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Some Transitive Linear Actions of Real Simple Lie Groups

Laura Geatti and Martin Moskowitz∗

Abstract. In Moskowitz M., and R.Sacksteder, An extension of the Minkowski-
Hlawka theorem, Mathematika 56 (2010), 203-216, essential use was made of the
fact that in its natural linear action the real symplectic group, Sp(n,R), acts
transitively on R2n \ {0} (similarly for the theorem of Hlawka itself, SL(n,R)
acts transitively on Rn \ {0}). This raises the natural question as to whether
there are proper connected Lie subgroups of either of these groups which also
act transitively on R2n \ {0} , (resp. Rn \ {0}). Here we determine all the
minimal ones. These are Sp(n,R) ⊆ SL(2n,R) and SL(n,C) ⊆ SL(2n,R)
acting on R2n \ {0} ; on R4n \ {0} , they are Sp(2n,R) ⊆ SL(4n,R) and
SL(n,H)(= SU∗(2n)) ⊆ SL(4n,R).
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1. Introduction

The article [6] is concerned with an extension of the following theorem of Hlawka.

Theorem (Minkowski-Hlawka). If vol(D) < ζ(n), then there exists a lattice Γ in
Rn of vol(Rn/Γ) = 1 with D ∩ Γ = {0} .

Here ζ denotes the Riemann zeta function, Rn takes Lebesgue measure
and D is a domain in Rn star shaped about the origin. Of course, Hlawka’s result
can be expressed in terms of the group SL(n,R). Namely, if vol(D) < ζ(n),
then there exists a g ∈ SL(n,R) with gD ∩ Zn = {0} and in this form it was
reproved by both Siegel [10] and Weil [11]. In [6] the authors did similarly for the
symplectic group. Given a fixed choice of Haar measure for the ambient group,
the volume, Vn , of a fundamental domain for the lattice Sp(n,Z) in Sp(n,R) was

calculated:Vn = 1√
2

n∏
k=1

ζ(2k), and as a consequence,

1. If vol(D) > Vn , some lattice in R2n contains a non zero point of D .

2. If vol(D) < Vn , some lattice in R2n contains only the zero point of D .

3. If D is star shaped about the origin and vol(D) < ζ(2n)Vn , some lattice in
R2n contains only the zero point of D .

∗This paper is dedicated to the memory of Gerhard Hochschild



2 2 REDUCTION OF THE PROBLEM.

In that study essential use was made of the fact that in its natural linear
action the real symplectic group, Sp(n,R), acts transitively on R2n\{0} (similarly
for the theorem of Hlawka itself, SL(n,R) acts transitively on Rn\{0}). This raises
the natural question as to whether there are proper connected Lie subgroups, G ,
of either of these groups which also act transitively on R2n \{0} , (resp. Rn \{0}).

For n ≥ 2, Sp(n,R) is indeed a proper connected Lie subgroup of SL(2n,R)
which acts transitively on R2n \ {0} . Thus leaving open the case of SL(n,R), for
n odd, and Sp(n,R), for 2n even. However the same argument (see pg. 24 of
[1]) showing that SL(n,R) acts transitively on Rn \ {0} also proves SL(n,C)
acts transitively on Cn \ {0} = R2n \ {0} and SL(n,H) acts transitively on
Hn \ {0} = R4n \ {0} .

Our purpose here is to determine the minimal ones, i.e. those which contain
no proper connected Lie subgroup with the same property. Namely,

Theorem 1.1. When n is odd, no connected Lie subgroup of SL(n,R) can
act transitively on Rn \ {0}. When n = 2k is even, with k odd, both Sp(k,R)
and SL(k,C) act transitively on R2k \ {0} and they are the minimal ones. When
k = 2m is even and n = 4m, both Sp(2m,R) ⊆ SL(4m,R) and SL(m,H)(=
SU∗(m)) ⊆ SL(4m,R) act transitively on R4m \ {0} and they are the minimal
ones.

Presumably a similar study as in [6] could be made for SL(n,C) and SL(n,H).

2. Reduction of the problem.

In this section we reduce the question to the case of a non-compact simple Lie
group by proving Theorem 2.2 below.

