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 DIFFERENTIABLE MANIFOLDS'

 BY HASSLER WHITNEY

 (Received February 10, 1936)

 INTRODUCTION

 The main purpose of this paper is to provide tools of a purely analytic charac-
 ter for a general study of the topology of differentiable manifolds, and maps of
 them into other manifolds. A differentiable manifold is generally defined in
 one of two ways; as a point set with neighborhoods homeomorphic with Euclid-

 ean space En, coordinates in overlapping neighborhoods being related by a
 differentiable transformation,2 or as a subset of En, defined near each point by
 expressing some of the coordinates in terms of the others by differentiable
 functions.3

 The first fundamental theorem is that the first definition is no more general
 than the second; any differentiable manifold may be imbedded in Euclidean
 space. In fact, it may be made into an analytic manifold in some En. As a
 corollary, it may be given an analytic Riemannian metric. The second funda-
 mental theorem (when combined with the first) deals with the smoothing out of
 a manifold. Let f be a map of any character (continuous or differentiable,
 without an inverse) of a differentiable manifold M of dimension m into another,
 N, of dimension n. (Either manifold might be an open subset of Euclidean
 space.) Then if n > 2m, we may alter f as little as we please, forming a regular
 map F. (A map is regular if, near each point, it is differentiable and has a dif-
 ferentiable inverse.) Moreover, if n 2 2m + 1, F may be made (1-1). We
 show in Theorem 6 that if n > 2m + 2, then any two regular maps fo, f, of M
 into En are equivalent, in the following sense. fo(M) may be deformed into
 fi(M) by maps fj(O < t _ 1) so that the path crossed by the manifold is the
 regular map of an (m + l)-dimensional manifold. Moreover, if n > 2m + 3,
 and fo(M) and fi(M) are non-singular, so is the (m + l)-manifold.

 A fundamental unsolved problem is the following: Can any analytic manifold
 be mapped in an analytic manner into Euclidean space?4

 1 Presented to the Am. Math Soc. Sept. 1935. An outline of the paper will be found in
 Proc. Nat. Ac. of Sci., vol. 21 (1935), pp. 462-463.

 2 Differentiable manifolds have been studied for instance by 0. Veblen and J. H. C.
 Whitehead, The foundations of differential geometry, Cambridge Tracts, 1932. An example
 of a differentiable (in fact, analytic) manifold is the manifold of k-planes through a point
 in n-space. See ?24.

 3 Manifolds in E. which are defined by the vanishing of a set of differentiable functions
 are of a special character; see H. Whitney, The imbedding of manifolds * . ,in the October
 1936 issue of these Annals.

 I This seems quite probable. It is proved for some special analytic manifolds in ??23-24.
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 646 HASSLER WHITNEY

 Theorem 1 shows only that there is a differentiable map (with all derivatives),
 such that the resulting point set forms an analytic manifold.

 Many portions of the proofs are based on the Weierstrass approximation
 theorem, if the manifolds are closed; if they are open, this theorem must be
 replaced by a corresponding theorem on functions defined in open sets. This
 and other theorems which will be useful may be found in a previous paper.6
 In proving both fundamental theorems, the following method is used continually.
 Let f be a differentiable map of M into En, and let U be a small portion of M.
 We consider a class S of maps f' of U into En which approximate to f in U; S
 forms a part of a Euclidean space. The maps f' we do not wish are character-
 ized by subsets of S whose dimensions may be learned,-we use here the notion
 of "k-extent" of a set similar to a definition of Carath6odory.6 We find a
 desirable map f' in U, and do the same in other neighborhoods until we have
 found F in the whole manifold M.

 The arrangement of the paper is indicated by the sentences introductory to
 each part.

 CONTENTS

 I. Definitions and preliminary results ............................ 646
 II. The theorems ............................ 652
 III. The imbedding theorem ......... .................. 659
 IV. The neighborhood of a manifold in E,1. ............. 665

 V. Analytic manifolds ..... . . ........... .. 668
 VI. Proof of Theorem 2 .................................. 673

 I. DEFINITIONS AND PRELIMINARY RESULTS

 In this part we collect definitions and facts which will be used constantly in
 what follows. In one section, ?4, we assume a knowledge of the imbedding
 theorem and of Lemma 23.

 1. Manifolds of class Ct. By an m-dimensional manifold M of class Ct, or,
 a Cr-m-manifold (r finite or r = co ),7we shall mean a system composed of a set
 of points, which we shall also call M, and certain maps, as follows: Let Q = Q.
 be the interior of the unit (m - 1)-sphere in Euclidean space Em.8 Let 01, 62, . . .
 be a finite or denumerable number of (1-1) maps of Q into M. Define the sets
 of points

 (1.1) U.;= Oi(Q), Uo = Ui= U.Ui , Qii= = sl(Uij)

 ' H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans.
 Am. Math. Soc., vol. 36 (1934), pp. 63-89. We refer to this paper as AE.

 6 C. Carath6odory, O}ber das lineare Mass von Punktmengen, Gott. Nachr., 1914, p. 426.
 7We always suppose r is finite and > 0 unless otherwise stated. However, the results of

 ??1-4 all hold for r = .
 8 That is, the space of all ordered sets of n real numbers.
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 DIFFERENTIABLE MANIFOLDS 647

 and the (1-1) maps

 (1.2) his(x) = y1 (Oj(x)) in Qjj.

 We make four assumptions:

 (a) The maps Oi cover M: For each p in M there is an i and an x in Q such
 that Oi(x) = p.

 (6) The Qjj are open.
 (-y)9 There are no i, j, and sequence of points xI k} such that

 Xk is in Qii, Xk x in Q - Qii , hij(xk) -* x' in Q - Qji.

 (5) hii(x) (if defined) is of class Cr (see ?2), and if r > 0, it has a non-vanishing
 Jacobian.

 If, further, the his are analytic, we say M is analytic. A 0-manifold consists
 of a finite or denumerable number of isolated points. A k-manifold (k < 0)
 contains no points.

 We call the Oi the maps defining M, and the Uj, neighborhoods in M. Note
 that M need not be connected.

 We define limit points in M as follows: pk -+p if and only if there are an i,
 an s, a point x of Q and a sequence {Xk} of points of Q such that

 (1.3) 0i(xk) = Ps +k Oi(x) = p, Xk -+X.

 We prove two facts. If pk-- p and p is in U;, then for some sy P++k is in Us
 and 01'(P.+k) )-* 8(p). For, say (1.3) holds. Then p is in Uji, and hence
 x = 0i7'(p) is in Qjj. As Qjj is open and Xk x+ X, there is an s such that x,+k is
 in Qjj. Hence hij(X+k) = 0-'(p,+ ) is in Qjj, and as his is continuous, OY'(P8+k)
 Oj'(p). If Pk -- p and Pk -- p'. then p = p'. For suppose p $ p', (1.3) holds,
 and similar relations hold with i, p, xk, x replaced by j, p', x'k, x'. (We may

 evidently take s' = s.) Then hkj(xk) = X'k. * x is not in Qjj; for if it were, then
 his(x) = x' as his is continuous, and

 pI= 01(x') = Oj(hj1(x)) = Oi(x) = p.

 Similarly x' is not in Qj;. But this contradicts (-y).
 These two facts show that the obvious criteria for Pk not -4 p hold: If p is

 in Ui and there are no {Xk}, x such that (1.3) hold, then Pk does not -* p; if
 01(Xk) - Pk, Xk -_ X in Q, and Oi(x) F p, then Pk does not -* p. We can now
 define open, closed, compact sets, etc. as usual. A manifold M is closed or open
 according as the set of points M is compact or not.

 Note that any manifold of class Cr is of class Ca for s < r; any open subset of
 a manifold is a manifold (with suitably chosen maps); a finite or denumerable
 number of manifolds together form a manifold. E. is a manifold with the obvious
 maps.

 Given two sets of maps in M, we say they define Cr-equivalent manifolds if not
 only each set separately, but also the two sets together, satisfy the above condi-

 9 (a) and (y) correspond to (C1) and (C2) in Veblen and Whitehead, loc. cit.
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 648 HASSLER WHITNEY

 tions. We may speak of a point being the identical point on both manifolds,
 of a function being identical on them, etc. Two manifolds are Cr-homneomorphic
 if there is a (1-1) correspondence between their points such that, on identifying
 corresponding points, the two sets of maps define Cr-equivalent manifolds. In
 other words there is a (proper) (1-1) regular Cr-map of either one into the other
 (see ?2). It is often convenient not to distinguish between two Cr-equivalent
 manifolds. We may then say for instance "choose maps defining M such that

 ." The number r should then be definitely associated with the manifold;
 for a Cr-manifold may be Cr-equivalent to a C;-manifold with s > r (see Theo-
 rem 1).

 2. Functions defined in manifolds. We shall use the words "function"

 and "map" interchangeably. Let R be an open set in Em, and let f be a real-
 valued function defined in R. It is of class Cr if it has continuous partial de-

 rivatives through the rth order. If R is any subset of E,'0 we say f is of class Cr
 in the subset R of Em if its definition can be extended through an open set con-
 taining R so that it is of class Cr there (see AE). It is sufficient that the exten-
 sion be possible separately about each point of R. If the values of f are points of
 Enswe say it is of class Cr (or of class Cr in a subset) if each of its coordinates is.

 Suppose f is a function defined in a subset R of a Cr-manifold M, with values
 in a Ct-manifold N. Let O., xi; U., Vs; Qm, Q. be the maps etc. defining M and
 N respectively." Take any po in R, and say po is in U., qo = f(po) is in Vs.
 The function f,(x) = f(G,(x)) is defined in the set R. = , -(R. Uj). Suppose
 that, for some neighborhood U of x0 = 6 1 (po) in Qm, x in Ri- U implies f,(x) in
 Vs; set fii(x) = 41 (fi(x)), and suppose that fii, defined in R.- U and with values
 in Q,, is of class Ct (t < r, s). If this is true of each po and each corresponding
 i, j, we say f is of class C' in R, or in the subset R of M, if R is not open. (If
 the condition is satisfied at po for one pair (i, j), it is satisfied at po for each such
 pair (i, j), on account of (5).) If M and N are analytic, f may be analytic.

 Suppose M is of class Ct, r _ 1. Let x be a point of Q, and let C1, * * *, C.,
 be differentiable curves ending at x, whose tangents at x form a set of inde-

 pendent vectors. If x is in Qij, then parts of these curves, and the vectors,
 transform under hi, into other such curves and vectors in Q; by (a), the new
 vectors are independent. The corresponding curves in M we shall say define a

 set of independent directions at OE(x). If f is a Cl-map of M into N, these curves,
 and hence "directions," go into curves and directions in N. We define: f is a
 regularl2 map of M into N if it is of class C1, and any set of independent direc-
 tions at a point in M goes into such a set in N. If f is defined in a subset of
 M, we say it is regular if its definition can be extended through an open subset
 of M so that it is regular there.

 10 This case does not occur in the fundamental theorems. In this connection, see also H.
 Whitney, Differentiable functions * * *, Trans. Am. Math. Soc., vol. 40 (1936).

 11 We shall always use these symbols in this manner.
 12 In Veblen and Whitehead, loc. cit., it is also required that the map be (1-1).
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 DIFFERENTIABLE MANIFOLDS 649

 The map f of M into N is completely regular if it is regular, and has the follow-

 ing property: at most two points of M go into any single point of N; if f(pi) =
 f(p2), Pi # P2, then a set of m independent directions at pi together with such a
 set at P2 go into a set of 2m independent directions at f(p') in N. This is of
 course only possible (if f is not (1-1)) if n _ 2m.

 Given the map f of M into N, we define the limit set Lf as follows: A point q

 of N is in Lf if there exist sequences I PkI in M and fqk4 in N such that qk -q,
 f(pk) = qk, and the sequence I PkI has no limiting point in M. The map f is
 proper if f(M) does not intersect its limit set: f(M) * Lf = 0. If M and N are

 Cr-m- and Cr-onmanifolds, and f is a (1-1) regular propel Ct-map of M into N,
 we shall say f Cr-imbeds M in N. f(M) is then a Cr-m-manifold in N (see ?3).

 3. Manifolds in manifolds. If f is a regular Cr-map of M into N, we shall
 call the combination (M, f) a local Cr-manifold in N. Each point p of M is then
 in a neighborhood U in which f is (1-1). In general, the nature of M is deter-
 mined by the nature of the point set f(M); but this is not necessarily the case.
 We shall commonly speak of f(M) as a local manifold in N, keeping in mind that
 M and f must both be given. (But see below.) The limit set Lf(M) of f(M) is
 the limit set Lf. The local manifold is proper if f is; has at most regular singu-
 larities if f is completely regular; is non-singular if f is (1-1). (M, f), or the
 resulting point set f(M), is a Cr-manifold in N if it is non-singular and proper.
 If f(M) is a local manifold in N, and f is of class Cr, we shall say M is Cr-homeo-
 morphic with f(M).

