1. Sia E una curva su \mathbf{R} di equazione $Y^2 = X^3 + aX + b$. Verificare che è una curva regolare di \mathbf{R}^2 (senza punti singolari) se e solo se il discriminante $27b^2 + 4a^3$ è diverso da zero.

Sol. Sia P = (x, y) un punto che soddisfa l'equazione $Y^2 = X^3 + aX + b$. Ricordiamo che per definizione P = (x, y) è un punto regolare di E se

$$\left(\frac{\partial F}{\partial X}(x,y), \frac{\partial F}{\partial Y}(x,y)\right) = (3x^2 + a, 2y) \neq (0,0). \tag{*}$$

Queste condizioni garantiscono che in un intorno di P la curva $\{(X,Y) \mid F(X,Y) = Y^2 - X^3 - aX - b = 0\}$ ammette retta tangente in ogni punto. Mostriamo che il sistema

$$\begin{cases} 3X^2 + a = 0 \\ 2Y = 0 \\ Y^2 = X^3 + aX + b \end{cases} \Leftrightarrow \begin{cases} 3X^2 + a = 0 \\ Y = 0 \\ X^3 + aX + b = 0 \end{cases}$$

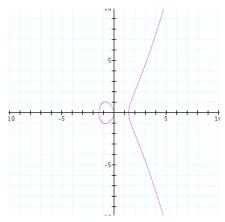
ammette soluzioni, ed in tal caso un'unica soluzione, se e solo se $\Delta = 27b^2 + 4a^3 = 0$

 \Rightarrow Abbiamo che $\Delta=0$ se e solo se $a=-3\sqrt{b^2/4}$. Se a=b=0, allora (0,0) è l'unico punto singolare della curva. Se $a,b\neq 0$, dalla prima equazione del sistema ricaviamo $X^2=-a/3$, che sostituito nella terza ci dà X=-3b/2a. In questo caso, l'unico punto singolare della curva è (-3b/2a,0).

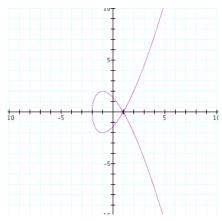
 \Leftarrow Se a=0, allora anche b=0 e $\Delta=0$. Se $a\neq 0$, dal sistema ricaviamo l'unico punto singolare (-3b/2a,0). In particolare X=-3b/2a deve soddisfare la prima equazione del sistema, da cui $(-3b/2a)^2+a=0$ se e solo se $4a^3+27b^2=\Delta=0$.

$$(-\frac{3b}{2a},0),$$
 con $27b^2 + 4a^3 = 0.$

La condizione $27b^2 + 4a^3 \neq 0$ è dunque necessaria e sufficiente a garantire che la curva di equazione $Y^2 = X^3 + aX + b$ non abbia punti singolari.



La curva regolare di equazione $Y^2 = X^3 - 2X$.



La curva singolare di equazione $Y^2 = X^3 - 3X + 2$, col punto singolare (1,0).

2. Sia E una curva ellittica su \mathbf{R} di equazione $Y^2 = X^3 + aX + b$, con discriminante $27b^2 + 4a^3$ diverso da zero. Dati due punti distinti $P = (x_1, y_1)$ e $Q = (x_2, y_2)$ di E, la loro somma P + Q è il punto cosi costruito. Sia r la retta passante per P e Q: se r è parallela all'asse Y, ossia interseca E nel punto all'infinito, allora P + Q è per definizione il punto all'infinito; se r non è parallela all'asse Y, interseca E in un punto R; in tal caso P + Q è per definizione il simmetrico di R rispetto all'asse X. Ricavare le coordinate della somma $P + Q = (x_3, y_3)$.

Sol. La retta r per P e Q è parallela all'asse Y se e solo se $x_1 = x_2$, e $y_1 = -y_2$. Come abbiamo detto in questo caso P + Q è per definizione il punto all'infinito. Se $x_1 \neq x_2$, la retta r per P e Q ha un'equazione della forma

$$Y = mX + q,$$
 $m = \frac{y_2 - y_1}{x_2 - x_1},$ $q = -mx_1 + y_1.$

Calcoliamo l'intersezione $r\cap E$ risolvendo il sistema

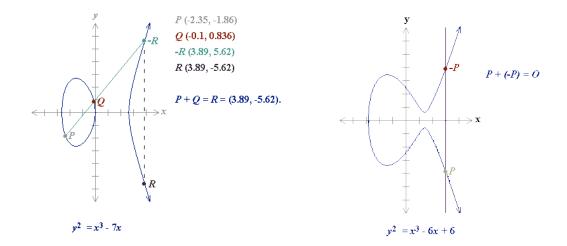
$$\begin{cases} Y^2 = X^3 + aX + b \\ Y = mX + q. \end{cases}$$