Let G be any closed connected Lie subgroup of SL(n,R) acting transitively
on Rn \ {0} . By Proposition 6.4.5 of [2] the Lie algebra of G is reductive, i.e.
g = z(g)⊕ [g, g] , where z(g) is the center of g and the derived subalgebra, [g, g] , is
semisimple and so G = Z(G)0 · [G,G] , where Z(G)0 is the connected component
of the center of G and the derived subgroup, [G,G] , is connected and semisimple.
Moreover, Z(G)0 acts completely reducibly by [3]. By Mostow’s Theorem 6 of [7]
(which is equivalent to the Theorem of Section 6) we can assume, which we do
from now on, that the Cartan involution of G is the restriction of the usual Cartan
involution of SL(n,R). By a real reductive subgroup of SL(n,R) we always mean
a reductive self-conjugate subgroup of SL(n,R).

Lemma 2.1. Let G be a connected, non-compact, real reductive Lie subgroup
of GL(n,R) and K be a maximal compact subgroup.1 Then G acts transitively
on Rn \ {0}, if and only if K acts transitively on the unit sphere, Sn−1 .

Proof. Let G = KAN = KB be an Iwasawa decomposition of G (see [1]).
Since B is in real triangular form, let e1, . . . en be the basis of Rn that puts B
into this form consisting of vectors of norm 1. Then be1 = λ(b)e1 for all b ∈ B ,

1Since G is linear, K is actually compact
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where λ is a non-trivial element in Hom(B,R×+). In particular, λ(b) 6≡ 1 on B
and Be1 = R×+e1 . Now it is clear that if K is transitive on the unit sphere then G
is transitive on Rn \ {0} . Conversely, assume G is transitive on Rn \ {0} . Given
an arbitrary unit vector v , there is some g = kb so that g(e1) = v . That is,
kb(e1) = k(λ(b)e1) = v . Thus k(e1) = 1

λ(b)
v . Since K preserves the norm, 1

λ(b)
v

also has norm 1. Hence 1
λ(b)

= 1 and so k(e1) = v .

Theorem 2.2. Suppose G is a connected Lie subgroup of SL(n,R) which acts
transitively on Rn \ {0} and is minimal with respect to this property. Then G is
a non-compact simple Lie group.

Proof. Let H be a subgroup of SL(n,R), acting transitively on Rn \ {0} . As
above, we may assume H is a non-compact, real reductive group. By Lemma 2.1,
a maximal compact subgroup, K , acts transitively on the sphere Sn−1 . By [5],
Thm. I and Thm. I ′ , the group K is either simple, or, only when n is even, it
is possibly a finite quotient of the product of two compact simple groups K1 and
K2 . When this happens, K2 = SO(2) or SU(2) and K1 is a simple group acting
transitively on Sn−1 . Also, the subgroup of K corresponding to K1 under the
quotient map acts transitively on Sn−1 as well.

Let h = z(h) ⊕ hs be the Lie algebra of H , where z(h) is the center
and hs = [h, h] is the derived subalgebra. Recall that such a decomposition is
compatible with the Cartan decomposition h = k⊕m , where k is the Lie algebra
of a maximal compact subgroup of H .

If K is simple, then k ∩ z(h) = {0} . It follows that there exists a non-
compact simple component g of h with a maximal compact subalgebra equal to
k . Let G be the connected subgroup of H with Lie algebra g . Then by [5], Thm.
I, a maximal compact subgroup of G acts transitively on Sn−1 . By Lemma 2.1,
the simple group G acts transitively on Rn \ {0} .

Assume now that n is even and the maximal compact subgroup K is not
simple. If n = 2, then K = SO(2) and G = SL(2,R). If n ≥ 4, then there are
the following possibilities for the Lie algebra of H :

(2.a) h = z(h) ⊕ hs , with hs simple, k = k1 ⊕ k2 maximal compact in hs and
k ∩ z(h) = {0} ;

(2.b) h = z(h) ⊕ hs , with hs simple, k1 maximal compact in hs and k2 ∼= R
contained in z(h) (this happens for example if H = Sp(k,R));

(2.c) h = z(h)⊕h1⊕h2 , with hi simple, ki maximal compact in hi , and k∩ z(h) =
{0} (this happens for example if H = Sp(k, 1)).

We claim that there exists a non-compact simple subgroup G ⊂ H , acting
transitively on Rn\{0} . In case (2.a) and case (2.b), such group G is the connected
subgroup generated by hs . In case (2.c), G is the connected subgroup generated
by h1 , for all even n > 6. For n = 6, the subgroup G is generated either by h1
or by h2 . In all cases, by [5], Thm. I, a maximal compact subgroup of G acts
transitively on Sn−1 , implying that G acts transitively on Rn \ {0} .