 We shall show now that if (M, f) is a Cr-manifold in N, then, using the point
 set f(M) alone, we may determine a Cr-manifold M', which is necessarily C"-
 homeomorphic with M. This justifies calling the point set f(M) a manifold in
 N. Also, setting N = En, we justify our original definition of a manifold.
 (See also Theorem 1.) Moreover, as M and f(M) are Cr-homeomorphic, there
 is in general no harm in identifying them. This justifies the phrase "the mani-
 fold M in N."

 LEmmA 1. Let (M, f) be a Cr-m-manifold in the C4t-nmanifold N. Then the
 subset f(M) of N has the following property. Any qo in f(M) is in a neighborhood
 U in f(M) 1 such that U is in some Vj, and the points x1 (U) are given by

 (3.1) ym+k = #k(yl, ... yY) (k = 1, ... ,n- m)

 (if yi, * , ym are suitably chosen rectangular coordinates in En), where (y1, * * ye)
 runs through an open set in the (yi, * , y.)-plane. Moreover, if M' is any subset
 of N uith the above property, then maps in M' determined by (3.1) make M' a
 Cr-m-manifold; if, further, M' = f(M), then M is Cr-homeomorphic with M'.14

 Given M, f and qo, say qo = f(po); we may take a neighborhood U* of po in M
 such that U* is in some Ui and U = f(U*) is in some Vi (as f is continuous).

 13 That is, qo is in U which is in f(M), and U is open in f(M), i.e., no q in U is the limit
 (in N) of a sequence of points of f(M) - U.

 14 It is easily seen that the lemma holds if f is completely regular and proper.
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 650 HASSLER WHITNEY

 Let (xi, * *, xm) be rectangular coordinates in Em. f i = x}'fOi maps the open
 subset Oj (U*) of Qm into Q,. As f is regular, the matrix II ayk/ax, II of partial
 derivatives of f Hi is of rank m at O, 1 (po); we may suppose that the first deter-
 minant is 5 0. Then, taking U* small enough, (3.1) holds. To show that U

 is a neighborhood of qo in f(M), take any q in U, and suppose there is a sequence
 Iqk} in f(M) - U, q k -> q. Say q = f(p), q k = f(pk). Suppose there were a
 subsequence IPakI of I pk} such that p-k p' in M. Then f(pk) = q-k f(p')
 hence f(p') = q, and p' = p, as f is (1-1). As p-k p in U*, there is an s such
 that p, k is in U* (see ?1). But then q, k is in U, a contradiction. Therefore
 *{ Pk } has no limit in M. But then f is not proper, again a contradiction.

 Next suppose that M' is a subset of N defined by equations (3.1). In each

 such equation, the domain of definition R = (yr, . * * , yin) is open; we may cover
 R by spheres, and map Qm into each sphere and hence into M', defining maps in

 M'. Using the fact that the hi in N are of class Cr with non-vanishing Jacobian,
 it is easily shown that the same is true for the maps in M'. Suppose further

 that M' = fM). The equations y = f~j(x) previously considered, when solved
 as before, give a further set of equations (3.1) and thus another set of maps
 defining M'; but this set is clearly Cr-equivalent to the other, and thus defines a
 Cr-homeomorphism between M and M'.

 LEMMA 2. Let M be a Cr-m-manifold in N, and N, a Cr-n-manifold in the
 Cr-n'-manifold N'. Then M is a Cr-m-manifold in N'. We may replace "mani-
 fold" by "local manifold."

 Say f maps M into N and g maps N into N'; then f' = gf maps M into N'.

 As f and g are regular and of class Cry so is f'. If f and g are (1-1), so is f'; the
 same is easily seen to be true with "(1-1)" replaced by "proper."

 4. Functions defined in submanifolds of a manifold. Let M be a sub-

 manifold of N, and let f be defined in one of the manifolds; we propose to study
 the relation of f to the other manifold. The values of f may be points of another
 manifold. The results of this section will be used only occasionally.

 LEMMA 3. Let M be a local Cr-m-manifold in the Cr-n-manifold N, let R be an
 open subset of N, and let f be of class Cr in R. Then f is of class Cr in the subset
 R M of M.

 By this we mean, if g is the map of M into N, that f' = fg is of class Ct in that
 open subset R' of M for which g(R') is in R. Take qo in R * M, and say qo = g(po),
 Po in Uj, qo in Vs. The hypothesis is that f*(y) = fx,(y) is of class Cr in a neigh-
 borhood of yO = xl 1 (qo) in Qn. As Oi, g, and xi1 are of class Cr, so is

 f'(Ox(x)) = f*X, lgoi(x)

 in a neighborhood of x0 = at1 (po), as required.
 A converse of this lemma is

 LEMMA 4. Let M be a Cr-m-manifold in the Cr-n-manifold N, let R' be an
 open subset of M, and let f be of class Cr in R'. Then its definition may be
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 DIFFERENTIABLE MANIFOLDS 651

 extended throughout an open subset R of N containing R' so that it is of class

 Cr there.

 As R' is a Cr-m-manifold in N, we may suppose without loss of generality that
 R' = M. By Theorem 1, we may Cr-imbed N in E, (v = 2n + 1); then, by
 Lemma 2, M becomes a Cr-m-manifold in E,. Define f in R(M) by setting
 f(p) = f(H(p)) (Lemma 23). f is now of class C" in R(M). For, let U be a

 neighborhood of a point po in M, and let S be the product ofI 07 (U) and Em:
 z = (x, y), x in 0, l(U), y in E,..m, z in S. S may be considered as a subset of
 En. Setting f'(z) = f(Oi(x)), f' is obviously of class C in S. Let 0 be a con-
 gruent map of Evn into P(po), and for any p in U, let T, = Tp p(p) be the map
 of P(po) into P(p) of ?19. Set

 q = 4&(x, y) = Tei(z)(y).

 This is a Cr-map of S into E,. If S' = (x, y) for I y II < some a, and 4(0) =
 po, i/ maps S' into part of R(M). Moreover,

 x = O-(H(q)), y = 4-1TH(1) q in 4k(S');
 hence 4,6 has an inverse of class Cr in 4,(S'). But in fr(S'), by the definitions of f
 and f', f(q) = f'('-l(q)), which shows that f is of class Cr in R(M). Set R =
 R(M) .N; by Lemma 3;f is of class Cr in R.

 We remark that the lemmas hold if we replace everywhere "of class Cr" by
 "analytic." The lemmas show that if M and N are as given, andf is defined in
 M, then "f is of class Cr in M" is the same as "f is of class CG in the subset M of N."

 5. Admissible sets of maps in a manifold. Let M be a Cr-m-manifold with

 maps Oi. If (a) each Es is of class Cr in Q,14a and (b) any compact subset of M has
 points in common with but a finite number of the Uj, we say the maps form an
 admissible set. If, further, Q' is the sphere concentric with Q and of half the
 radius, U$ = 0i(Q'), and the U' cover M, we say the maps form a completely
 admissible set. Any manifold may be defined by a completely admissible set
 of arbitrarily small maps:

 LEMMA 5. Let M be a C r-m-manifold, and let R1, R2, * be a set of open sets
 covering M. Then M is Cr-equivalent to a manifold with completely admissible
 maps Oi such that each Ui is in some R,.

 Let O* be the given maps in M. Let Q,, Q2, * * be the spheres of rational
 center and rational radius such that each Qk is in Q. Q may be mapped into
 Qk by a linear transformation 4k. Set oki(x) = O*'(0k(X)); then the Hi are defined
 in Q, and obviously define a manifold Cr-equivalent to M. Call these maps xi,
 and the-corresponding neighborhoods, V,.

 Set W' = V1 + *. + VA; then W$ is compact and closed. Each point of
 W is in some W', and hence W' is in the sum of a finite number of the W' and
 is thus in some W^. Hence we may pick out a finite or infinite subsequence
 W1, W2, ... of the W' such that WiT is in Wj+j and the W. cover M. Each

 1 Q Q plus limit points.
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 652 HASSLER WHITNEY

 point of Wi - Wj1 is in a V = xj(Q') such that Vj lies in some Rk and has no
 points in Wi-2; a finite number of these V may be chosen such that they cover
 Wi - Wi1. Choose such neighborhoods for each i; the corresponding maps,
 arranged in a sequence 01, 02, * *, obviously have the required properties.

 6. Approximations to functions defined in manifolds. Let M and N be
 Crm-m and Cr-n-manifolds with admissible maps 0,, xi, and let f(p) be a C'-map
 of M into N. Take any po in M, and say po is in Uj, f(po) is in Vs. Then
 fj,(x) = xY1f~i(x) is a Cr-map of part of Qrn into Qn, with derivatives

 Dkfij(x) akl+ +kmf(x) (Uk < r),

 where ak = ki + * + km. Each Dkfjf(x) is a vector function defined in part
 of Qm. Let q (p) be a positive continuous function in M, and let F(p) be another
 Cr-map of M into N. We shall say F approximates to f in M through the 5th
 order with an error < -q, or, F approximates (f, M, s, -q), if the following is true:
 For any point p in any Uj there is a j such that f(p) and F(p) are in V, and

 || Dk Fij(p) - Dkfij(p) I < -n (P) (ak - S) .
 If M = Em and N = En, this reduces to the ordinary.definition. For s = 0,
 this inequality is independent of the maps defining M.

 LEMMA 6. Given two sets of admissible maps Oj, 0* in M and two sets xj, x* in
 N, and given f(p) and q (p) as above, there is a positive continuous function (p)
 in M such that if F approximates (f, M, s, r) in terms of the 6* and x*, then F
 approximates (f, M, s, v7) in terms of the Gi and xi.

 Let fi,, f,*j Fij Flj be the corresponding maps of Qm into Qn, and set uik(x) =
 *-7'(0j(x)), vil(y) = xi-(xj(y)) where defined. Now given i, j, there are num-
 bers k, 1 such that near a given point

 = x ZfOk = vjzXJ 7fGi~k =i

 hence the derivatives of fkl of order < s are polynomials in those of vif, f~i, and
 u, I of order ? s. It is sufficient to show that all such derivatives are bounded
 in the neighborhood of any point po of M. po is in a finite number of U; and Uk,

 and f(po) is in a finite number of Vi and V*. Each 0i etc. is defined in a bounded
 closed set, and hence its derivatives are bounded; therefore the same is true of
 the derivatives of the above functions.

 We remark that if f is regular, completely regular, proper, or (1-1) regular and
 proper, then the same is true of any function which approximates to f through the
 first order closely enough.

 II. THE THEOREMS

 We collect here the principal results of the paper (apart from Lemma 23).
 Using the first two theorems and the results of ?9, the remaining theorems may
 be proved with little difficulty; hence we give these proofs practically in full in
 this part.
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 DIFFERENTIABLE MANIFOLDS 653

 7. Two types of properties of maps. The purpose of this section is to explain

 (e) and (f) of Theorem 2. See also ?9. Let M and N be Cr-m- and Cr-n-mani-

 folds, and let f be a fixed Cr-map of M into N (r _ 0). Let q(p) be a positive
 continuous function in M. We shall say a property Q of maps of M into N is

 an (f, r, tq)-property if the following is true:
 (a) Q is defined for all maps f' which approximate (f, M, r, /).
 (b) There is a compact open subset W' of M such that whether anyf' has the

 property Q depends only on the values of f' in W'.
 (c) If f' approximates (f, M, r, t/) and has the property Q, then for some con-

 tinuous q'(p), 0 < q'(p) < q (p), any map f" which approximates (f', M, r, a')
 has the property U.

 (d) If f' approximates (f, M, r, t/), then for an arbitrary continuous 71'(p),
 0 < q'(p) < q (p), there is a map f" which approximates (f', M, r, <) and has
 the property .15

 Before defining the second type of property, we shall consider certain func-

 tionals. We suppose now that M and N are analytic manifolds in E, and E,
 respectively.

 Let A(p, q) be a continuous function of the pair of points p, q of M such that
 A(p, p) = 0 and A(p, q) > 0 for p $ q. Let P(p) be a positive continuous function

 in M. To each Cr-map f of M into E, such that

 (7.1) || Dkf(q) - Dkf(p) || - A(py q) (o k ? r),

 (see ?6) ,1' let there correspond a map Vf of M into E,. We shall say e is an

 analytic linear (M, E,, r, A, t)-functional if Vf is analytic, and approximates
 (f, M, r, P), and, if fi, f2 and fi + f2 satisfy (7.1), then17

 V(fl + f2) = Vfl + Vf2.

 The existence of such a functional is given by Lemma 27. Note that if e is an

 analytic linear (M, E,, r, A', ?')-functional, then it is an analytic linear (M, E>,
 r, A, t)-functional for A < A', r _ ?'.

 We shall say a property Q is an [f, r, 77, A, ,]-property if (a), (b) and (c) hold,
 and also:

 (d') There is a compact open subset W of M containing W', and there are
 Cr-maps G1, * *, Gh of M into E, such that Gj(p) = 0 for p in M - W, with
 the following property. If V is any analytic linear (M, E,, r, A, 0)-functional
 and if f' approximates (f, M, r, l) and satisfies (7.1), then there is an arbitrarily

 15 (c) and (d) may be phrased as follows: If ( is the space of maps of M into N which
 approximate (f, M, r, 1), using a very strong topology, then those maps which have the
 property Q form an everywhere dense open subset of (.

