- 1. (a) Mostrare che S^n è una sottovarietà di \mathbf{R}^{n+1} .
 - (b) Mostrare che la mappa $\iota: S^n \to S^{n+1}$, definita da $\iota(x) = (x,0)$, è un embedding.
- 2. Sia $f: M \to N$ un'applicazione differenziabile. Mostrare che $\iota: M \to M \times N$, data da $\iota(m) = (m, f(m))$, è un embedding.
- 3. Sia $f: \mathbf{RP}^2 \to \mathbf{R}^3$ definita da f([x:y:z]) = (yz, xz, xy), dove [x:y:z] è la classe di equivalenza di due punti in S^3 rispetto alla mappa antipodale. Mostrare che f è un'immersione tranne che in 6 punti.
- 4. Sia $f: \mathbf{RP}^2 \to \mathbf{R}^4$ definita da $f([x:y:z]) = (x^2 y^2, xy, xz, yz)$, dove [x:y:z] è la classe di equivalenza di due punti in S^3 rispetto alla mappa antipodale. Mostrare che f è un embedding di \mathbf{RP}^2 in \mathbf{R}^4 .
- 5. Sia $f: \mathbf{RP}^2 \to \mathbf{R}^6$ definita da $f([x:y:z]) = (x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}xz, \sqrt{2}yz)$, dove [x:y:z] è la classe di equivalenza di due punti in S^3 rispetto alla mappa antipodale. Mostrare che f è un embedding di \mathbf{RP}^2 in \mathbf{R}^6 con immagine in $S^5(1)$.
- 6. Sia M_c il sottoinsieme di \mathbf{R}^2 definito da

$$M_c = \{(x, y) \in \mathbf{R}^2 \mid y^2 = x(x - 1)(x - c)\}, \qquad c \in \mathbf{R}$$

- (a) Per quali valori di c l'insieme M_c è una sottovarietà di \mathbf{R}^2 ?
- (b) Per quali valori di c l'insieme M_c è l'immagine di un'immersione $F: \mathbf{R} \to \mathbf{R}^2$, pur non essendo una sottovarietà di \mathbf{R}^2 ?
- 7. Sia $f: SL(2, \mathbf{R}) \to \mathbf{R}$, data da f(A) = tr(A).
 - (a) Determinare i valori regolari di f (ossia gli $a \in \mathbf{R}$ tali che df_x è suriettivo, per ogni $x \in f^{-1}(a)$).
- 8. Sia M una varietà differenziabile compatta. Mostrare che M non ammette sommersioni in \mathbb{R}^n , con n > 0.