- 1. Sia data l'equazione $E: Y^2 = X^3 + 2X + 1$ e sia p = 7.
 - (a) Verificare che E definisce una curva ellittica su \mathbb{Z}_7 .
 - (b) Determinare tutti i punti di $E(\mathbb{Z}_7)$.
 - (c) Che ordini possono avere i punti di $E(\mathbb{Z}_7)$?
 - (d) Che tipo di gruppo è $(E(\mathbb{Z}_7), +)$?
 - (e) Formulare il teorema di Lagrange per il gruppo abeliano $(E(\mathbb{Z}_7), +)$.
- 2. Sia data l'equazione $E: Y^2 = X^3 + 2X + 1$ e sia p = 11.
 - (a) Verificare che E definisce una curva ellittica su \mathbb{Z}_{11} .
 - (b) Determinare tutti i punti di $E(\mathbb{Z}_{11})$.
 - (c) Che ordini possono avere i punti di $E(\mathbb{Z}_{11})$?
 - (d) Che tipo di gruppo è $(E(\mathbb{Z}_{11}), +)$?
 - (e) Formulare il teorema di Lagrange per il gruppo abeliano $(E(\mathbb{Z}_{11}), +)$.
- 3. Sia data l'equazione $E: Y^2 = X^3 + X$.
 - (a) Verificare che E definisce una curva ellittica su \mathbb{Z}_p per ogni primo p > 2.
 - (b) Sia p > 2. Verificare che il gruppo $E(\mathbb{Z}_p)$ ha tre punti di ordine 2 se e solo se -1 è un quadrato modulo p e che questo avviene se e solo se $p \equiv 1 \mod 4$.
 - (c) Concludere che in questi casi il gruppo $(E(\mathbb{Z}_p),+)$ non può essere ciclico.
- 4. Considerare l'equazione $E: Y^2 = X^3 + X$ su \mathbb{Z}_5 .
 - (a) Determinare i punti di ordine 2 della curva ellittica E su \mathbb{Z}_5 .
 - (b) Verificare che la somma di due punti (distinti) di ordine 2 è ancora un punto di ordine 2.
- 5. Tutti i compiti d'esame degli anni passati contengono esercizi (risolti) sulle curve ellittiche.

Per questi esercizi è necessario PARI/GP (vedi http://www.mat.uniroma2.it/geo2/TEN/ECpari.rtf)

- 6. Sia p = 10000000019 e sia data l'equazione $E: Y^2 = X^3 + X + 7806879540$.
 - (a) Verificare che E definisce una curva ellittica su \mathbb{Z}_p .
 - (b) Calcolare $\#E(\mathbb{Z}_p)$ e verificare che appartiene all'intervallo di Hasse.
 - (c) Enunciare il teorema di Lagrange per $(E(\mathbb{Z}_p), +)$.
 - (d) Verificare che P = (5776216132, 9201595107) appartiene a $E(\mathbb{Z}_p)$.
- 7. Sia p = 10739 e sia data l'equazione $E: Y^2 = X^3 + X + 3985$.
 - (a) Verificare che E definisce una curva ellittica su \mathbb{Z}_p .
 - (b) Calcolare $\#E(\mathbb{Z}_p)$ e fattorizzarlo.
 - (c) Verificare che P = (6712, 5889) appartiene a $E(\mathbb{Z}_p)$.
 - (d) Determinare l'ordine di P in $E(\mathbb{Z}_p)$.
- 8. Sperimentare col programma

http://www.mat.uniroma2.it/geo2/TEN/EC-examples.txt.

9. Ripetere i comandi del file qui sotto (in PARI/GP) fino a fattorizzare n http://www.mat.uniroma2.it/geo2/TEN/ECM-fattorizza.txt.

Ridurre la curva modulo il fattore p così trovato e verificare che $E(\mathbb{Z}_p)$ ha ordine B-smooth.

10. Sperimentare col programma

http://www.mat.uniroma2.it/geo2/TEN/ECM-aperto.txt

Per ogni curva E il cui ciclo non ha fattorizzato n, confrontare il fattore più grosso di $\#E(\mathbb{Z}_p)$ con lo smoothness bound B1 e il numero primo più grosso fra B1 e B2. Per ogni curva che fattorizza n, verificare che $\#E(\mathbb{Z}_p)$ è B1-smooth oppure è il prodotto di un intero B1-smooth e uno (uno solo!) dei primi fra B1 e B2.