 16 Dkf(p) shall mean some Dkf.(x), where p O,(x). If p and q are both in some Us,
 we shall use the same i in defining Dkf(p) and Dkf(q).

 17 We add points, etc., by considering them as vectors from the origin 0. If p = Maipi
 with Lai = 1, then p is independent of the ehoice of 0.
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 small a = (al, ah) such that

 fa(p) = HV[f'(p) + E ajG,(p)]
 has the property Q. (We suppose v and r are so small that fa is in R(N) for

 ai I < some a > 0, and thus H is defined; see Lemma 23.)
 Note that any [f, r, i7, A, ti-property is an [If, r, tq, A', ?']-property for A' > A,
 D< ; also, for large enough A, it is an (f, r, 7)-property.

 8. The fundamental theorems. We state here the two theorems on which

 most of the other results of the paper are based.
 THEOREM 1. Any Cr-m-manifold (r > 1 finite or infinite) is Cr-homeomorphic

 with an analytic manifold in Euclidean space E2m+l.
 See als6 Theorem 3 and footnote 32.

 THEOREM 2. Let M and N be analytic m- and n-manifolds in Euclidean spaces

 E, and E, respectively. Let f be a C r-map of M into N (r ? 0 finite). Let tq be a
 positive continuous function in M. Then there is a Cr-map F of M into N with

 the following properties:

 (a) F approximates (f, M, r, t/).
 (b) If n > 2m, then F is completely regular.
 (c) If n 2 2m + 1, then F is (1-1).

 (d) F is analytic.

 (e) Let Q12, 0y* ... be (f, r, t7)-properties, let W', W2, ... be the corresponding
 subsets of M (?7, (b)), and suppose any compact subset of M has points in common

 with at most a finite number of the W$. Then F has the properties Q%, 2* -.
 (f) For some functions A(p, q), D(p) as in ?7, let O', U', ... be [If, r, 7, A, fl-

 properties. Then F has these properties.

 In place of (d), (e) and (f) we may have if we choose (e'): (e) holds without the
 finiteness restriction.

 If we are satisfied with a function F of class Cr, we would naturally use (e')
 in place of (d), (e) and (f). Note that if f is proper in M, then we can insure that

 F be proper in M by taking q small enough; then, if n t 2m + 1, (b) and (c)
 show that F is a homeomorphism, and thus F(M) is a C7- (or analytic) manifold

 in N. We might generalize the theorem by making F = f at certain isolated
 points of M, or, if r is replaced by o, letting F(p) approximate to f(p) together
 with higher and higher partial derivatives as p approaches the limit set LM.

 (Compare AE, Theorem III.) We could also consider manifolds of different
 classes in different subsets; an example is given in Theorem 5.

 9. Consequences of (e) and (f) of Theorem 2. We may give the function F
 various properties, either because these are of one of the two types, or because

 they are the logical sums of a denumerable number of such properties. We give
 some examples below; for the proofs that they are of the required nature, see
 ??34-35.

 (A) and (B) are (b) and (c) of the theorem.
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 (C) If K is a subset of N which is the sum of at most a denumerable number
 of sets of zero (n - m)-extent (see ?17), then F(M) does not intersect K.

 (D) If f(M) and N' are local C'-m- and Cl-n'-manifolds in N, then if
 m + n' < n, the local manifold F(M) does not intersect N', while if m + n' > n,
 N*= F(M) .N' is a local (m + n'-n)-manifold in N. At each point p of N*,

 there are n independent directions in N, each being parallel to F(M) or to N'.
 If f(M) and N' are non-singular, or proper, so is N*.

 10. A furither imbedding theorem; Riemann manifolds. We may replace

 E2m+l by E2m in Theorem 1 as follows:
 THEOREM 3. Any Cr-m-manifold M (r > 1 finite or infinite) is Cr-homeo-

 morphic with a proper analytic local manifold with at most regular singularities in

 E2m.
 To prove this, let M' be a Cr-homeomorphic analytic manifold in E2m+l.

 Let p(p)(p in M') be the smaller of (a) 1, (b) the reciprocal of the distance from

 p to a fixed point of E2m+l, (c) the distance from p to the limit set LM' if LM' # 0.
 Let qo be a fixed point distinct from the origin 0 in E2m, and set f(p) = p(p)qo in
 M'. This is a continuous map of M' into E2m such that f(p) ?A 0, and either
 Lf(M') is void or Lf(M') = 0; hence f is proper. Let F be the analytic com-

 pletely regular proper map given by Theorem 2 with N = E2m; F(M') is the
 required local manifold.

 THEOREM 4. Any Cr-manifold M (r > 1 finite or infinite) may be given an
 analytic Riemannian metric, the coefficients of the fundamental quadratic form being
 of class Cr in terms of the original maps defining M.

 This follows from Theorem 1 or 3 on using the dM2 of E2m+1 or E2m.

 11. An extension theorem. Suppose a closed subset of a manifold M is
 mapped into a manifold N; can the map be extended over the rest of M so as to
 be differentiable? Or, M might be replaced by a manifold M with boundary B,
 and the closed subset, by B. An answer is given by the following theorem.

 THEOREM 5. Let A be a separable metric space, let B be a closed subset of A,
 and let M = A -B be a C7-m-manifold (r > 1 finite or infinite).'8 Let N be a
 CA-n-manifold (s 2 r), and let f be a continuous map of B into N. Suppose f can
 be extended so as to be continuous throughout M.19 Then there is a map F of A
 into N with the following properties:

 (a) F is continuous in A and of class Cr in M; F = f in B.
 (b) If n 2 2m, F is completely regular in M.
 (c) If n _ 2m + 1, F is (1-1) in M.
 Suppose, in addition, that A is a C"'-m-manifold,10 1 ? r' < r; f is of class Ct in

 the subset B of A (see ?2), 1 ? t ? r'. Then we have also

 18 We suppose that continuity in M agrees with continuity in A.
 19 This is always possible if N = E.. See for instance Kuratowski, Topologie I, p. 211,

 or Alexandroff-Hopf, Topologie I, p. 76.
 20 We suppose that the maps defining M are a subset of those defining A.

This content downloaded from 160.80.2.38 on Tue, 02 Jun 2020 17:39:49 UTC
All use subject to https://about.jstor.org/terms



 656 HASSLER WHITNEY

 (d) F is of class Ct in A.

 (e) If n > 2m and f is regular [completely regular] in B, then F is regular
 [completely regular] in A.

 (f) If n _ 2m + 1 and f is regular and (1-1) in B, then F is regular and (1-1)
 in A.

 We might also apply (e) and (f) of Theorem 2. If the extension of f overM is
 proper in M [in A], we can make F proper in M [in A]. If N is analytic, we

 may make f(M) analytic, etc., as in Theorem 2.

 By Theorem 1, there are analytic manifolds M' and N' in E, and E,, Cr- and
 Ct-homeomorphic with M and N respectively. fP gives a mapf' of M' into N'.
 Choose 7(p) positive and continuous in M so that r(p) -+O as p -+B. Applying
 Theorem 2 with its r replaced by 0, we replace the extension f' over M' by a
 function F'; the resulting map F of M into N is of class Cr and has the prop-
 erties (a), (b) and (c) (setting F = f in B).

 Now suppose that A is a Cr'-manifold, 1 <lr' < r. Let A; be a Cr'-homeomor-
 phic analytic manifold in E,; then M is Cr'-homeomorphic with the correspond-
 ing subset M' of A'. Let M" be an analytic manifold in E', Cr-homeomorphic
 with M. The map g of M" into M' thus defined is of class Cr'. We may
 choose 7(p) positive and continuous in M so that 17(p) -+0 as p -* B, and so that,
 considering 7(p) in M", if g" approximates (g, M", r', sq), then g" is a home-
 omorphism and g" (M") does not intersect B' = A' - M. Let g" be such a
 function which is analytic (Theorem 2); the resulting map g' of M into g'(M)
 is a Cr-homeomorphism. Letting g', in B, be the map already given, g' is
 (1-1) in A. From Lemma 10 below it is seen that g' is of class Cr' in A. It is
 regular, and taking r(p) small enough insures that it is proper; hence g' is a

 Cr'-homeomorphism in A and a Cr-homeomorphism in M. Let A' = g'(A),
 M' = g'(M). M' (but not A') is analytic. Let N' andf' be as before.

 f' is continuous in A'; considering the values of f' in B' alone, it is of class Ct

 in the subset B' of E,, (Lemma 4). Suppose that we have proved Lemma 7;
 then there is a function F" of class Ct in R(A') (see Lemma 23) which equals f'
 together with derivatives of order < t in B', and such that F"(M') is in R(N').21
 Then F"' = HF" (see Lemma 23) is of class Ct in A', and maps A' into N'.
 Define 7(p) in M' as before, and let F' be the approximation to F"' in M' given
 by Theorem 2. Set F' = F" in B'; then F' is of class Ct in A', as is easily seen
 from Lemma 10. The resulting map F of A into N is of class C' in A and of
 class Cr in M, and has the properties (a) through (d). The regularity condition
 in (e) is satisfied automatically; we obtain complete regularity if f is completely
 regular in B by applying the method of proof of (A) of ?9 in using Theorem 2.
 Suppose n _ 2m + 1 and f is (1-1) in B. Then F(B) is the sum of a denumerable
 number of sets of zero (m + 1)-extent, by Lemmas 13, 14 and 15, and hence we
 may make F(M) avoid F(B) by applying (C) of ?9.

 There remains to prove

 20a I.e. the extension of f over M.
 21 If N = E., we could obviously avoid Lemma 7.
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 LEMMA 7. Let A* be a subset of the open set R in E,, A*.R = A*.R, and let
 B* be a subset of A*, l* A* = B*.A*. Let r(p) be a positive continuous func-
 tion in A*. Let f' be a continuous map of A* into E,, and let f', considered
 in B* alone, be of class Ct in B*. Then there is a Ct-map F of A* into E, which
 equals f' in B*, together with partial derivatives of order < t, and approximates
 (f', A* - B*, 0, ).

 We may suppose that E, = E1, the space of real numbers. By a direct
 application of the method of proof of AE Lemma 3,22 we find a function f which
 is continuous in R, is of class C' in a neighborhood R' of B* (R' in R), = f' in
 B*, and approximates (f', A* - B*, 0, r). Let R" be a neighborhood of B*
 such that S = -EA* is in R'. Set

 AI = E;,,-R (-1 :5 s < t -1))

 A=A'=A.=Ao+B* (s t),

 B. = A*-S (O < s ( t-1),

 B = Bs = A*- B* (S > t).

 The conditions of AE Theorem III are seen to be satisfied; the function F given
 by the theorem (if e(x) is small enough) has the required properties.

 12. A deformation theorem. We first introduce some definitions. Let M
 and N be Cr-m- and Cr-n-manifolds, let I be the closed interval (0, 1), and let I'
 be an open interval containing I. Let M' = M X I' be the product of M and
 I'; this is a Cr-(m + 1)-manifold with easily defined maps. Let f be a regular
 Cr-map of M' into N. For each p in M and t in I', set Ot(p) = f(p X t).
 Each ot is a regular Cr-map of M into N. Set Mo = 4o(M), M1 = +1(M);
 these are local Cr-manifolds in N. If, given Mo and M1, there exist such M,
 I' and f, we shall say the set of maps ft, t in I, forms a regular Cr-deformation
 of Mo into M1. A regular deformation such that M' has at most regular singu-
 larities, we shall call completely regular; one in which each 4t is (1-1), we call
 topological; one in which f is (1-1), we call completely topological. If there is such
 a map f which is merely continuous, it defines a deformation of Mo into M1.

 THEOREM 6. Let Mo and M1 be C,-homeomorphic local Cr-m-manifolds in the
 Cr-n-manifold N (r > 1 finite or infinite, n > 2m + 2). Suppose there exists a

 22 Letf1 be a continuous extension of f' throughout R. Take a subdivision of R -B
 as in AE ?8, and define an extension f2 of class C' of f', considered in B* alone, throughout R.
 (In using AE ?9, we take for x' a point of B* whose distance from y' is less than twice the
 distance from y' to B*). Define the kin R-B* as in AE. Given a neighborhood R* of
 B*, R* in R, let hkbe those functions which are # 0 somewhere in R - R*, and set

 f = f2 + EOrkt(fl -f2).

 As ;E = 1 in R - R*, f =fi in R - R*; also f = fs in a neighborhood of B*. For R*
 small enough, f evidently approximates to f' as required.
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 deformation of MO into M1 in N.23 Then there is a regular Cr-deformation of M0
 into M1. If Mo and M1 are completely regular, so is the deformation. If MO and
 Ml are non-singular, it is topological. If, further, n > 2m + 3 and Mo and Ml
 do not intersect, it is completely topological.24

 We shall not consider the question of proper maps, but merely note that any
 map of a closed manifold is proper. The following lemma is necessary.

