1. Siano M una varietà differenziabile, $p \in M$ un punto, e $\gamma: I = (-1,1) \to M$ una curva parametrizzata. La velocità di γ in $t_0 \in I$ è definita come

$$\gamma'(t_0) := d\gamma(\frac{d}{dt}|_{t_0}) \in T_{\gamma(t_0)}M.$$

- (a) Determinare l'azione di $\gamma'(t_0)$ su $C^{\infty}(M)$, quando $M = \mathbf{R}^n$.
- (b) Mostrare che ogni $v \in T_pM$ è la velocità di una curva su M, passante per p.
- 2. Sia M una varietà differenziabile connessa e sia $f:M\to {\bf R}$ una funzione con differenziale nullo in ogni punto. Mostrare che f è costante.
- 3. Mostrare che le applicazioni
 - (a) $p_n: S^1 \to S^1$, data da $p_n(z) = z^n$, dove $S^1 = \{z \in \mathbb{C} \mid |z|^2 = 1\}$ ed $n \in \mathbb{Z}$,
 - (b) $\alpha: S^n \to S^n$, data da $\alpha(X) = -X$ (la mappa antipodale), sono diffeomorfismi locali suriettivi.
- 4. Sia $f: M \to N$ un'applicazione differenziabile. Mostrare che $\iota: M \to M \times N$, data da $\iota(m) = (m, f(m))$, è un embedding.
- 5. Sia $f: \mathbf{RP}^2 \to \mathbf{R}^3$ definita da f([x:y:z]) = (yz, xz, xy), dove [x:y:z] è la classe di equivalenza di due punti in S^3 rispetto alla mappa antipodale. Mostrare che f è un'immersione tranne che in 6 punti.