Elevando la seconda equazione al quadrato otteniamo $Y^2=m^2X^2+2mqX+q^2$. Sostituendola nella prima, ricaviamo

$$\begin{cases} Y = mX + q \\ X^3 - m^2X^2 + (a - 2mq)X + (b - q^2) = 0. \end{cases}$$

Osserviamo adesso che i punti P, Q ed R stanno sulla curva, e che R e P+Q hanno la stessa ascissa x_3 . Dunque x_1 , x_2 e x_3 sono le tre radici dell'equazione di terzo grado $X^3 - m^2X^2 + (a - 2mq)X + (b - q^2) = 0$. Inoltre vale $m^2 = x_1 + x_2 + x_3$. Ne ricaviamo le formule cercate

$$P + Q = (x_3, y_3),$$
 con
$$\begin{cases} x_3 = m^2 - x_1 - x_2, \\ y_3 = -(m(x_3 - x_1) + y_1). \end{cases}$$



2.bis Sia E una curva ellittica su \mathbf{R} di equazione $Y^2 = X^3 + aX + b$, con discriminante $27b^2 + 4a^3$ diverso da zero. Dato un punto $P = (x_1, y_1)$ di E, il suo duplicato 2P = P + P è il punto cosí costruito. Sia r la retta tangente alla curva in P: se r è parallela all'asse Y, ossia interseca E nel punto all'infinito, allora 2P è per definizione il punto all'infinito; se r non è parallela all'asse Y, interseca E in un punto R; in tal caso 2P è per definizione il simmetrico di R rispetto all'asse X. Ricavare le coordinate del duplicato $2P = (x_3, y_3)$.

Sol. Il duplicato 2P di un punto $P=(x_1,y_1)$ è la somma di due punti P+Q, dove Q=P: la retta secante per P e Q diventa la retta tangente alla curva in P, che dunque interseca la curva nel punto P con molteplicità due. La retta tangente alla curva in P è parallela all'asse Y se e solo se $y_1=0$, ossia il punto P si trova sull'asse X. In questo caso 2P è per definizione il punto all'infinito. Supponiamo ora che la retta tangente alla curva in P non sia parallela all'asse Y e che abbia equazione Y=mX+q. Il problema è determinare m e q. Dopodiché tutto il resto procede come nel caso precedente. La curva ellittica E può essere vista come la curva di livello 0 della funzione $F(X,Y)=Y^2-X^3-AX-B$

$$E = \{(X, Y) \in \mathbf{R}^2 \mid F(X, Y) = 0\}.$$

Se $P = (x_1, y_1) \in E$, allora la retta r tangente ad E in P è la retta passante per P e ortogonale al gradiente di F in P

$$\operatorname{grad} F_{(x_1,y_1)} = \left(\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}\right)_{(x_1,y_1)} = (-3x_1^2 - A, 2y_1).$$

Si ricava facilmente

$$Y = mX + q,$$
 $m = \frac{3x_1^2 + A}{2y_1},$ $q = -mx_1 + y_1$

e le formule cercate risultano

$$2P = P + P = (x_3, y_3) = (m^2 - 2x_1, -m(x_3 - x_1) - y_1), \qquad m = \frac{3x_1^2 + A}{2y_1}.$$

3. Sia E la curva su $\mathbf R$ di equazione $Y^2=X^3-2X$. Siano P=(2,2) e Q=(-1,1) due punti su E. Calcolare le coordinate dei punti -P, P+Q, P-Q=P+(-Q) e 2P=P+P.

Sol. Verifichiamo innanzitutto che E è una curva ellittica, cioè ha discriminante non nullo, e che P e Q soddisfano l'equazione di E:

$$27b^{2} + 4a^{3} = 27 \cdot 0 + 4 \cdot (-2)^{3} = -32 \neq 0;$$

$$4 = 8 - 2 \cdot 2 = 4 \quad \Rightarrow \quad P \in E, \qquad 1^{2} = (-1)^{3} - 2(-1) = 1 \quad \Rightarrow \quad Q \in E.$$

Direttamente dalle formule della somma abbiamo

$$-P = (2, -2), \quad -Q = (-1, -1), \qquad P + Q = ((\frac{1-2}{-1-2})^2 - 2 + 1, -(\frac{1-2}{-1-2})(-\frac{8}{9} - 2) - (-2)) = (-\frac{8}{9}, \frac{28}{27}).$$

Verifichiamo che il punto trovato soddisfa l'equazione di E

$$\frac{784}{729} = (\frac{28}{27})^2 = -(\frac{8}{9})^3 + 2\frac{8}{9} = -\frac{512}{729} + \frac{16}{9} = \frac{784}{729} \quad \Rightarrow \quad P + Q \in E.$$

In modo simile troviamo

$$P - Q = \left(\left(\frac{-3}{-3} \right)^2 - 2 + 1, -1(0-2) - 2 \right) = (0,0),$$

$$2P = P + P = (\frac{25}{4} - 2 \cdot 2, \frac{5}{2}(2 - \frac{9}{4}) - 2) = (\frac{9}{4}, -\frac{21}{8}), \qquad m = \frac{3 \cdot 2^2 + (-2)}{2 \cdot 2} = \frac{5}{2}.$$

Si verifica facilmente che (0,0) e (5,11) soddisfano l'equazione di E, per cui i punti trovati appartengono ad E.