 LEMMA 8. Let M be a local Cr-m-manifold in the Cr-n-manifold N, n 2 2m + 1.
 Then there is a vector function v(p) of class Cr in M such that for each p, v(p) is
 independent of the directions in M at p.25

 The lemma may be proved most simply by imbedding N in E, (Lemma 19),
 triangulating M, and defining v(p) successively over the 0-cells, 1-cells, *-- of
 M. It may also be proved easily by the methods in this paper.

 Let vi(p) be a vector function in Mi as in the lemma, i = 0, 1. Let us C%-
 imbed N in some E, (Lemma 19); then vo(p) becomes a vector v (p) in E,
 parallel to N but independent of M at p. Set

 go(p X t) = p + tvo(P);

 this gives a Cr-map of M' = M X I' into E,. For t < some P(p), go(p X t)
 lies in R(N) (see Lemma 23); set g'(p X t) = Hgo(p X t). Letf = g' in Mo;
 90 also defines the derivatives of f of order < r in the subset Mo of M'. By the
 choice of vo, f is a regular map of the subset Mo of M' into N (see ?2). Define
 f similarly in M1.

 By hypothesis, there is a continuous map f' of M' into N which agrees with f
 in Mo and in M1. We now apply Theorem 5 with A, B, t replaced by M',
 Mo + M1, r. This gives a regular Cr-map of M' into N, and hence a regular
 Cr-deformation of Mo into M1. The other statements in the theorem follow at
 once from Theorem 5, except for the statement on topological deformations; we
 leave the proof of this to ?36.

 13. Spheres bounding differentiable cells. Let S be the unit m-sphere in
 Em+l, let Q' be the interior of S, and let Q be the interior of a larger concentric
 M-sphere. Let f be a regular Cr-map of S into N; we shall call SI = f(S) a local
 Cr-m-sphere in N; we leave out "local" if f is (1-1). If f may be extended
 throughout Q so as to be regular and of class Cr, we say Si Cr-bounds regularly the
 (m + 1)-cell f(Q'). If f is completely regular, or (1-1), we call the bounding
 completely regular, or topological. If there exists an f which is merely continuous,
 we say S bounds a cell in N.

 THEOREM 7. Any local C"-m-sphere S in the Cr-n-manifold N (r > 1, n _
 2m + 2) which bounds a cell in N, Cr-bounds regularly a cell in N. If S has at

 23 This is of course always the case if N = En.
 24 If N is an analytic manifold in E,, we may make the map of M' analytic except over

 Mo and M1 (see Theorem 2). We shall strengthen the theorem in ?36.
 25 The lemma holds if N = E, and n > 2m, as will be shown in a paper on "sphere-spaces."

 "Vector function" means here "direction function."
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 most regular singularities, the bounding is completely regular; if n > 2m + 3 and
 S is non-singular, the bounding is topological.28

 The proof runs almost exactly like that of Theorem 6.

 14. Examples (A) Let M be the interval (- x, + ). Let ao, al, ,.. be a
 sequence of points dense in En, n > 2. For each integer i > 0, set f(i) = aj,
 and let f map the interval (i, i + 1) into the segment aiai+i. Set f( - t) = f(t).
 This is a continuous map of M into a subset of En. Set 7(t) = 1/(1 + I t 1).
 Theorem 2 then gives, if n = 2, an analytic curve everywhere dense in the
 plane, and if n > 3, a non-singular analytic curve dense in En. On applying
 (C) of ?9, we may (say in E3) make the curve avoid all rational lines; we may
 also replace the curve by a denumerable number of such curves which are non-
 intersecting.

 (B) Let B be the unit circle in the plane, with interior M, and set A = B + M.
 Mrap B into the whole of the sphere Sn of dimension n > 4. Any continuous
 map of B into Sn may be extended continuously over M; hence, by Theorem 2,
 there is an analytic regular map F of M into S taking on the given boundary
 values; if n _ 5, F(M) is non-singular. As in (A), we may make F(M) avoid
 sets of (n - m)-extent zero, may find a denumerable number of non-intersect-
 ing surfaces of this sort if n > 5, etc.

 III. THE IMBEDDING THEOREM

 In this part we shall prove Lemma 19; this is Theorem 1, except for the
 analyticity condition. The proof of Theorem 1 will be completed in Part V.
 The present proof falls into two parts. We first show, in Lemma 12, practically,
 that Theorem 2 with the conclusions (a) and (e') alone holds; we then show that
 (B) and part of (A), ?9, hold. This, with the lemma, gives the imbedding
 theorem. We first give some lemmas of a general nature.

 15. Some general lemmas. The lemmas which follow are mostly simple
 extensions of results from AE.

 LEMMA 9.27 Let f(p) be a Cr-map (r > 0) of the open set R in Em into En, and
 let q(p) be positive and continuous in R. Then there is an analytic map F(p)
 in R which approximates (f, R, r, r).

 If n = 1, this follows at once from AE Lemma 6. We define open sets
 R,, R2, ... as in that lemma, and let ej be the lower bound of j(p) for p in
 Ri+1. For the general case, we apply the lemma separately for each coordinate
 in En.

 LEMMA 10. Let A be a closed subset of the Cr7-manifold M, let -q(p) be positive
 and continuous in M -A, let I (p) -* 0 as p approaches any point of A, and let

 26 Compare footnote24.

 27 See also Lemmas 22 and 26. We may make F(p) approximate to f(p) to higher and
 higher orders as p approaches the boundary of R; see AE Lemma 6.
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 f(p) be a Cr-map of M into the Cr-manifold N. If F approximates (f, M - A, r, -l)

 and F = f in A, then F is of class Cr in M.
 Suppose first M = Em, N = E1; the theorem then follows from AE Lemma 1

 (see AE, end of ?11). The general case is an immediate consequence of this.

 LEMMA 11.2 Let A be a subset of the open set R in Em, with A.R = A RI
 and let f(p) be of class Cr (r _ 0) in the subset A of R. Then the definition of f
 may be extended throughout R so it is of class Cr there. The values of f(p) may

 be points of En.
 If R = Em and f is real-valued, the proof is given by AE Lemma 2. If

 R 53 Em, the proof needs only a slight alteration; or we may use AE Theorem
 III. If the values of f are points of En, we apply the lemma to each coordinate
 separately.

 16. Maps of a manifold with given properties. The first of the three
 lemmas giving the imbedding theorem is the following.

 LEMMA 12. Letf be a Cr-map of the Cr-m-manifold M into the Cr-n-manifold N,
 let r/(p) be positive and continuous in M, and let Q1, U2, * * * be (f, r, 71)-properties.
 Then there is a C'r-map F of M into N which approximates (f, M, r, -y) and has
 these properties.

 It is clear that there is a sequence of positive continuous functions ''(p)
 such that if fo = f and fi approximates (fi~-, M, r, lo'), then F = lim fi exists
 and approximates (f, M, r, 77). We shall choose functions ni,(j 2 1), fi,
 12i(j > 2), f2, ... in that order so that if -;(p) for each p is the smallest of
 i(p), * 7**, 7;i(p), s '(p), thenf; approximates (fai, M, r, ?I)I and fj(j _ i) and
 F have the property Qi(i = 1, 2, ..). Suppose we have found these functions

 through fi-1. For each p in M, let $ '(p) be the smallest of the numbers n'(p)
 of (c), ?7, for the properties l, . *, fl(; then if f approximates (fa, M, r, )I
 f' will have the properties (1, .., Q -. Choose 7i (p)(j _ i) so that if
 1I = fi-i andf approximates (fr,_1 M, r, ,j4)(j > i), then ' = limf ap-
 proximates (fi~-, M, r, 7l '). Define ri, and let fi(p) approximate (fi-1, M, r, iii)
 and have the property Qj, by (d), ?7. We thus find all the above functions, and
 the function F has the required properties.

 17. The k-extent of a set. Let A be a subset of Em. We shall say the
 k-extent of A is finite if there is a number G such that if 0 < e < 1, then there
 are sets A1, *.. , A, of diameter < e which cover A, and vek < G. If M is a
 Cl-m-manifold with admissible maps Oi etc., and A is a subset of M, we say
 the k-extent of A is finite if A is compact (and hence is in a finite number of the
 U5), and each at '(A. U5) is of finite k-extent in Em. The subset A of Em is of
 k-extent zero if for any e' > 0 there is a 5 > 0 such that if 0 < e < 6, then
 there are sets AI, . , A, of diameter < e covering A, and 1,sk < e'. Similarly

 28 This lemma is not needed in the proof of the fundamental theorems, though it is useful
 in Lemma 17. When we have proved the imbedding theorem, we may show easily that the

 lemma holds with Em and E,, replaced by a Cr-manifolds (see ?4).
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 if A is a subset of M. A set of zero k-extent (k < 0) or of finite i-extent (I < 0)
 is vacuous. These definitions (in M) are independent of the admissible set of
 maps defining M (see Lemma 15). The sum of a finite number of sets of finite

 [zero] k-extent is of finite [zero] k-extent.
 LEMMA 13. A bounded subset A of Ek has finite k-extent; if A contains inner

 points, then it has not zero k-extent.

 This is obvious on cutting up Ek into equal cubes of any desired size. Equally

 obvious is

 LEMMA 14. If A hasfinite k-extent, it has zero (k + l)-extent.
 LEMMA 15. If M and N are Cl-m- and Cl-n-manifolds, f is a Cl-map of M into

 N, and A is a subset of M29 of finite [zero] k-extent, then f(A) is of finite [zero]
 k-extent.

 Consider first the case of finite k-extent. A is in a finite number of the U , and

 f(A) is in a finite number of the Vs; hence we can put A = Al + * * * + At,
 As in Uj(8), f(A8) in VT(J,). Set B. = t (8)(A.); then B. is of finite k-extent in
 Em. It is sufficient to show that if g8 = X'(-8)f(i(,), then g.(B.) is of finite
 k-extent in En. g9 is of class C1 in the compact set B.; hence, for some number
 at, any subset B' of B8 is mapped by g9 into a set g,(B') whose diameter is at
 most u times that of B'. Set G* = It'G. (G corresponds to B..) Given
 E, 0 < e < 1, set el = e/,uk, and divide B. into sets B.,, - - , B., of diameter
 < el, so that Pe < G. Then g(B81), *-- g(B.,) cover g(B.), these sets are of
 diameter < e, and vee < G*, as required.

 Consider now the case of zero k-extent. Define the B. etc. as before. Given

 e' > 0, set e = k'/js*, and choose 6 > 0 so that if 0 < e < 6, then there are
 sets B;1, ... , B.> of diameter < e covering B., and v4k < 4-. Now take any
 e, 0 < e < 6, and set el = E/. Define the sets B.,; then g(B81), * , g(B.,)
 have the required properties.

 18. Transformations of one set away from another. Let R and R' be

 open subsets of Em and Eh, and for each a = (al, ... , ah) in R' let Ta be a
 Cr-map of R into En. Let x' = Ta(x) be of class C' in terms of the n + h vari-
 ables (x, a) (x in R). If for each x in R and a in R' the vectors

 ax'laai, ... , ax/xaah

 are independent, we shall say the Ta form an h-parameter family of Cr-maps.
 We may also define such families of maps of one manifold into another in an
 obvious manner; Lemma 16 holds for such families also.

 LEMMA 16. Let Ta(x) be an h-parameter family of Cl-maps of R into En, and let
 A and B be closed sets in R and En of finite k-extent and zero (h - k)-extent respec-

 tively. Then for 8ome a in R', Ta,(A) does not intersect B.29^
 We may suppose that 0 < k < h. For some ao in R' and q > 0, all points a

 29 Note that M may be replaced by any open subset R of M which contains A. It is
 evidently sufficient that the map satisfy a Lipschitz condition.

 29a We may evidently interchange "finite" and "zero".
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 662 HASSLER WHITNEY

 within iq of a0 are in R'. Take t ? 1 so that if A*, in A, is of diameter < e,
 then Tao(A*) is of diameter < te. The condition that the ax'/aai are inde-
 pendent for x in A and a = a0 is equivalent to the condition that for some

 i > 0, any directional derivative for x in A and a = a0 is a vector of length _ (3.
 Hence we may take I, 0 < r < a, such that for any e > O if A* and B* are
 subsets of A and B of diameter < e, a and a' are points of R' within r of ao,

 and the distance from a to a' is > 44e/fl, then either TQ(A*) B* = 0 or
 Ta,(A*)-B* = 0.

