COGNOME *NOME*

Risolvere gli esercizi negli spazi predisposti. Accompagnare le risposte con spiegazioni *chiare, sintetiche e complete.* Consegnare SOLO QUESTI FOGLI.

4. Sia $\Omega \subset \mathbb{C}$ aperto connesso. Siano $f, g: \Omega \longrightarrow \mathbb{C}$ olomorfe, tali che $f \cdot g \equiv 0$. Allora $f \equiv 0$ oppure $g \equiv 0$.

Sol.: (Questo è l'esercizio 1 del Foglio 4). Supponiamo per assurdo che nessuna delle due funzioni sia identicamente nulla. Fissiamo $f \not\equiv 0$. Allora esiste $x_0 \in \Omega$ per cui $f(x_0) \not\equiv 0$. Per continuità $f(x) \not\equiv 0$, per ogni x in un opportuno intorno aperto U di x_0 . Dalla condizione $f \cdot g \equiv 0$ segue che g(x) = 0, per ogni $x \in U$. Dal principio di identità segue che $g \equiv 0$ su Ω . Contraddizione. Similmente saremmo arrivati ad una contraddizione partendo da $g \not\equiv 0$.

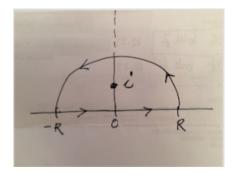
5. Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione olomorfa, non costante. Dimostrare che l'immagine di f è densa in \mathbb{C} .

Sol.: (Questo è l'esercizio 1 del Foglio 6). Una funzione olomorfa $f: \mathbb{C} \to \mathbb{C}$ ammette un'espansione in serie di potenze centrata in qualunque punto $z_0 \in \mathbb{C}$, convergente su tutto \mathbb{C} . Per semplicità prendiamo $z_0 = 0$. Se f non è costante, ha necessariamente una singolarità all'infinito. Se ∞ è una singolarità essenziale di f (l'espansione in serie di f ha infiniti termini), per il teorema di Casorati Weierstrass l'immagine dell'insieme $\{|z| > R\}$ è densa in \mathbb{C} per ogni R > 0. Se ∞ è un polo di f (l'espansione in serie di f ha solo un numero finito di termini, ed f è un polinomio di grado ≥ 1) allora per il teorema fondamentale dell'algebra f è suriettiva, ossia l'immagine di f è tutto \mathbb{C} .

6. Calcolare (col metodo dei residui) l'integrale

$$I = \int_0^\infty \frac{\sqrt{x}}{(x^2 + 1)} dx.$$

Sol.: Osserviamo innanzitutto che l'integrale I esiste, in quanto la funzione integranda ha un comportamento all'infinito simile a $\frac{1}{x^{\alpha}}$, con $\alpha > 1$. Sia R > 0. Indichiamo con γ_R la semicirconferenza superiore di raggio R percorsa in senso antiorario, con I_R l'intervallo [-R, R] sulla retta reale e con Γ_R la curva $\gamma_R \cup I_R$ (vedi figura).



Nel semipiano superiore fissiamo la determinazione della radice quadrata con argomento in $[0, \pi[$. La funzione complessa $f(z) = \frac{\sqrt{z}}{(z^2+1)}$ ha due poli semplici in z=i e z=-i. Per il teorema dei residui, per ogni R sufficientemente grande, vale

$$\int_{\Gamma_R} \frac{\sqrt{z}}{(z^2+1)} dz = 2\pi i I(\Gamma_R, i) Res(f(z), i) = 2\pi i Res(f(z), i).$$

Abbiamo

$$\begin{split} \int_{\Gamma_R} \frac{z^{1/2}}{(z^2+1)} dz &= \int_0^R \frac{x^{1/2}}{(x^2+1)} dx + \int_{\Gamma_R} \frac{z^{1/2}}{(z^2+1)} dz + \int_{-R}^0 \frac{(xe^{\pi i})^{1/2}}{((xe^{\pi i})^2+1)} d(xe^{\pi i}) &= \\ &= (1-e^{3\pi i/2}) \int_0^R \frac{x^{1/2}}{(x^2+1)} dx + \int_{\Gamma_R} \frac{z^{1/2}}{(z^2+1)} dz. \end{split}$$

Inoltre

$$Res(f(z), i) = \frac{\sqrt{z}}{(z+i)_{|z=i}} = \frac{\sqrt{i}}{2i} = \frac{e^{i\pi/4}}{2i}.$$

Notare che avendo scelto la determinazione della radice quadrata con argomento in $[0, \pi[$, la radice quadrata di $i = e^{\pi i/2}$ è necessariamente $e^{i\pi/4}$, e non $e^{i\pi/4+\pi}$. Poiché $\lim_{x\to\infty} x \frac{\sqrt{x}}{(x^2+1)} = 0$ (vedi Cartan, Lemma 1, pag. 101),

$$\lim_{R \to +\infty} \int_{\Gamma_R} \frac{z^{1/2}}{(z^2+1)} dz = 0.$$

In conclusione, l'integrale cercato è dato da

$$I = (1 - e^{3\pi i/2})^{-1} 2\pi i \frac{e^{i\pi/4}}{2i} = \frac{1}{1+i} \pi e^{i\pi/4} = \pi \frac{(1-i)}{2} e^{i\pi/4} = \pi \frac{\sqrt{2}}{2}.$$