- 4. Sia E la curva ellittica su \mathbb{Z}_5 di equazione $Y^2 = X^3 2X$.
 - (a) Verificare che si tratta effettivamente di una curva ellittica.
 - (b) Siano dati P = (2,2) e Q = (-1,1). Verificare che sono punti di E e calcolare le coordinate di P, P + Q, P Q = P + (-Q) e 2P = P + P.
 - (c) Determinare tutti i punti di E.

Sol. Useremo gli stessi procedimenti dell'esercizio precedente, con la differenza che tutti i calcoli saranno fatti in \mathbb{Z}_5 . Ricordiamo che in \mathbb{Z}_5 gli inversi sono dati da $\bar{3}=\bar{2}^{-1}$ e $\bar{4}=\bar{4}^{-1}$.

(a) Il discriminante di E è dato da

$$27b^2 + 4a^3 \equiv -32 \equiv 3 \not\equiv 0 \mod 5.$$

Dunque E è una curva ellittica anche su \mathbb{Z}_5 .

(b) Ovviamente gli stessi calcoli fatti sopra dimostrano che le coordinate P e Q soddisfano l'equazione di E, anche su \mathbb{Z}_5 :

$$4 = 8 - 2 \cdot 2 = 4 \implies P \in E,$$
 $1^2 = (-1)^3 - 2(-1) = 1 \implies Q \in E;$ $-P = (2, -2) \equiv (2, 3), \quad -Q = (-1, -1) \equiv (4, 4);$

$$P+Q:$$
 $m=(1-2)\cdot (-1-2)^{-1}\equiv 4\cdot 2^{-1}\equiv 4\cdot 3\equiv 2, \text{ da cui } P+Q\equiv (3,1);$

Si verifica facilmente che il punto P+Q così trovato soddisfa le equazioni di E su \mathbb{Z}_5 : infatti

$$4^2 \equiv 1 \equiv 3^3 - 2 \cdot 3 \equiv 2 - 1 \equiv 1.$$

$$P-Q$$
:

$$m \equiv 1$$
 da cui $P - Q = (0,0)$

2P = P + P:

$$m \equiv (3 \cdot 2^2 - 2)(2 \cdot 2)^{-1} \equiv 0 \cdot 4 \equiv 0$$
 da cui $2P \equiv (1,3)$.

(c) Per determinare tutti i punti di E procediamo cosí: calcoliamo X^3-2X al variare di X fra $\overline{0},\overline{1},\ldots \overline{4}$ e controlliamo se il risultato è o meno un quadrato in \mathbf{Z}_5 ; ogni volta che l'espressione X^3-2X è un quadrato, si determinano due punti su E (possibilmente coincidenti) di coordinate rispettivamente $(X,\sqrt{X^3-2X})$ e $(X,-\sqrt{X^3-2X})$ modulo 5. Osserviamo che i punti $(X,\sqrt{X^3-2X})$ e $(X,-\sqrt{X^3-2X})$ sono uno l'inverso dell'altro nel gruppo $E(\mathbf{Z}_5)$. Elevando al quadrato gli elementi di \mathbf{Z}_5 troviamo

$$\bar{0}^2 = \bar{0}, \quad \bar{1}^2 = \bar{4}^2 = \bar{1}, \quad \bar{2}^2 = \bar{3}^2 = \bar{4},$$

da cui segue che i quadrati in \mathbb{Z}_5 sono $\bar{0}$, $\bar{1}$ e $\bar{4}$ e che le rispettive radici quadrate sono: $\sqrt{\bar{0}} = \bar{0}$, $\sqrt{\bar{1}} = \{\bar{1}, \bar{4}\}$ ed infine $\sqrt{\bar{4}} = \{\bar{2}, \bar{3}\}$.

$$X = \bar{0} \quad X^3 - 2X \equiv 0 \qquad (0,0)$$

$$X = \bar{1} \quad X^3 - 2X \equiv 4 \qquad (1,2), (1,3)$$

$$X = \bar{2} \quad X^3 - 2X \equiv 4 \qquad (2,2), (2,3)$$

$$X = \bar{3} \quad X^3 - 2X \equiv 1 \qquad (3,1), (3,4)$$

$$X = \bar{4} \quad X^3 - 2X \equiv 1 \qquad (4,1), (4,4).$$

In totale, la curva ellittica E su \mathbf{Z}_5 ha dunque 10 punti: i 9 punti trovati qui sopra più il punto all'infinito $O = (\infty, \infty)$.

