- 1. Sia M una varietà n-dimensionale, compatta, orientata e senza bordo.
 - (a) Sia $\omega = d\eta$ una *n*-forma esatta. Allora $\int_M \omega = 0$;
 - (b) $H_{dR}^n(M) \neq 0$, dove $H_{dR}^n(M)$ indica l'ennesimo gruppo di coomologia di De Rham di M.
- 2. Sia M una varietà n-dimensionale, compatta, orientata e senza bordo. Sia $\Lambda^n(M)$ lo spazio delle n-forme su M. Mostrare che l'applicazione lineare $\int_M : \Lambda^n(M) \to \mathbf{R}$ passa ad un'applicazione lineare

$$\int_M : H^n_{dR}(M) \to \mathbf{R}.$$

3. Mostrare che il *cup-product*

$$H^p_{dR}(M) \times H^q_{dR}(M) \to H^{p+q}_{dR}(M), \qquad [\omega] \cup [\eta] := [\omega \wedge \eta]$$

è ben definito.

- 4. Sia M una varietà n-dimensionale, compatta, orientata, con bordo $\partial M \neq \emptyset$. Sia $\omega \in \Lambda^{n-1}(M)$ una forma chiusa. Allora $\int_{\partial M} \omega = 0$.
- 5. Sia M una varietà n-dimensionale, connessa, compatta, orientata e senza bordo. Siano α e β due n-forme differenziali su M. Mostrare che

$$\int_{M} \alpha = \int_{M} \beta$$

se e solo se α e β differiscono per una forma esatta. (N.B.: la dualità di Poincaré implica $H^n_{dR}(M)\cong \mathbf{R}$).