 Let G be the number corresponding to A, and take e' < (13r)h/[2h(4t)hG.
 Find 6 < 1 corresponding to B and e'. Choose an e, 0 < e < a. Then we
 may set

 A = Al + *+ A, B = B1? + + Bo

 so that the As cover A, the By cover B, the diameter of each Ai and each By
 is < E, and so that

 v k < G (L h-k < ei

 Let Z i be the set of all points a within r of a0 such that Ta(A i) - Bi i 0; then,
 by the choice of I, the diameter of Zij is < 44e/f3, and hence its ordinary h-vol-
 ume is < (44e/#)h. Therefore the ordinary h-volume of all the Zij is less than

 vo-(44e)h = (4t)h(Ve1)(Cre11)/#h < (44)hGe1/#h < ? lh/.h

 Hence there is an a within ? of a0 which is in no Zii; for this a, Ta(A) does not
 intersect B.

 19. The transformation T, p. Let Po be a fixed k-plane through a fixed
 point po in E,. Corresponding to any k-plane P not perpendicular to P0 and
 any point p of P we may let correspond a non-homogeneous orthogonal trans-

 formation of space T,, p which carries po and Po into p and P, and is analytic in
 p and P (see ?24), for instance as follows. Let P' and P' be the parallel
 planes through the origin. Let v1, ... , v, be mutually orthogonal unit vectors
 such that vi, Vk * *,v are in PI. The following rules determine Tvi. The Tv2
 are mutually orthogonal unit vectors. If 1 < i < k and P' is the plane in P'
 determined by the projections vs, *. , v of vi, . , vi into P', then Tv1, * , Tv1
 are in P' and determine the same orientation in P' as vl, *. *, v'; for each
 j (j = k + 1, ... , n), if P' is the plane determined by P' and Vk+1, .. v,
 then Tvk+1, * , Tvi are parallel to this plane, and Tv1, * , Tvi determine the
 same orientation in it as Tv,, * * *, Tvk, Vk+1, * * * , vi. Tp,, p is the unique linear
 transformation carrying po into p and vi into Tv .

 20. (1-1) maps and properties. We can now prove

 LEMMA 17. If f is a regular Cr-map (r _ 1) of the Cr-m-manifold M into E.,
 n _ 2m + 1, and 77 is a suffiently small positive continuous function in M, then
 the property of maps f' which approximate (f, M, r, tl) of being (1-1) and avoiding
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 a fixed point bo is the logical sum of a denumerabte number of (f, r, r0)-prop-
 erties.30

 Let O1, 02, ... be a completely admissible set of maps defining M; we choose
 them so that if Ui and Us have common points, then f is (1-1) in Uj + Us.
 (This is simple; see ?5.) Consider all sets Uj + Us such that U% i Ui = 0; we
 arrange these in a sequence W1, W2, * i - . Take 7(p) so small that any map f'
 which approximates (f, M, r, -q) is regular and (1-1) in all Uj + Us for which
 Uvi Us = 0. Take any k, and say Wk = Ui + Us; let Rk hold for the mapf if
 f'(U$) .f'(U) = 0 and bo is not in f'(U'). As the U' cover M, the property of
 f' being (1-1) and avoiding bo is the sum of the properties Q1, Q2,

 It remains to show that Uk is an (f, r, q)-property. (a) of ?7 holds; (b) holds
 with W' replaced by W' = U' + U;. Asf'(U') and f'(U;) + be are bounded
 closed subsets of E., (c) is obvious; it remains to prove (d). Let f' approximate
 (f, M, r, r). Let X'(x) be a function of class Cr in Em which = 1 in A' and
 = 0 in Em- Qm. (Such a function is given by Lemma 11, replacing A by

 Qm + (Em,- Qm); or the function may be constructed directly without great
 difficulty.) Then X(p) = X'(07'(p)) in U. and = 0 in M - Uj, is of class Cr in
 M, and = 1 in UM. For any vector v in En, set

 f(p, V) = f'(p) + X(p)V.

 Given an arbitrary 1'(p), we may choose 3 > 0 so that if"31 v I1 < 0, then f(p, v)
 approximates (f', M, r, 77'). By Lemmas 13, 14 and 15, f'(U7) + b0 is of zero
 (m + 1)-extent and f'(U ) is of finite r-extent. The transformations Tvq

 q + v with 11 v 11 < , form an n-parameter family in En; by Lemma 16, there is
 a vo such that TvJ'(U') does not intersect f'(U ) + bo. f" = f(p, vo) with this
 vo is then the required approximation; forf = f' + vo in U' and = f' in U.

 21. Regular maps and properties. The final lemma is
 LEMMA 18. Iff is a Cr-map (r _ 1) of the C'-m-manifold M into En, n > 2m,

 and II is a positive continuous function in M, then the property of maps f which
 approximate (f, M, r, l) of being regular is the logical sum of a denumerable number

 of (f, r, 77)-properties.
 Let 01, 021 ... be completely admissible maps defining M, and let Qi hold for f'

 if f' is regular in U'; then if 0l, 02 ** hold, f' is regular in M. Each Qi satis-
 fies the conditions (a), (b) and (c) of ?7; to show that it is an (f, r, 71)-property,
 we must show that it satisfies (d). Set g(x) = f'(0j(x)) in Qm; this is a Cr-map
 of Qm into En. As in the last ?, it is sufficient to show that for an arbitrary
 r > 0 there is a map g'(x) of Qm into En which approximates (g, Qm, r, P) and
 is regular in Q'. We then set

 f"(p) = f'(p) + X(p)[g'(Oj'(p)) - f'(p)] in U.,

 and f"(p) = f'(p) in M -U; as f"(p) = g'(Oj,(p)) in U', it is regular in UV.

 3 In ?34 we shall express the property as a sum of [f, r, ,q, z, sl-properties.
 31 1I v [I is the length of v.
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 If r = 1, let go(x) be a function of class C2 which approximates (g, Qm, r, I')
 (Lemma 9); otherwise, set go(x) = g(x). We shall find functions gi(x), ...
 gm(x) = g'(x) such that gi(x) approximates (gi1, Qm, r, c'), and so that the
 vectors agi/Olx1 ... *, Ogi/aXi are independent in Q'; if ?' is small enough, g' is
 the required function.

 Suppose we have found g1-1. For any vector v in En set

 gi(x, V) = gi-i(x) + xiv;

 then

 agi(x, v) ag~i-(x) agi(xxV) - 'ag9i.(X) (j 5)
 azxi = aZ, +v' ax - axi

 As the agj_.(x)/axj, j1, * , i - 1, are independent in Q', we need merely
 show that there is an arbitrarily small vo such that ag;(x, vo)/ax' is independent of
 these vectors at each point of Q'; we then set gi(x) = gi(x, vo). By Lemma 13,
 it is sufficient to show that the vectors v, 11 v 11 _ 1, which do not have the re-
 quired property, form a set of zero-n-extent in En. Given the point xO of QA,
 it is sufficient to show that the vectors not having the required property in a
 closed neighborhood S of x0 are of zero n-extent; for a finite number of such sets

 S cover Qm.
 Let P(x) be the (i - 1)-plane through the origin 0 in En determined by

 agjJ(x)1axjj - , dagj_(x)/axi_1, and set Po = P(xO). (If i = 1, P(x) = 0.)
 Choose S so that P(x) is not perpendicular to PO for x in S. Let Yi, * * *, yn be
 rectangular coordinates (with origin 0) in En such that Po is the (yi, * * *, yi-.)-
 plane. Let E = Em+i1l be the space with coordinates (xi, * , xM yi, ..., Yi-).
 Set

 v(x) = d(, K =max f v(x) || (x in S).

 Let D be the subset of E with x in S, p < K + 1, where = (yi, y,_l).
 Let T. = Top(x) be the transformation of ?19 leaving 0 fixed and carrying Po
 into P(x). Given 9, set y = (yi, **, y- 0, O. * * , 0) and

 w(x, p) = T.(y) - v(x).

 as gi-1 is of class C2, this is a Cl-map of D into En. By Lemma 15, w(D) is of
 finite (m + i - l)-extent, and hence of zero n-extent. Now let v be any vector,

 11 v 1f < 1, such that for some x in S, v(x) + v is in P(x); we shall show that v is
 in w(D). As P(x) = Tr(Po), there is a y such that

 v(x) + v = T2(y), v = w(x, p);

 as 1J v(x) + v 11 < K + 1, 11 y 11 < K + 1, and v is in w(D). Hence there is an
 arbitrarily small vo such that no v(x) + vo is in P(x); v(x) + vo = 8gj(x, vo)/axi
 is independent of 8gFi~/8x1, * **, 8g.i-/axi~- in S, and the lemma is proved.
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 22. Proof of the imbedding theorem. The last three lemmas lead at once to

 LEMMA 19. Any Cr-m-manifold M may be Cr-imbedded in E2m+1.32
 Let 71(p) be a positive continuous function in M such that if pi, P2, ... is a

 sequence of points of M with no limit in M, then lim t7(pi) = 0.33 Let f map M
 into the origin 0 in E2m+l; f is of class Cr. Applying Lemma 12 with the proper-
 ties of Lemma 18 gives a regular Cr-map f' approximating (f, M, r, n). We now
 apply Lemma 12 again, this time with the properties of Lemma 17, setting

 bo = 0. (The new n may have to be smaller than the last.) The resulting
 function F is (1-1) regular and of class Cr in M, and F(p) 0 0 in M. By the
 choice of a, the limit set LF(M) either is void or equals 0; hence F is proper.

 Therefore F(M) is a Cr-manifold in E2m+1 Cr-homeomorphic with M, and the
 proof is complete.

 IV. THE NEIGHBORHOOD OF A MANIFOLD IN ER

 Suppose M is a Cr-m-manifold in E., r > 2, n > m. To each point p of M
 there is a normal plane P'(p); this family of planes fills out a neighborhood of M
 in E. in a (1-1) way. If r = 1, this may not hold; for the P'(p) depend on the
 first derivatives of functions defining M. Our object in this part is to find an
 approximating family of planes P(p) of class Cr. ?24 is necessary in this proof,
 and also directly in the next part.

 23. Projective spaces in Euclidean spaces. The following lemma will be
 needed in the next ?.

 LEMMA 20. Projective n-space E* may be imbedded analytically in Euclidean
 space E2R+,.

 The points of E* are the sets of numbers (xi, *-, x,,+1) # (0, *-., 0), pro-
 portional sets being the same point. Let S. be the unit n-sphere Zx' = 1
 in En+,. To each pair of "opposite" points p, -p of S. corresponds a point

 oy(p) = y(-p) of E*. Sn is an analytic manifold with obvious neighborhoods;
 mapping these neighborhoods into E* under -y defines E* as an analytic mani-
 fold. By Lemma 19, E* is Cl-homeomorphic with a manifold M' in E2n+l.
 Let k denote this homeomorphism. Then +(p) = 0('y(p)) is a (2-1) regular map
 of Sn into E2,+,.

 For any map g of Sn into E2n+l, setM

 Ag(p) = [g(p) + g(-p)]/2; then A+(p) = +(p).

 It is easily seen that if g approximates (I, Sn, 1, 6), then the same is true of Ag.
 As Ag(p) = Ag(-p), we may let correspond to g a map f of E* into E2n+l; this

 32 Note that we may let F(M) have no (finite) limit set in E2m+,, by applying a transforma-
 tion with reciprocal radii at the end of the proof.

 33 Let 0i be a set of admissible maps in M. Let -1'(x) be continuous in Em, > 0 in Q.,
 and = 0 in E. - Q.. Set vji(p) = iq'(9lNp)) in Us and - 0 in M - Ui. If a,, 2.- are
 small enough, we may set v1(p) - a; vi(p).

 34 Compare footnote'.
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 might be written f(q) = Ag(ry'1(q)). Take e > 0 such that any map approx-
 imating (4i, E*, 1, e) is (1-1) regular. Choose 6 > 0 so that if g approximates
 (i6, So, 1, 6), then the corresponding f approximates (4?, E*, 1, e). Extend '
 through a neighborhood R of Sn in Enlx say by letting it be constant on any
 half ray from the origin; it is then of class C' in R. By Lemma 9 (or the
 Weierstrass approximation theorem) there is an analytic map g approximating
 (A, R, 1, S); considering g on Sn alone, the corresponding function f has then the
 required properties.

 24. k-planes in n-space. Let 25 be the space whose points are the k-planes
 in n-space through the origin. We shall express this space as an analytic mani-
 fold M(n, k) in a Euclidean space E(n, k). Given the plane P, let v1, ,V. k
 be a set of independent vectors in P; their coordinates form a matrix, with
 k-rowed determinants Di,... i(P). These determinants, arranged in a sequence

 D* (P), I D*k(P)y -Ynk = ( form the homogeneous coordinates of a point

 D*(P) in projective space E*,-,. D*(P) is independent of the vectors vi, , Vk,
 and D*(P) $ D*(P') if P $ P'; thus we have a (1-1) map of e into a subset

 A' of E*"kl. By Lemma 20, we may imbed E*,,k-1 analytically in Euclidean
 space E(n, k); this carries 2i' into a subset M(n, k) of E(n, k).