- 5. Sia E la curva ellittica su \mathbb{Z}_7 di equazione $Y^2 = X^3 2X$.
 - (a) Verificare che si tratta effettivamente di una curva ellittica.
 - (b) Siano dati P = (2, 2) e Q = (-1, 1). Verificare che sono punti di E e calcolare le coordinate di P, P + Q, P Q = P + (-Q) e 2P = P + P.
 - (c) Determinare tutti i punti di E.
- Sol. (a) Il discriminante di E è dato da

$$27b^2 + 4a^3 \equiv -32 \equiv 3 \not\equiv 0 \mod 7.$$

Dunque E è una curva ellittica anche su \mathbb{Z}_7 .

(b)

$$-P = (2, -2), \quad -Q = (-1, -1), \quad P + Q = (3, 0), \quad P - Q = (0, 0), \quad 2P = (4, 0).$$

(c) Elevando al quadrato gli elementi di \mathbb{Z}_7 troviamo

$$\bar{0}^2 = \bar{0}$$
, $\bar{1}^2 = \bar{6}^2 = \bar{1}$, $\bar{2}^2 = \bar{5}^2 = \bar{4}$, $\bar{3}^2 = \bar{4}^2 = \bar{2}$.

da cui segue che i quadrati in \mathbb{Z}_7 sono $\bar{0}$, $\bar{1}$, $\bar{2}$ e $\bar{4}$ e che le rispettive radici quadrate sono: $\sqrt{\bar{0}} = \bar{0}$, $\sqrt{\bar{1}} = \{\bar{1}, \bar{6}\}, \sqrt{\bar{2}} = \{\bar{3}, \bar{4}\}$ ed infine $\sqrt{\bar{4}} = \{\bar{2}, \bar{5}\}$.

$$X = \bar{0} \quad X^3 - 2X \equiv 0 \qquad (0,0)$$

$$X = \bar{1} \quad X^3 - 2X \equiv 6 \qquad \emptyset$$

$$X = \bar{2} \quad X^3 - 2X \equiv 4 \qquad (2,2), (2,5)$$

$$X = \bar{3} \quad X^3 - 2X \equiv 0 \qquad (3,0)$$

$$X = \bar{4} \quad X^3 - 2X \equiv 0 \qquad (4,0)$$

$$X = \bar{5} \quad X^3 - 2X \equiv 3 \qquad \emptyset$$

$$X = \bar{6} \quad X^3 - 2X \equiv 1 \qquad (6,1), (6,6).$$

In totale, la curva ellittica E su \mathbb{Z}_7 ha dunque 8 punti: i 7 punti trovati qui sopra più il punto all'infinito $O = (\infty, \infty)$.

- 6. Sia p un primo e sia E una curva ellittica su \mathbf{Z}_p . Per un punto $P \in E(\mathbf{Z}_p)$ e un intero $n \geq 0$ definiamo nP come $P+P+\cdots+P$ (n volte). Per n<0 definiamo nP come il punto inverso di(-n)P. Il più piccolo intero n>0 tale che $nP=O=(\infty,\infty)$ si chiama l'ordine del punto P.
 - (a) Determinare l'ordine del punto P=(2,1) sulla curva ellittica E su \mathbf{Z}_5 di equazione $Y^2 = X^3 + X + 1$.
 - (b) Determinare l'ordine di tutti i punti sulla curva ellittica E su ${\bf Z}_3$ di equazione Y^2 $X^3 - X - 1$. Stessa domanda per la curva di equazione $Y^2 = X^3 - X + 1$.

Sol. (a) Verifichiamo innanzitutto che $P \in E$: infatti $1 \equiv 8 + 2 + 1 \equiv 1 \mod 5$. Calcoliamo 2P = P + P:

$$m = (3 \cdot 4 + 1) \cdot 2^{-1} \equiv 3 \cdot 3 \equiv 4 \mod 5$$

da cui

$$2P = (1 - 4, -4(1 - 6) - 1) \equiv (2, -1) = -P$$
 in $E(\mathbf{Z}_5)$.

