done (an optimal set of jobs)

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT jobs by finish times and renumber so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

$$S \leftarrow \emptyset$$
. set of jobs selected

FOR j = 1 TO n

IF (job *j* is compatible with *S*)

$$S \leftarrow S \cup \{ j \}.$$

RETURN S.

Proposition. Can implement earliest-finish-time first in $O(n \log n)$ time.

- Keep track of job j^* that was added last to S.
- Job j is compatible with S iff $s_j \ge f_{j^*}$.
- Sorting by finish times takes $O(n \log n)$ time.

Interval scheduling: analysis of earliest-finish-time-first algorithm

Let i_1 , i_2 , ... i_k be set of jobs selected by greedy (ordered by finish times). Let j_1 , j_2 , ... j_m be set of jobs in an optimal solution (ordered by finish times)

denote by $f(i_r)$ the finish time of job i_r .

Lemma. For every r=1,2...,k, we have $f(i_r) \le f(j_r)$.

Pf. [by induction]

r=1: Obvious.

 i_1

■ r>1:

Optimal:

Greedy:

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]

- Let $i_1, i_2, \dots i_k$ be set of jobs selected by greedy (ordered by finish times).
- Let $j_1, j_2, ..., j_m$ be set of jobs in an optimal solution (ordered by finish times)
- Assume greedy is not optimal
- **■** then *m>k*

SECTION 4.1

4. GREEDY ALGORITHMS I

A related problem:

interval partitioning

Interval partitioning

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

Interval partitioning

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 3 classrooms to schedule 10 lectures.

Interval partitioning

- Input:
 - A set of n intervals $I_1,...,I_n$
 - interval I_i has starting time s_i and finish time f_i
- Feasible solution:
 - A partition of the intervals into subsets (called classrooms) $C_1,...,C_d$ such that each C_i contains mutually compatible intervals
- Measure (to minimize):
 - number of classrooms, i.e. d

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each lecture to an available classroom (which one?); allocate a new classroom if none are available.

- [Earliest start time] Consider lectures in ascending order of s_j .
- [Earliest finish time] Consider lectures in ascending order of f_i .
- [Shortest interval] Consider lectures in ascending order of $f_j s_j$.
- [Fewest conflicts] For each lecture j, count the number of conflicting lectures c_j . Schedule in ascending order of c_j .

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order. Assign each lecture to an available classroom (which one?); allocate a new classroom if none are available.

Interval partitioning: earliest-start-time-first algorithm

```
EARLIEST-START-TIME-FIRST (n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)
SORT lectures by start times and renumber so that s_1 \leq s_2 \leq \ldots \leq s_n.
d \leftarrow 0. — number of allocated classrooms
FOR j = 1 TO n
   IF (lecture j is compatible with some classroom)
      Schedule lecture j in any such classroom k.
   ELSE
      Allocate a new classroom d + 1.
      Schedule lecture j in classroom d + 1.
      d \leftarrow d + 1.
RETURN schedule.
```

Earliest-start-time-first algorithm demo

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

no compatible classroom: open up a new classroom and assign lecture to it

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

lecture d is compatible with classrooms 1 and 3

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

lecture e is compatible with classroom 1

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

lecture f is compatible with classroom 2 and 3

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

lecture g is compatible with classroom 2

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

lecture h is compatible with classroom 1

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

lecture j is compatible with classrooms 2 and 3

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

lecture i is compatible with classroom 2

Consider lectures in order of start time:

- Assign next lecture to any compatible classroom (if one exists).
- Otherwise, open up a new classroom.

done

Interval partitioning: earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in $O(n \log n)$ time.

Pf.

- Sorting by start times takes $O(n \log n)$ time.
- Store classrooms in a priority queue (key = finish time of its last lecture).
 - to allocate a new classroom, INSERT classroom onto priority queue.
 - to schedule lecture j in classroom k, INCREASE-KEY of classroom k to f_j .
 - to determine whether lecture j is compatible with any classroom, compare s_j to FIND-MIN
- Total # of priority queue operations is O(n); each takes $O(\log n)$ time. ■

Remark. This implementation chooses a classroom k whose finish time of its last lecture is the earliest.

Def. The depth of a set of open intervals is the maximum number of intervals that contain any given point.

Key observation. Number of classrooms needed ≥ depth.

- Q. Does minimum number of classrooms needed always equal depth?
- A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule whose number of classrooms equals the depth.

Interval partitioning: analysis of earliest-start-time-first algorithm

Observation. The earliest-start-time first algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal. Pf.

- Let d = number of classrooms that the algorithm allocates.
- Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with a lecture in each of d-1 other classrooms.
- Thus, these d lectures each end after s_j .
- Since we sorted by start time, each of these incompatible lectures start no later than s_i .
- Thus, we have *d* lectures overlapping at time $s_j + \varepsilon$.
- Key observation \Rightarrow all schedules use $\geq d$ classrooms. ■