 We may show that A' and hence M(n, k) is an analytic manifold by taking any

 PO, choosing a determinant, say D ...k(Po), which is # 0, and expressing each
 Di,. k in terms of the determinants Di,... ,-, s+lt ... k by Vahlen's relations,
 which are analytic; this determines maps of the required nature in A'. Anl
 analytically equivalent set of maps may be given as follows: Given Po, let

 1 ... , Pk be points of P0 which form linearly independent vectors from the
 origin, and let L1, *--, Lk be (n - k)-planes (or analytic (n - k)-manifolds)
 through p', * , p0 orthogonal to Po. If P (through the origin) is near Po, it
 intersects each Li in a point pi; the positions of the pi determine a map of part
 of Ek(n-k) = En-k X * * * X En-k (k factors) into part of M(n, k).

 Another important space is the space A* of all k-planes in En; this also forms
 an analytic manifold. M(n, k) is closed; the present manifold is open. We may
 map V' into M(n, k) by letting any plane correspond to the parallel plane
 through the origin. We shall use the symbol P for points of either space; it will
 always be clear which space is meant.

 By an analytic function of k-planes we shall mean a function which, when
 considered in M(n, k), is analytic.

 We shall say two planes of any dimensions (in either space) are orthogonal if
 any vector in (or perhaps better, parallel to) one is orthogonal to any vector in
 the other; independent if they have no common vector $ 0; perpendicular if some
 vector ,# 0 in one is orthogonal to each vector of the other. If P, P' are points

 of 5, we may let 1 P'- P 11 be the distance between the corresponding points
 of M(n, k).
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 25. The neighborhood of a manifold in space. Two more lemmas lead up

 to the main result of this part, Lemma 23.

 LEMMA 21. Let M be a Cr-rn manifold in En (r > 1 finite or infinite), and let
 P(p) be a function of class C in M satisfying (a) of Lemma 23. Then there is a

 function {(p) in M satisfying the remaining conditions.

 Take any po in M. A neighborhood U of po may be determined by functions
 (3.1) of class Cr. Define the transformation Tp, p in terms of po and P(po) as in
 ?19. Set wi(p) = Tp,p(p)(vj); then the points of P(p) for p in U are given by

 n-rn

 (25.1) q = p + E2 atwi(p).
 i-1

 Using (3.1), we may express p in terms of yl, ..., Ym: p = ,6(yi, Y-, Y).
 Putting in (25.1) gives q as a function of yi, . . , y,, cY, * ... *, n-rn:

 (25.2) q = #(Yi, * * * , yi) + Zaiwi(#(yi, *. ))
 = g(yl, ... * y, a,, * , an-.)

 g is of class Ct. Consider the vectors ag/ayi, aga/aj at q = po in U. The ag/ayi
 are independent vectors in the tangent plane T to M at po, as the as vanish there,

 and the Og/laa = w,(po) are independent vectors in P(po); as P(po) is independent
 of T, the whole set of vectors is independent. In other words, the Jacobian of
 (25.2) is ? 0 at po, and hence in a neighborhood R' of po. Solving for yl, * * , yr
 gives p in terms of q in R': p = H(q). H is of class Cr.

 We may cover M by such neighborhoods R' so that any bounded closed subset
 of M has points in but a finite number of the R'. It is easy to construct a pos-

 itive function Z(p) in M such that if R(p) is that part of P(p) within t(p) of p,
 then R(p) lies in some R'. (c) and hence (b) of Lemma 23 now hold.

 LEMMA 22. Lemma 9 holds with R and En replaced by analytic manifolds M and
 N in E,, and E, respectively."'

 Let P(p) be the normal plane to p in M. Then P(p) is analytic, and hence we
 may define H(p) by the last lemma. H is analytic. Similarly we define P' and
 H' for N. Set f(q) = f(H(q)) in R(M); this is a Cr-map of R(M) into the subset
 N of E, (see Lemma 4). If the analytic function F' approximates to f closely
 enough and R'(M) is a small enough neighborhood of M in R(M), then F' maps

 R'(M) into R(N), and F = HF' is an analytic map of R'(M) into N. F, con-
 sidered on M alone, is analytic (see Lemma 3).

 LEMMA 23. Let M be a Cr-m-manifold in En(r _ 1 finite or infinite). Then
 there is a positive continuous function t(p) and a function P(p) of class C" in M,
 such that: (a) P(p) is an (n - m)-plane through p independent of the tangent plane

 to M at p. (b) If R(p) is that part of P(p) within t(p) of p, then the R(p) fill out
 a neighborhood R(M) of M in a (1-1) way. (c) If H(q) = p for q in R(p), then
 H is of class C" in R(M). Moreover, if M is analytic, so are P(p) and H(p).

 35 See also Lemma 27.
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 We have just considered the analytic case. If n = m, the lemma is trivial
 (then H is the identity); suppose n > m. Let P'(p) be the normal plane to M
 at p; there is a corresponding point D'(p) in M(n, n - m). D' is of class Co1
 and is thus continuous in M. Extended D' so as to be continuous throughout a
 neighborhood R of M in En. (Almost any method in use will do this; or we may
 use Lemma 11.) If R is small enough, D'(R) is in R(M(n, n - m)); then
 D" = H'D' is a continuous map of R into M(n, n -m), and D" = D' in M.
 (H' is defined in R(M(n, n - m)) as in the last lemma.) By Lemma 22 we may
 approximate D" in R by an analytic function D so closely that if P(p) is the
 plane through p in M parallel to the plane defined by D(p), then P(p) is inde-
 pendent of the tangent plane to M at p. P(p), considered in M alone, is of

 class Cr, by Lemma 3. The lemma now follows from Lemma 21.

 V. ANALYTIC MANIFOLDS

 26. The lemma and method of proof. Our object in this part is to prove
 LEMMA 24. Let M be a Cr-m-manifold in En (r > 1 finite or infinite). Then

 there is a Cr-homeomorphic analytic manifold M* in En.
 This, together with Lemma 19, completes the proof of Theorem I. Actually,

 M*, as constructed, will approximate to M to any desired degree, but it is easier
 to find an approximating analytic manifold after a homeomorphic analytic one
 is found. (See Lemma 22.) We may suppose that n > m; if n = m, then M is
 analytic.

 To prove the lemma, we first construct an analytic (n - 1)-manifold S "sur-
 rounding" M, and then find in an analytic fashion a "center" M* of S. The
 proof is most easily visualized for n = 3, m = 1. The construction of S is

 straightforward. We determine a function positive and analytic near M and
 vanishing in M, subtract a very small positive analytic function, and let S be
 the set of points where the resulting function vanishes. The inside of S is filled
 up by (n - m)-planes P(p) approximately normal to M (see Lemma 23). The
 resulting function D(P) with values in M(n, n - m) (see ?24) is of class Cr inside
 of S. We approximate this function by an analytic function, and thus deter-
 mine an analytic family of planes P*(p). (These planes, unlike the P(p), inter-
 sect each other inside S.) A point p inside S is in M* if and only if p is at the
 center of mass of that connected part of P*(p) inside S which contains p.

 The following lemma is necessary.36

 LEmG 25. Given an open set R in En, a positive continuous function rq(p) in R,
 and r > 0 there is an analytic function w(p) in R such that

 (26.1) W(p) > 0, I Dkw(p) I < X(p) in R (o ? r).
 Let C1, C2, * be a denumerable set of overlapping cubes covering R, and let

 36 This lemma, except for analyticity, is practically equivalent to a theorem of Ostrowski,
 Bull. des Sciences Math., 1934, pp. 64-72. See also our lemma 10. The theorem was
 known to the author in 1933. Note that we may make r = Xo in a manner similar to that in
 AE Lemma 6.
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 i0(x) be a function of class C' in R which is > 0 within C, and = 0 in R -C
 (see for instance AE, ?9). If the a, are small enough and positive, then

 +(x) = Za;io(x) is a positive function of class C' in R satisfying the inequality
 (26.1). If w(p) is an analytic function approximating (O, R, r, P) for small
 enough P(p) > 0 (see Lemma 9), then (26.1) holds.

 27. The manifold S and spheres S*(p, P). In this section we shall find S,
 and shall show that certain (n - m)-planes P through points p near M intersect
 S in (n - m - l)-spheres S*(p, P), which are analytic and vary analytically
 with p and P. In the next section we shall find the analytic manifold M*.

 Define the planes P(p) and the projection H(p) in the neighborhood R(m) as

 in Lemma 23. We extend the definitions of P(p) and t(p) through R(M) by
 setting

 P(p) = P(H(p)), {(p) = t(H(p)).

 Define the function 4(p) in R(M) by

 (27.1) c1(p) = p - H(p) 11

 As H(p) is of class Cr in R(M), 4t(p) is of class Cr in R(M) - M. By Lemmas 9
 and 10 there is a function V'(p) continuous in R(M) and analytic in R(M) - M
 such that V' = 0 in M, and it and its gradient satisfy

 (27.2) 1 V'(p) - CF(p) I < I t(p), 11 VV'(p) - VF(p) 11 < i
 in R(M) - M. By Lemma 25, there is a positive analytic function w(p) in
 R(M) such that

 (27.3) 1 c(p) I < 3 t(p), II Vw(p) 11 < i.
 Set

 (27.4) V*(p) = '(P) -(P);

 then 4*(p) is continuous in R(M) and is analytic in R(M) - M, and 4* < 0
 in M. S is determined by the vanishing of 4*.

 To prove the existence of and properties of S, we shall introduce some auxiliary
 functions. Let po be any point of M. Sonie neighborhood U of po in M is
 defined by equations (3.1). Given any subset K of M, let R(K) be the set of all
 points p of R(M) such that H(p) is in K. P(p) is independent of T (see Lemma
 23); hence there is a neighborhood U' of po in M, U' in U, and a 3 > 0, such that
 if P is an (n - m)-plane through a point p of R(U') and

 (27.5) 1I P - P(p) 1 < 6

 then P is independent of T and hence intersects T in a unique point H*(P).
 (T is the tangent plane to AM at po.) H* is analytic. Set

 (27.6) H'(p) = H*(P(p)), u(p) = p - H(P) u'(p) = p - H'(P)
 jp - H(p)I lP - H'(p)j
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 We may choose U' and a so small that for any p in R(U') and any P through p
 satisfying (27.5),

 (27.7) 4i*(H*(P)) < 0, 1 I H'(p) - H(p) 11 < t(p)/6,

 and

 (27.8) if ?*(p) _ 0, then II u'(p) - u(p) 11 < 4.

 For any P satisfying (27.5), let Tp be the transformation TH*(p),p of ?19,
 using the fixed point po and plane P(po), and let S(P) be the unit (n- m - 1)-
 sphere in P about H*(P). Given any point q of So = S(P(po)), there is a corre-

 sponding point

 (27.9) q' = TP(q) = A(P, q) in S(P);

 MA is analytic. To each P satisfying (27.5), each q in So, and any a > 0, let
 correspond points p', q', q by

 (27.10) q = p' + a(q' - p') = H*(P) + a[M(P, q)-H*(P)I.

 For such values of a > 0 which make q lie in R(U) - U we define the analytic
 function

 (27.11) a(P, q, a) = V(q).

 We shall show next that for some y, 0 < y < 6, if P is a plane through a point

 p of R(U'), iP - P(p) II < y, and q is in So, then there is unique number

 (27.12) a = p(P, q) > 0

 which, put in (27.10) and (27.11), makes a vanish (with q in R(U)); moreover,

 p is analytic. Set

 (27.13) c'(p, 4, a) = a(P(p), q, a);

 it is sufficient to show that, using P(p), there is a unique point q of the line seg-
 ment p'q' in R(U') such that ?*(q) = 0, and a/Oa > 0 at this point.

 By definition of R(M), R(U') contains all points of P(p) within t(p) of H(p).
 As p' = H'(p) for P = P(p), (27.7) gives

 (27.14) I p' - H(p) II < t(p)/6.

 Hence, if q" is the point q for which a = 54(p)/6 (keeping q fixed), all of p'q"
 lies in R(U'). Moreover, as H(q") = H(p), (27.1) through (27.4) with (27.14)
 give

 (27.15) 4V*(q") > 4i(q") - t t(p) > 0.

 By (27.7), *(p') < 0;_hence there is a point of p'q" for which * = 0.

 Now take any q on p'q" such that 4*(q) > 0, keeping P = P(p). As

 Ilq' - p'll = 1, p' =H'(q'),
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 and u'(q') = u'(q), differentiating (27.13) and using (27.10) gives

 (27.16) = V4*(q) -(q' - p') |PP(p) = V4*(q) -u'(q).

 The projection of V1 into any plane P equals the gradient of 4) as a function
 defined in P; hence, by (27.1) and (27.6),

 Proj P(p) V4I(q) = u(q),

 and if u' is any vector parallel to P(p), then

 P (q) - u' = u(q) . u'.

 Hence, by (27.2) through (27.4) and (27.8),

 |a|= [V+*(q) - V+D(q)] - u'(q) + u(q) - [u'(q) - u(q)] + 1
 (27.17) cl0

 This shows that 4* vanishes at a unique point q of p'q", and the existence and

 analyticity of p is proved.