Ne segue che $3P=O=(\infty,\infty)$ e dunque P ha ordine 3 in $E(\mathbf{Z}_5)$. (b) Determiniamo i punti della curva ellittica E di equazione $Y^2=X^3-X-1$ su \mathbf{Z}_3 . I quadrati in \mathbb{Z}_3 sono $\bar{0}$ e $\bar{1}$ e le rispettive radici quadrate sono $\sqrt{\bar{0}} = \bar{0}$ e $\sqrt{\bar{1}} = \{\bar{1}, \bar{2}\}.$

$$X = \bar{0} \quad X^3 - X - 1 \equiv 2 \qquad \emptyset$$

$$X = \bar{1} \quad X^3 - X - 1 \equiv 2 \qquad \emptyset$$

$$X = \bar{2} \quad X^3 - X - 1 \equiv 2 \qquad \emptyset$$

Questa curva ellittica su \mathbb{Z}_3 contiene il solo punto all'infinito $O=(\infty,\infty)$, che ha ordine 1. Determiniamo adesso i punti della curva ellittica E di equazione $Y^2 = X^3 - X + 1$ su \mathbb{Z}_3 .

$$X = \bar{0}$$
 $X^3 - X + 1 \equiv 1$ $(0,1) (0,2)$
 $X = \bar{1}$ $X^3 - X + 1 \equiv 1$ $(1,1) (1,2)$
 $X = \bar{2}$ $X^3 - X + 1 \equiv 1$ $(2,1) (2,2)$

Questa curva ellittica su \mathbb{Z}_3 contiene 7 punti: i 6 punti qui sopra e il punto all'infinito $O=(\infty,\infty)$. Il gruppo $E(\mathbf{Z}_3)$ è dunque un gruppo di ordine 7. Poiché 7 è primo, il gruppo è necessariamente ciclico e ogni elemento diverso da $O=(\infty,\infty)$ ha ordine 7 (ricordiamo che l'ordine di un elemento divide l'ordine del gruppo). Prendiamo ad esempio P = (0,1). Abbiamo

$$P = (0,1), \quad 2P = (1,1), \quad 3P = (2,2), \quad 4P = (2,1), \quad 5P = (1,2), \quad 6P = (0,2), \quad 7P = O = (\infty,\infty).$$

- 7. Sia E la curva $Y^2 = X^3 + X + 1$ su \mathbb{Z}_5 .
 - (a) Dimostrare che si tratta effettivamente di una curva ellittica.
 - (b) Esibire tutti i punti di E con coordinate in \mathbb{Z}_5 (ce ne sono nove).
 - (c) Esibire un punto di ordine 9 e concludere che il gruppo $E(\mathbf{Z}_5)$ è ciclico.
- Sol. (a) Il discriminante della curva risulta $4a^3 + 27b^2 = 31 \equiv 1 \mod 5$, per cui E è una curva ellittica su \mathbb{Z}_5 .
- (b) Col solito procedimento troviamo che i punti di $E(\mathbf{Z}_5)$ sono dati da

$$(0,1), (0,4), (2,1), (2,4), (3,1), (3,4), (4,2), (4,3), (\infty,\infty).$$

(c) Poiché il gruppo $E(\mathbf{Z}_5)$ ha ordine 9, un elemento diverso da $O=(\infty,\infty)$ può avere ordine 3 oppure ordine 9. Se ogni elemento diverso da $O=(\infty,\infty)$ ha ordine 3, allora $E(\mathbf{Z}_5)\cong \mathbf{Z}_3\times \mathbf{Z}_3$. Se c'è un elemento di ordine maggiore di 3, allora il suo ordine è necessariamente 9. In tal caso $E(\mathbf{Z}_5)\cong \mathbf{Z}_9$ ed è un gruppo ciclico.

Prendiamo ad esempio il punto P = (0, 1). Poiché

$$2P = (4, 2), \quad 3P = (2, 1) \not\equiv (\infty, \infty),$$

P ha ordine maggiore di 3. Dunque $E(\mathbf{Z}_5)$ è un gruppo ciclico di ordine 9 e P è un suo generatore. Per curiosità scriviamo tutti i multipli di P

$$P = (0,1), \quad 2P = (4,2), \quad 3P = (2,1), \quad 4P = (3,4), \quad 5P = (3,1),$$
 $6P = (2,4), \quad 7P = (4,3), \quad 8P = (0,4), \quad 9P = O = (\infty,\infty).$

- 8. Sia $a \in \mathbf{Z}_5$ e sia E la curva su \mathbf{Z}_5 di equazione $Y^2 = X^3 + aX + 1$.
 - (a) Far vedere che per $a \neq 3$, si tratta di una curva ellittica.
 - (b) Per $a \in \mathbb{Z}_5^*$ diverso da 3, determinare il numero di punti di $E(\mathbb{Z}_5)$.
 - (b) Per $a \in \mathbf{Z}_5^*$ diverso da 3, determinare la struttura del gruppo $E(\mathbf{Z}_5)$ (cioè scrivere $E(\mathbf{Z}_5)$ come prodotto di gruppi ciclici).

Sol. (a) Il discriminante della curva è dato da $27 + 4a^3 \equiv 2 + 4a^3 \not\equiv 0 \mod 5$, per ogni $\bar{a} \neq \bar{3}$ in \mathbb{Z}_5 . In tutti questi casi E è una curva ellittica. Invece per a=3 il discriminante è 0 ed E non è una curva ellittica.

