- 1. Sia $F: M \to N$ una mappa liscia fra varietà differenziabili. Verificare che il pull-back $F^*\omega$ di una forma differenziale $\omega \in \Omega(N)$ è liscia. (cf. Lee, Prop.12.19 e Exerc.12.21, pag.317-318).
- 2. Siano ω la forma su \mathbf{R}^3 data da $\omega = z dx \wedge dy + xy dx \wedge dz$ e la funzione $f: \mathbf{R}^2 \to \mathbf{R}^3$ data da $f(u,v) = (u^2,u,uv)$. Calcolando separatamente i termini delle due uguaglianze, verificare che
 - (a) $d(f^*(\omega)) = f^*(d\omega);$
 - (b) $d(f\omega) = df \wedge \omega + fd\omega$, dove $f: \mathbf{R}^3 \to \mathbf{R}$ è data da f(x, y, z) = xy.
- 3. Sia M una varietà differenziabile. Siano A un chiuso, $U \subset M$ un aperto contenente A ed ω una forma differenziale su A. Mostrare che esiste una forma differenziale $\tilde{\omega}$ su M, con supporto in U e che coincide con ω su A (applicazione delle partizioni dell'unità).
- 4. (a) Sia ω la 1-forma su R² data da ω = -ydx+xdy e sia ι: S¹ → R², θ → (cos θ, sin θ), con θ ∈ [0, 2π], l'iclusione. Mostrare che ι*_{S¹}ω, il pull-back di ω sulla circonferenza S¹, è una forma di volume su S¹ (ossia non si annulla mai). Calcolare il "volume" di S¹.
 (b) Sia ω la 2-forma su R³ data da ω = xdy ∧ dz ydx ∧ dz + zdx ∧ dy. Sia ι: S² → R³, (θ, φ) → (sin φ cos θ, sin φ sin θ, cos φ), con φ ∈ [0, π], θ ∈ [0, 2π], l'inclusione. Verificare che ι*_{S²}ω, il pull-back di ω sulla sfera unitaria S² (dove le coordinate sferiche sono definite), è una forma di volume su S² (ossia non si annulla mai). Calcolare il "volume" di S².
- 5. Sia data la 3-forma

 $\omega = x_1 dx_2 \wedge dx_3 \wedge dx_4 - x_2 dx_1 \wedge dx_3 \wedge dx_4 + x_3 dx_1 \wedge dx_2 \wedge dx_4 - x_4 dx_1 \wedge dx_2 \wedge dx_3$

in $\mathbb{R}^4 \setminus \{0\}$. Sia $A: \mathbb{R}^4 \setminus \{0\} \to \mathbb{R}^4 \setminus \{0\}$ la mappa antipodale. Verificare che $A^*\omega = \omega$.