 Take any P satisfying (27.5) with a replaced by y; putting (27.12) in (27.10)

 gives q as a function of Q. As I ranges over So, q ranges over an analytic
 (n-m-l)-sphere S*(P); this sphere varies analytically with P. It is the inter-
 section of P and S. A finite or denumerable number of neighborhoods U' cover
 M; for each there is a corresponding y > 0. Let y(p) be a positive continuous
 function in R(M) such that y(p) -y(H(p)), and if p is in any U', then y(p) is
 less than the corresponding y. Now if p is any point of R(M), P contains p, and

 (27.18) 1i P - P(P) 1 < y(P),

 then R(p) intersects S in an analytic sphere S*(p, P) which varies analytically
 with p and P.

 28. The analytic manifold M*. For any p in R(M) and any plane P
 through p satisfying (27.18), let Q*(p, P) be that part of P inside S*(p, P). Let

 g(p, P) be the center of mass of Q*(p, P). We shall show that if P*(p) is any
 analytic function in R(M) approximating to P(p) closely enough in R(M), then
 the set M* of points in R(M) satisfying

 (28.1) g(p, P*(p)) = p

 is an analytic manifold in R(M), Cr-homeomorphic with M.

 We shall first show that g(p, P) is analytic. Consider a point po of M and a
 neighborhood U of po in M etc. as before. If V(p, P) is the (n - m)-volume of

 Q*(p, P) and I dp I denotes the volume element, then for p in R(U') and any P
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 through p within -y(p) of P(p),37

 (28.2) g(P, P) = V, q I dq 1.

 We shall express this integral in a different form. The points of Q*(p, P) are
 given by the pairs

 (q, a); qin SO, 0 _ a-< p(P, q

 Letting Wo be the (n - m - 1)-volume of So and noting that Tp preserves volume,
 (28.2) may be written

 (28.3) g(p, P) = ? f rn-rn fo an-m-l I p' + a(q' - p') } dal I do I, W 0 JSLe-nJ

 where p = p(P, 4). This expression is easily seen to be analytic.
 Let M' be the set of points in R(M) satisfying g(p, P(p)) = p. Each

 Q*(p, P(p)) has exactly one point in M', namely, its center of mass. Taking

 Po etc. again, set

 (28.4) T(pI P) = Tp1(p) - T-' (g(p, f)), Tr(p) = (p, P(p)).

 T(p, P) is a point (or vector) of E.-m = P(po). r(p) 0 if and only if p is in
 M'. We shall show that if P*(p) is an analytic function approximating P(p)
 closely enough in R(U') through the first order, and

 (28.5) l*(p) = 'T(p, P*(p)),

 then the vanishing of T*(p) determines an analytic manifold through Po. To
 this end, let ri(p), * * *, m(p) and r* (p), * , ,(p) be the components of
 r(p) and r*(p) in the directions of fixed mutually orthogonal vectors in P(po);
 then r(p) = 0 if and only if the r,(p) = 0, and similarly for r*(p). The Ti(p)
 vanish at a unique point of each Q*(pi, P(pi)), and the VTi(p) are independent
 as functions in P(p1); hence the same is true of the T*(p) and the VT*(p), if the
 approximation of P*(p) is close enough. Therefore r*(p) = 0 defines an
 analytic manifold M* in R(U'), which cuts each Q*(p, P(p)) in a unique point
 pI , and such that the tangent plane to M* at p' is independent of P(pi).

 If P*(p) approximates to P(p) closely enough in R(M), then the above will
 hold near each point of M, and the vanishing of T*(p) will determine an analytic
 manifold M* cutting each Q*(p, P(p)) as noted. As is seen from (28.4) and
 (28.5), the points of M* satisfy (28.1). The map p' = H(p) of M* into M is
 (1-1) and of class Cr. As the tangent plane to M* at p is independent of P(p),
 the inverse is also of class Cr (see Lemma 21); hence the map is a Cr-homeomor-
 phism and the proof is complete.

 37 Compare footnote1.
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 VI. PROOF OF THEOREM 2

 We shall first prove the existence of analytic linear functionals as defined in
 ?7; we will then be able to prove Theorem 2 and the properties in ?9. Finally,
 we shall prove the unproved statement in Theorem 6.

 29. Real-valued analytic linear functionals. We shall generalize AE
 Lemma 7 as follows:

 LEMMA 26. Let R be an open set in E, let A(p, q) and (p) be as in ?7 in R,
 and let r and s be finite, s < r. Then there is an analytic linear (R, E1, r, A, <)-
 functional S; moreover, Q is defined for any polynomial P of degree < s, and
 VP = P.

 Let R1, R2, *. be bounded open subsets of R such that Ri is in Rj+1 and
 R1 + R2 + * = R, and let Ei be the minimum of P(x) for x in Rj+l. Let
 A$ (p) be the maximum of A(x, x') for points x and x' of R, whose distance apart
 is p; these functions are easily seen to satisfy the requirements in AE Lemma 7.
 Let a be a fixed point of R. Given any function f of class Cr in R, set

 (29.1) Q*f (X) = E Dkf (a) (x -a)

 This is the polynomial of degree < s approximating to f most closely at a. (See
 AE for the notation.) V* is a linear functional, and for any polynomial P of
 degree 5 8, ?*P = P. As seen in AE, footnote on p. 78, for each i there is a
 number Ki such that if f satisfies (7. 1) and hence

 (29.2) 1 Dkf(x') - Dkf(x) |< A (1| x' - x 11) in Xi (Ok ? s),

 then

 (29.3) | Dkf(a) < Ki (O < a k - s).

 Let A (p) be the maximum in Ri of

 | DkP(x') - DkP(x) for lix' - xl = p, ork < r,

 for polynomials P(x) of degree < s whose derivatives at a are ? Ki, and set
 Aj(p)- A$ (p) + At (p). Now if f is any function of class Cr in R satisfying
 (29.2), then f - ?*f satisfies the same equation with A' replaced by Ai.

 Let T' be the linear functional given by AE Lemma 7 with M = 0, and set

 (29.4) f= ?T'(f - *f) + ?*f.

 2 is defined for all f = f' + P, where f' satisfies (7.1) and hence (29.2), and P
 is a polynomial of degree ? s; for

 f - ?*f = f - Tf,
 and this function satisfies (29.2) with Ai, and is 0 at a. As both ?* and ?' are
 linear, 2 is linear. As 2' is analytic and V*f is a polynomial, V is analytic.
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 Obviously ?P = P for polynomials P of degree < s. Finally, ?f approximates
 (f, R, r, ?), and the proof is complete.

 30. Analytic linear functionals. We replace R and E1 in the last lemma by

 M and Ev, as follows.
 LEMMA 27. Let M be an analytic m-manifold in E, let A(p, q) and ?(p) be as

 in ?7, and let r be finite. Then there is an analytic linear (M, Er, r, A, 0)-
 functional.Am

 It is sufficient to prove this for real-valued functions; the general case then

 follows on applying it to each coordinate separately. Given any f in M, define
 f' in R(M) by f'(p) = f(H(p)). We shall show that the functional of the last

 lemma, which we now call ,', may be applied to f'; then ?f is f'f' considered in
 M alone.

 Supposef is of class Cr in M; then if f'(p') = f(H(p')), f' is of class Cr in R(M)
 (see the proof of Lemma 4); we let P(p) be the normal plane to M at p. Differ-
 entiating f'(p') = f'(H(p')) shows that Dkf'(p') is a polynomial of degree < ak
 in the derivatives of order < ok of f' at p = H(p') and of H(p') at p'. Say

 p = i(x). Then Dkf'(p) is determined by the Dtfi(x) = D~f(Oj(x)) and the
 DGi(x). (The latter determine P(p).) Hence

 (30.1) Dkf'(P') = ?4[Dfi(x), DOi(x), DuH(p')] (am, ot, ou ?< or k),

 for Ck ? r. (k, s, t and u have respectively a, m, m and v components.) As
 the Oe are admissible, there are but a finite number of such expressions for

 Dkj'(p'). Let a be a fixed point of M. Given anyf in M or R(M), set J(p) =
 f(p) - f(a). For any compact subset A of M there is a number K such that if
 f satisfies (7.1) in M, then

 (30.2) i Dkj(p) I < Kin A (ok < r),

 (see AE, footnote on p. 78). Hence, by (30.1), for any two points p' and q'

 of R(M) there is a number A such that for any such f, (I)' = 1' and hence f'
 satisfies

 (30.3) l Dkf '(q') - Dkf'(P') I-< A (oak < r).

 Let A*(p', q') be the minimum of such numbers A. There are several (but a
 finite number of) choices for Dkf(p) in (7.1); we take A*(p', q') large enough for
 all these.

 We show now that if p' -. ph and qh -. p', then A*(p', qh) -O 0. Suppose
 not. Then there are a k (ak < r), sequences ph} and qh } approaching p', and
 functions fh in M satisfying (7.1), such that

 (30.4) D fh(qh) - Dkfa(pa)I > a >0.
 We may suppose that Po = H(p), Ph = H(p'), and qh = H(qh) are in some Ui;
 (30.1) then applies. Replace fhf' byJh, Jh as before. Then the Dfhi(xh) are

 38 If M = R, we may have VP = P as in the last lemma; P is a polynomial with values
 in E, if each of its coordinates is.
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 bounded (xh = 0Ol(pa)), and we may suppose Dfhi(xh) -- Di. As yh = Ol'(q)h)
 lin Xh, (7a.1) shows that D8fhi(yh) - Di,8 also. Therefore all the variables in (30.1)
 approach the same limit when p is replaced by Ph as when it is replaced by qh.

 As 4) is continuous, DkJh (Ph) and Dkh (qh) approach the same limit; but this con-
 tradicts (30.4). It is now easy to construct a continuous function A'(p', q') for
 p'. q' in R(M) of the required nature, such that A'(p', q') _ A*(p', q').39 Now
 if f is any function of class Cr in M satisfying (7.1), and f'(p) = f'(H(p)) in
 R(M), then f' satisfies

 (30.5) | Dkf'(q) - Dkf'(P) | 5 A'(p, q) (Ok 5 r).
 Applying Lemma 26 to ' with s = 0 gives an analytic function T'f' approx-

 imating (f', R(M), r, D'); then Vf = V'f' in M approximates (f, M, r, ?), if D'
 is sufficiently small.

 31. Proof of Theorem 2 with (b) and (c) omitted. The proof of Theorem 2
 with just (a) and (e') is given by Lemma 12. We shall prove it with (a), (d),
 (e) and (f); the proof will be complete when we have proved (A) and (B) of ?9.

 WVe first apply Lemma 12 to find a function F' of class C' which approximates

 (f, M, r, q) and has the (f, r, i)-properties %1, 02, * v v.. If n > 2m, we include in
 these properties those of ?21, to make F' regular. This is permissible, as the
 finiteness condition of (e) of the theorem is satisfied for these properties. Only a

 slight change in the proof of Lemma 18 is necessary because of E,, being replaced
 by N. Let W* and v*' be the neighborhoods and functions of ?7(b) and (c)
 corresponding to Ui and F'. Because of the finiteness condition, there is a pos-
 itive continuous function t in M such that if F approximates (F', M, r, A), then

 it approximates (f, M, r, -1), and for each i, it approximates (F', W*, r, tq*); F
 then has the properties l,% * ... It remains to show that the analytic
 function F may be chosen so as to approximate (F', M, r, ?) and have the

 properties %', ', *.40
 Replace the A(p, q) of the theorem if necessary by a larger A so that (7.1) is

 satisfied with f' and A replaced by F' and jA. Let e be the analytic linear
 (M, E,, r, A, J)-functional given by Lemma 27; we suppose r is so small that
 if F" approximates (F', M, r, I), then F"(M) is in R(N). For some ?', if F"
 satisfies (7.1) and approximates (F', M, r, c'), then VF" approximates (F', M, r, A).
 We must now choose F" so that it approximates (F', M, r, A') and satisfies
 (7.1), and so that F = VF" has the properties U2, * ...

 39 Let p(p) be the smaller of 1 and half the distance from p to E, - R(M), and let p(p, q)
 be the smaller of p(p), p(q), 11 q - p 11 . Take p and q in R(M), let x(P, q) be the upper
 bound of A*(p', q') for 11 p' - p 1 S a, q'- q 11 a, and set

 1 p(p, q)
 A'(P,q) 0 q - p11 + p(p, q) 1 b5.(p, q) da.

 40 If n ! 2m + 1 and f is proper, we may find an F which is analytic, regular, (1-1) and
 proper, and has the properties 91, Q2, * * , by including in these properties those of ??20
 and 21, and then applying Lemma 22 with its 7(p) sufficiently small. (See the end of ?6.)
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 Let Wi, W', Gi be the open sets and functions corresponding to O' (i = 1,
 2, * ). We shall choose sets of numbers ai so that if

 fo = F', fA = fh-1 + Aa;G;, F" = lim fi,

 then F" is the required function. As the W' are bounded, if f' is a function
 satisfying an inequality of the nature of (7.1), and a is small enough, then

 f' + E acG approximates to f' as closely as we please and satisfies (7.1) with

 a new A as near the old as we wish. Hence we may choose numbers al, a2,

 such that if a, 2, . .. is any sequence with I a' I < ai, then F", using these ai,
 satisfies (7.1) and approximates (F', M, r, D'). The proof now runs exactly
 like that of Lemma 12, except that HMf, (j ? i) and HUF" will have the property
 . The existence of ai at each step such that HSfi has the property Qi is given
 by (d') of ?7.