(b)(c) a=0, $E: Y^2=X^3+1$ ha 6 punti: il punto $O=(\infty,\infty)$ e i 5 punti dati da

$$X = \bar{0} \quad X^3 + 1 \equiv 1 \qquad (0,1) \ (0,4)$$

$$X = \bar{1} \quad X^3 + 1 \equiv 2 \qquad \emptyset$$

$$X = \bar{2} \quad X^3 + 1 \equiv 4 \qquad (2,2) \ (2,3)$$

$$X = \bar{3} \quad X^3 + 1 \equiv 3 \qquad \emptyset$$

$$X = \bar{4} \quad X^3 + 1 \equiv 0 \qquad (4,0).$$

Il gruppo $E(\mathbf{Z}_5)$ è necessariamente isomorfo al gruppo ciclico \mathbf{Z}_6 (ricordiamo che per il teorema cinese del resto moltiplicativo $\mathbf{Z}_6 \cong \mathbf{Z}_2 \times \mathbf{Z}_3$). Determiniamo un generatore: il punto P = (4,0) ha ordine 2 (coincide col suo inverso); il punto Q = (0,1) ha ordine tre: 2Q = (0,4), $3Q = O = (\infty,\infty)$; il punto R = (2,2) ha ordine 6:

$$2R = (0,4), \quad 3R = (4,0), \quad 4R = (0,1), \quad 5R = (2,3), \quad 6R = (\infty,\infty).$$

In conclusione il gruppo $E(\mathbf{Z}_5)$ è isomorfo al gruppo ciclico \mathbf{Z}_6 , con generatore R=(2,2).

$$a=1$$
, $E: Y^2=X^3+X+1$ ha 9 punti, etc...(vedi Esercizio 7).

 $a=2, \quad E: \quad Y^2=X^3+2X+1$ ha 7 punti: il punto $O=(\infty,\infty)$ e i 6 punti dati da

$$X = \bar{0} \quad X^3 + X + 1 \equiv 1 \qquad (0,1) \ (0,4)$$

$$X = \bar{1} \quad X^3 + X + 1 \equiv 4 \qquad (1,2) \ (1,3)$$

$$X = \bar{2} \quad X^3 + X + 1 \equiv 3 \qquad \emptyset$$

$$X = \bar{3} \quad X^3 + X + 1 \equiv 4 \qquad (3,2) \ (3,3)$$

$$X = \bar{4} \quad X^3 + X + 1 \equiv 3 \qquad \emptyset.$$

In questo caso $E(\mathbf{Z}_5)$ è necessariamente isomorfo al gruppo ciclico \mathbf{Z}_7 e qualunque elemento diverso da $O = (\infty, \infty)$ è un generatore.

 $a=4, \quad E: \ Y^2=X^3+4X+1$ ha 8 punti: il punto $O=(\infty,\infty)$ e gli 7 punti dati da

$$X = \bar{0} \quad X^3 + 4X + 1 \equiv 1 \qquad (0,1) (0,4)$$

$$X = \bar{1} \quad X^3 + 4X + 1 \equiv 1 \qquad (1,1) (1,4)$$

$$X = \bar{2} \quad X^3 + 4X + 1 \equiv 2 \qquad \emptyset$$

$$X = \bar{3} \quad X^3 + 4X + 1 \equiv 0 \qquad (3,0)$$

$$X = \bar{4} \quad X^3 + 4X + 1 \equiv 1 \qquad (4,1) (4,4).$$

In questo caso $E(\mathbf{Z}_5)$ è isomorfo al gruppo ciclico \mathbf{Z}_8 , perché contiene un unico elemento di ordine 2. Un generatore è dato da P = (0, 1): infatti

$$P = (0,1), \quad 2P = (4,1), \quad 3P = (1,4), \quad 4P = (3,0), \quad 5P = (1,1),$$

$$6P = (4,4), \quad 7P = (0,4), \quad 8P = O = (\infty,\infty).$$

9. Sia p un numero primo e sia E una curva ellittica su \mathbf{Z}_p . Dimostrare che per ogni $n \in \mathbf{Z}$ l'insieme $\{P \in E(\mathbf{Z}_p) : nP = O = (\infty, \infty)\}$ è un sottogruppo di $E(\mathbf{Z}_p)$.