 32. Certain maps of M into N like translations near a point. Let f be a

 Cr-map of M into N(r 2 0), take po in M, and set qo = f(po). Given any 6 > 0,
 we shall find neighborhoods W', W of po in M such that 'W' is in W and W is
 within 6 of po (measuring in E,), and we shall find Cr-maps GI, *., G. of M
 into E, such that Gi(p) = 0 for p in M - W, and such that

 (32.1) f.(p) = HV[f(p) + A, aiGi(p)] = H[?f(p) + E a,2G,(p)]
 for I at I < 1 is an n-parameter family of Cr-maps in W'. 2 is any (M, E,, r, A, 0-
 functional for A large enough and r small enough near po.

 Let 0 be a Crmnap of Qm into a neighborhood W of po; we will determine the
 size of W later. Set W' = O(Q'). Let A(p) be of class Cr in M, = 1 in Wt.
 and = 0 in M - W (see ?20). Let P be the tangent plane to N at qo, let

 yly, . , y, be rectangular axes in E, such that P is the (yi, * , yn)-plane, and
 let vi be the unit vector in the direction of yi. Set

 (32.2) Gi(p) = X(p)vi in M (i=1,* ,n).

 In using Lemma 23, let P(q) be the normal plane to q in N. Then obviously

 (32.3) aH(qO) = vi (j = 1, * *, n), and = 0 n + 1,
 ayi

 Putting (32.2) in (32.1) and differentiating gives therefore

 (32.4) afa(PO) = E [VGi(po)] vi = Proj KG1(po),
 aai > l

 where Proj v is the projection of a vector v in E, into P. If we leave out 2 in

 (32.4), we may choose W so that the resulting vectors afl/aai are independent
 in W'. We then choose A and r so that e is defined for the terms in (32.1)

 with j ax I < 1, and so that the vectors afl/aai are independent in W'; then f.(p)
 is an n-parameter family in W'.
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 33. Certain maps of M into N like rotations plus translations near a point.
 Let f be a Cr-map (r > 1) of M into N. Take po, qo, etc. as before; we shall
 choose W, W', and Cr-maps Gi,. Let E = E(m+l)v be a Euclidean space with
 coordinates

 zq (i = 1, *.. , m + 1;j = 1, *. ,n).

 The subscripts i, j will, in this section, always range over the values shown, unless
 otherwise stated. Let Gij be the unit vector in the direction of Zij. Let 0 map
 Qm into W. We may consider (xi, *.-, xm) (in Qm) as coordinates in W, and
 write

 x for p = @(x), ag(p) for ag((x)) in W.
 ax. axi zb9l(p)

 Corresponding to any Cr-map g of W into E,, define the Cr-l-map p of W into
 E by

 (33.1) 0(p) = E ag(p) Vij + Egi(p)Vi;
 j;i;m axti

 gi is the jth component of g in E,. (Note that j runs to n only.) Define

 (33.2) G$,(p) = X(p)xiv, (i _ m), G' 1,j(p) = X(p)v1.
 For these G, (33.1) gives in W'

 (33.3) ol(p) = Vi, + xiipm+li (i < m) 2 41,j(p) = PVm+ii

 These vectors are obviously independent for p in WI.

 The family of maps fg(p) will be defined by

 (33.4) fo(p) = H2[f(p) + X qG'j(p)].
 i ,ij

 As before, we find

 a fo(po) = Proj WG$j(po).

 As Proj G'(p) = G'j(p), the vectors Proj 2Gj(po) are linearly independent for
 small enough I. It is easily seen that the operations of passing from g to g and
 of differentiating are permutable; hence, as before, we may take W and W', A,

 and r so that the vectors af0(p)/a&jj are linearly independent in W'. Hence fo
 is an (m + 1)n-parameter family of Cl"?Th-maps of W' into E.

 34. Proof of (B) and (C), ?9. In the hypothesis of (B), n _ 2m + 1. As
 regularity is taken care of by (e) of the theorem, we may first replace the given
 map by a regular Cr-map; let the new map be f. As f is locally (1-1), we may
 find a positive continuous function 6(p) in M such that f(p) is (1-1) for p within
 b(po) of po, for any po. For each po in M there is a neighborhood W as in ?32;
 moreover, these may be taken arbitrarily small. Hence we may choose such
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 neighborhoods WI, W2, * such that W1 + W2 + * covers M, any compact
 subset of M has points in common with but a finite number of the W., and if p
 is in W' + Wt, W,. Wt 5$ 0, then WV + W, lies within a(p) of p. Next define
 the maps G;, * * , GJ (s = 1, 2, * ) as in ?32. We may suppose that the

 v of the theorem is so small that any f' approximating (f, M, 1, nq) is (1-1) in
 all W. + Wt with W. .W $ 0.

 Arrange the pairs of numbers (s, t) for which W. Wt = 0 in a sequence. For
 any k, let (s, t) be the kth member of the sequence, and let 9k be the property
 of maps f' which holds if f'(W') does not intersect f'(W). The property of '
 of being (1-1) is the sum of these properties. We shall show that ik is an

 [f, r, tA, s,-property. (a), (b) and (c) of ?7 hold; we shall prove (d'), with
 W, W', Gi replaced by W8 + Wt, W' + W' I G. Given f'and ?, set

 (34.1) f H(p) = H [f'()+ G(p)

 Applying ?32, we now see thatf'. is an n-parameter family of Cr-maps (r _ 1)
 in W. Asf'(W) is of zero (m + 1)-extent in N, W is of finite r-extent in
 M, (m + 1) + m < n, andf'. = f' in Wt, there is an arbitrarily small as such
 that f..(W) f.f.(WI) = 0 (Lemma 16), and (d') is proved.

 To prove (C), ?9 we proceed as above. Let K = K1 + K2 + be the
 subset of N, each K. being of zero (n - m)-extent. Arrange the pairs (s, t) in
 a sequence, and let Qk hold if f'(W>) does not intersect Kj. The proof runs now
 exactly as above.

 35. Proof of (A) and (D), ?9. As before, we may suppose that the given
 map is regular. If r = 0 or 1, we may at the beginning replace the map f by a
 C2-map (Lemma 22). Hence we suppose that r ? 2. Define b(p) and the W.,
 W' exactly as in ?34, and define the G j as in ?33. Again, let k corre-
 spond to (s, t), and let 2k be the property of maps f' which holds if f' has at
 most regular singularities in W/ + W/ ; complete regularity is the sum of these
 properties. We must prove (d') for IL-,

 Before proceeding, consider (D). Let VI, V2,* be admissible neighbor-
 hoods in N', and let U* hold if Wf intersects Vt only in the proscribed manner.
 If n' - m, this is the same as stating that f'(TV) + ft has at most regular
 singularities. If we show how to transform W' with reference to It, the same
 process transforms W" with reference to W'; hence we need merely prove (d')
 for (D).

 Given f' and V, set

 (35.1) f- (p) = HV [fp + G (P)
 To each f' corresponds an (m + 1)n-parameter family of maps Jle of W into
 E, by ?33. We shall show that if f(W) avoids a certain set S, then f$J(W)
 intersects Vt in the proper manner. S will be the sum of a denumerable num-
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 ber of sets of finite (m + 1)(n - l)-extent. As the number of parameters in

 f;a is (m + 1)n and the dimension of W. is m, we may apply Lemma 16 and
 make W' avoid any of these. Applying the process in the proof of Lemma 12,
 we may make W' avoid S, and thus complete the proof.

 We shall leave out the indices s, t in what follows. The vector O'fp(p)/aOx

 in P (see ?32) with components afp i (p)/axi (j = 1, , n), by definition, (see
 ?33) is the projection of the vector afp(p)/axI in E, into P. As fi is regular
 (for small ,), the latter vectors (i = 1, *--, m) are independent. As the
 W' may be taken arbitrarily small, we may suppose that the aO'p(p)/axi are
 independent in W'. As N' may be cut into arbitrarily small pieces, we may sup-
 pose that P projects in a (1-1) regular manner into P (if 'P intersects fp (W') for
 any A). As f (W') and v are both in N, and the projection of N into P is
 regular near qo, they intersect in an allowable manner in N if and only if their
 projections do in P. Let PV, Pq etc. denote the projections of V, q, etc. into P.

 Let p be a point of W', and q, a point of 7; we shall consider under what
 conditions Pfpl(p) = Pq, the intersection being of an unallowable character.
 This is so if the vectors a'f,(p)/axi determine a plane Pm in P which has a
 plane Ph of dimension h > k = m + n' - n in common with the plane Pn
 tangent to PV at q' = Pq. Hence the set S in E which }4 (W') must avoid is
 the set of points z with the following property. For some q in 'V, some h > k
 and plane Ph in the tangent plane Pnt to PV at q' = Pq, and some plane Pm
 which contains q' and has exactly Ph in common with Pn,, the last n coordi-
 nates of z determine (in P) the point q' and the first mn coordinates determine
 the direction of Pm. Let zo be that point of S we have just described; we shall
 consider that part of Sh near zo, Si being those points of S with this correspond-
 ing h.

 A point z of Si is determined by the set

 a'f (P)
 (q, Ph, P., v), where v=(V, = * , vm), Vi - a,=

 q, Ph, P., v being chosen in the order given. (The last n coordinates of z are
 then determined.) q runs over a set of dimension n'. Now keep q fixed, and
 vary Ph. Ph lies in Pn, and contains q'; the dimension of such a set of planes is
 h(n' - h). Next vary Pm. It is determined by naming a plane Pmh through
 q' in the plane Pn-h through q' orthogonal to Ph; hence the set of planes Pm is
 of dimension (m - h) (n - m). Finally, vary the vectors vi. Each one may
 vary freely as long as it remains in Pm; hence the dimension of this set of posi-
 tions of the set of vectors is m2. Consequently, if we set h = k + h' and note
 that n' - h = n - m - h', the above set runs over a part of a Euclidean
 space of dimension

 di = n' + h(n' - h) + (m - h)(n -) + m2

 = n' - hh' + (h + m - h)(n - ) + M2

 = mn + n' - hh' < mn + n' - h in + n - m-1.
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 The map of this set into the corresponding part of Sh is of class C1, and hence
 the (m + 1) (n - 1)-extent of the latter is finite, as required.

 36. Completion of the proof of Theorem 6. Let 01, 02, ... be a completely

 admissible set of maps in that part M* of M' for which 0 < t < 1. We take

 them so that if Us* U, F 0, then f is (1-1) in UA + Us. In applying Theorem
 2 in the proof of Theorem 6, let us introduce (f, r, 71)-properties as follows.
 Arrange the pairs of numbers (i, j) in a sequence. Let the kth member be (i, j).
 Then Ok holds for f(p X t) = Ot(p) if the following is true. If 0 < t < 1,
 p X tisin Us, and q X tis in U, thenf(p X t) f(q X t). We shallshow

 that each property is an (f, r, 71)-property (for small enough q). It will follow
 that each Ot(O < t < 1) may be made (1-1), irrespective of Mo and M1. The new
 map of M' into N is of class Cr, by Lemma 10.

 We may suppose the U1 are so small that if Ui [UJ 0 0, then Ui + UT is in
 some Vh in N, and so that vectors v,, -, Vn-m may be chosen in E. with the
 following property. Set f (p X t) = x-1f(p X t), and let U (t) be the set of
 points p X t of U. whose second coordinate is t. If P and P' are the m- and

 (n - m)-planes through the origin in E, the first being orthogonal to and the
 second parallel to vi, . **, v then any fJ (U,(t)) projects into a subset of P
 so that both the projection and its inverse are of class Ct. The points

 n-rn

 q p + E an, p in f(i(t)),

 fill out an open set Rt in En and if solving this (see ?3) gives

 p = H(q, t), a, = 4,.(q, t),

 then H and the 4i are of class Cr. To any Cr-map g of Ui into Q. let Q be the
 map of Ui into En-m whose 8th component is

 p.(p X t) = I)8 (g(p X t), t).

 Define the family of maps

 ge(p X t) = f,(p X t) + E !naV, in U,; 8=1

 then the As have the property that

 E8Os g(p x t) = V8.

 Hence the $ form an (n - m)-parameter family in E,-.. As Ui is of dimen-

 sion m + 1 < n - m, there is an arbitrarily small # such that M(p X t) 0 0
 in Ui (see Lemmas 14-16). For this (3, no go(U'(t)) intersects any f (U (t))
 (same t), for no 48(gp(p X t), t) = 0. Consequently, using X(p) etc. as in ?20,
 we prove (d) of ?7. The other properties are obvious, and the statement is
 proved.

 HARVARD UNIVERSITY.
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