Sol. Siano P e Q punti di ordine n in $E(\mathbf{Z}_p)$. Facciamo vedere che P+Q e -P soddisfano la condizione richiesta:

$$(P+Q) + \ldots + (P+Q) = P + \ldots + P + Q + \ldots + Q = O + O = O;$$

 $(-P) + \ldots + (-P) = -(P+\ldots + P) = -O = O.$

10. Sia p > 3 un numero primo e sia E una curva ellittica su \mathbf{Z}_p di equazione $Y^2 = X^3 + AX + B$.

(a) Dimostrare che un punto $P = (x, y) \in E(\mathbf{Z}_p)$ ha ordine 2 se e solo se

$$x^3 + Ax + B = 0$$

- (b) Dimostrare che ci sono al più 3 punti di ordine 2.
- (c) Dimostrare che il gruppo $\{P \in E(\mathbf{Z}_p) : 2P = O = (\infty, \infty)\}$ è isomorfo a \mathbf{Z}_2 , a $\mathbf{Z}_2 \times \mathbf{Z}_2$ oppure al gruppo banale.

Sol. (a)(b) Un punto $P = (x, y) \in E(\mathbf{Z}_p)$ ha ordine 2, cioè $P + P = (\infty, \infty)$, se e solo se $m = \infty$ se e solo se y = 0. Dunque i punti di ordine 2 in $E(\mathbf{Z}_p)$ sono dati dalle soluzioni (x, y) del sistema

$$\begin{cases} Y = 0 \\ X^3 + AX + B = 0 \end{cases}$$
 (*)

in $\mathbf{Z}_p \times \mathbf{Z}_p$ e sono al massimo 3.

(c) Osserviamo che il sottogruppo E[2] o è banale oppure ha ordine una potenza di due, perché ogni elemento di E[2] diverso da $O=(\infty,\infty)$ ha ordine 2. Dunque se non è banale, E[2] è un gruppo abeliano di ordine due o quattro.

Se il sistema (*) non ha soluzioni, il sottogruppo $E[2] = \{(\infty, \infty)\}$ è il sottogruppo banale.

Se il sistema (*) ha una sola soluzione, il sottogruppo $E[2] = \{P, (\infty, \infty)\}$ è isomorfo a \mathbb{Z}_2 .

Se il sistema (*) ha tre soluzioni distinte, il sottogruppo $E[2] = \{P, Q, R, (\infty, \infty)\}$ è isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_2$: in generale un gruppo di ordine 4 è isomorfo a \mathbb{Z}_4 oppure a $\mathbb{Z}_2 \times \mathbb{Z}_2$; ma poichè E[2] non contiene elementi di ordine 4, è necessariamente isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(se il sistema (*) avesse due soluzioni distinte, E[2] avrebbe ordine tre, che non è pari).

- 11. Sia p > 2 un numero primo e sia E la curva ellittica su \mathbb{Z}_p di equazione $Y^2 = X^3 X$.
 - (a) Calcolare la somma del punto P = (0,0) con se stesso. Far vedere che l'ordine del punto P = (0,0) è uguale a 2.
 - (b) Determinare i punti di ordine 2 di E.
 - (c) Sia $E[2] = \{P \in E(\mathbf{Z}_p) : P + P = O = (\infty, \infty)\}$. Dimostrare che E[2] è un gruppo di ordine 4 isomorfo a $\mathbf{Z}_2 \times \mathbf{Z}_2$.

Sol. (a) Si vede subito che $P \in E(\mathbf{Z}_p)$. Poiché $P + P = (\infty, \infty)$, il punto P ha ordine 2.

(b) I punti di ordine 2 in $E(\mathbf{Z}_p)$ sono dati dalle soluzioni del sistema

$$\begin{cases} Y = 0 \\ X^3 - X = 0. \end{cases}$$

In questo caso sono precisamente

$$(0,0), (1,0), (-1,0) \equiv (p-1,0).$$

- (c) Sia $E[2]=\{(0,0),(1,0),(-1,0),(\infty,\infty)\}$. Poichè E[2] non contiene elementi di ordine 4, è necessariamente isomorfo a $\mathbf{Z}_2\times\mathbf{Z}_2$.
- 12. Sia p > 3 un numero primo e sia E una curva ellittica su \mathbb{Z}_p di equazione $Y^2 = X^3 + AX + B$.
 - (a) Dimostrare che un punto $P = (x, y) \in E(\mathbf{Z}_p)$ ha ordine 3 se e solo se

$$3x^4 + 6Ax^2 + 12Bx - A^2 = 0.$$

- (b) Dimostrare che ci sono al più 8 punti di ordine 3.
- (c) Dimostrare che il gruppo $\{P \in E(\mathbf{Z}_p) : 3P = O = (\infty, \infty)\}$ è isomorfo a \mathbf{Z}_3 oppure a $\mathbf{Z}_3 \times \mathbf{Z}_3$ oppure al gruppo banale.

Sol. (a) Un punto $P = (x, y) \in E(\mathbf{Z}_p)$ ha ordine tre, ossia $3P = (\infty, \infty)$, se e solo se 2P = -P = (x, -y). Direttamente dalle formule troviamo che 2P = -P = (x, -y) se e solo se

$$(3x^2 + A)^2 \cdot (2y)^{-2} = 3x \Leftrightarrow (3x^2 + A)^2 = 3x \cdot (2y)^2 3x \Leftrightarrow$$

$$\Leftrightarrow 3x^4 + 6Ax^2 + 12Bx - A^2 = 0. \tag{**}$$

- (b) L'equazione qui sopra ha al più 4 soluzioni in \mathbf{Z}_p . Ad ognuna di tali soluzioni corrispondono al più due punti sulla curva, con ascissa uguale ed ordinata opposta. In totale, ci sono al più otto punti di ordine tre.
- (c) Il sottogruppo E[3] o è banale oppure ha ordine una potenza di tre, perché ogni elemento di E[3] diverso da $O=(\infty,\infty)$ ha ordine 3. Precisamente tre o nove.

Se l'equazione (**) non ha soluzioni, il sottogruppo $E[3] = \{(\infty, \infty)\}$ è il sottogruppo banale.

- Se l'equazione (**) ha due soluzioni distinte, il sottogruppo $E[3] = \{P, Q, (\infty, \infty)\}$ è isomorfo a \mathbb{Z}_3 . Se l'equazione (**) ha otto soluzioni distinte, il sottogruppo $E[3] = \{P, Q, R, S, T, L, M, N, (\infty, \infty)\}$ è isomorfo a $\mathbb{Z}_3 \times \mathbb{Z}_3$: in generale un gruppo di ordine 9 è isomorfo a \mathbb{Z}_9 oppure a $\mathbb{Z}_3 \times \mathbb{Z}_3$; ma poichè E[3] non contiene elementi di ordine 9, è necessariamente isomorfo a $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- 13. Sia p = 7 e sia E la curva ellittica su \mathbb{Z}_7 di equazione $Y^2 = X^3 + 2$.
 - (a) Determinare i punti di ordine 3 di E.
 - (c) Sia $E[3] = \{P \in E(\mathbf{Z}_p) : P + P + P = O = (\infty, \infty)\}$. Dimostrare che E[3] è un gruppo di ordine 9 isomorfo a $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- Sol. (a) Le soluzioni del polinomio $3x^4 + 24x = 0$, o equivalentemente del polinomio $x(x^3 + 1) = 0$, in \mathbb{Z}_7 sono date da $x=0, x=-1\equiv 6, x=-2\equiv 5$ e $x=-4\equiv 3$. Questi valori sono le possibili ascisse dei punti di ordine 3. Calcolando $X^3 + 2$ al variare di x = 0, 6, 5, 3, si trova il quadrato dell'ordinata di tali punti.

$$x = 0$$
 $X^3 + 2 \equiv 2$ $(0,3), (0,4)$
 $x = -1$ $X^3 + 2 \equiv 1$ $(6,1), (6,6)$
 $x = -2$ $X^3 + 2 \equiv 1$ $(5,1), (5,6)$

$$x = 3$$
 $X^3 + 2 \equiv 1$ (3,1), (3,6)

- (b) Poiché E[3] ha ordine 9 e non contiene elementi di ordine 9, è necessariamente isomorfo a $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- 14. Sia E la curva su \mathbf{Z}_{35} di equazione $Y^2 = X^3 X 2$.
 - (a) Dimostrare che si tratta effettivamente di una curva ellittica.
 - (b) Sia P = (2, 2) in $E(\mathbf{Z}_{35})$. Calcolare 2P = P + P.
 - (c) Calcolare 3P e dare un'interpretazione del risultato.

Sol. Osserviamo che 35 non è un numero primo, ma procediamo come se lo fosse.

(a) Il discriminante della curva risulta

$$4a^3 + 27b^2 = 104 \equiv -1 \equiv 34 \mod 35$$
, $\gcd(34, 35) = 1$,

per cui E è una curva ellittica su \mathbb{Z}_{35} .

(b) Sia P = (2, 2) in $E(\mathbf{Z}_{35})$. Abbiamo $m = (3 \cdot 2^2 + (-1)) \cdot (2 \cdot 2)^{-1} \equiv 11 \cdot 9 \equiv 29 \mod 35$, da cui $2P = (29^2 - 4, -29(32) + 2) \equiv (32, 3)$ in $E(\mathbf{Z}_{35})$.

$$2I = (29 - 4, -29(32) + 2) = (32, 3) \text{ in } E(\mathbf{Z}_3)$$

(c) Per calcolare 3P = P + 2P come al solito determiniamo m:

$$m = (3-2) \cdot (32-2)^{-1} \equiv 1 \cdot 30^{-1}.$$

A questo punto però vediamo che $gcd(30,35) \neq 1$, ossia 30 non è invertibile modulo 35. Quindi non possiamo fare la somma P+2P con le solite formule. In compenso nel constatare ciò, abbiamo individuato un fattore di 35..... Questo è quello che succede col metodo di fattorizzazione di Lenstra basato sulle curve ellittiche.