4 3 PROOF OF THEOREM 1.

The next lemma shows that the Lie algebra g and the maximal compact
subgroup K uniquely determine G within SL(n,R).

Lemma 2.3. Let G and H be connected Lie subgroups of GL(n,R) which are
locally isomorphic and KG and KH be maximal compact subgroups of each. If KG

and KH are isomorphic, by say φ, then G and H are also isomorphic, by say ψ .
By changing KH via a conjugation by something in H we can arrange for ψ to
be an extension of φ.

Proof. Since KG and KH are isomorphic they must have the same fundamental
groups; Π1(KG) = Π1(KH). On the other hand, since KG is a retract of G
and similarly for H we know Π1(G) ∼= Π1(KG) and Π1(H) ∼= Π1(KH) so that
Π1(G) ∼= Π1(H). Let L be the common universal cover of both G and H , with
πG and πH the respective covering maps. Then L/Π1(G) = G and L/Π1(H) = H
and since Π1(G) ∼= Π1(H) it follows that G ∼= H (by say ψ ).

Now consider the differentials of these isomorphisms d(φ) : kG → kH and
d(ψ) : g → h . Since d(ψ) is a Lie algebra isomorphism it takes a maximum
compact subalgebra of g onto one of h and since such things are conjugate we can
replace kH by a new maximal compact subalgebra of h so that d(ψ)(kG) = kH .

3. Proof of Theorem 1.

Effective transitive actions of connected compact Lie groups on spheres have been
studied and classified by Montgomery-Samelson and Borel. We refer to the list
given in [4]:

1. n = 2, K = SO(2);

2. n = 2k + 1, K = SO(2k + 1);

2.a. n = 7, K = G2 ;

4. n = 2k, k > 1, K = SO(2k), U(k), SU(k);

5. n = 4k, K = SO(4k), U(2k), SU(2k), Sp(k), Sp(k) · S1, Sp(k) · Sp(1);

5.a. n = 16, K = Spin(9);

5.b. n = 8, K = Spin(7);

with the only inclusions:

G2 ⊂ SO(7);

SU(k) ⊂ U(k) ⊂ SO(2k);

Sp(k) ⊂ Sp(k) · S1 ⊂ Sp(k) · Sp(1) ⊂ SO(4k);

Sp(k) ⊂ Sp(k) · S1 ⊂ U(2k);

SU(4) ⊂ Spin(7) ⊂ SO(8);

Spin(9) ⊂ SO(16);

The inclusions SU(k) ⊂ U(k) ⊂ SO(2k) are given by equivariantly identifying
Ck and R2k under the standard actions of U(k) and SO(2k); the inclusions
Sp(k) ⊂ Sp(k) ·S1 ⊂ Sp(k) ·Sp(1) ⊂ SO(4k) are given by equivariantly identifying
Hk and R4k under the quaternionic representation ρk ⊗ ρ1 of Sp(k) · Sp(1) on Hk
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and the standard action of SO(4k) on R4k , where ρk denotes the standard action
of Sp(k) on Hk .

The inclusion G2 ⊂ SO(7) is given by the 7-dimensional representation of

G2 , which is absolutely irreducible (see Samelson [9], Thm.E, pg.140) (a represen-
tation of a compact group K on a real vector space V is said to be absolutely
irreducible if it remains irreducible over C); the inclusion Spin(7) ⊂ SO(8) is
given by the 8-dimensional spin representation of Spin(7). Since 7 = 2 · 3 + 1
and 3 6≡ 1, 2 mod 4 such a representation is absolutely irreducible (see [9], Thm.E,
pg.140); the inclusion Spin(9) ⊂ SO(16) is given by the 16-dimensional spin repre-
sentation of Spin(9). Since 9 = 2 · 4 + 1 and 4 6≡ 1, 2 mod 4 such a representation
is absolutely irreducible (see [9], Thm.E, pg.140).

Proof. Let G ⊂ SL(n,R) be a non-compact simple group acting transitively
on Rn \ {0} . Then by Lemma 2.1, one of its maximal compact subgroups K
must appear in the above list. Further, by Lemma 2.3, the group G is completely
determined by K and its Lie algebra g . Now we are left to check which K in
the above list is a maximal compact subgroup of some non-compact simple group
G ⊂ SL(n,R), which in addition, is transitive on Rn \ {0} .

Observe that if the K -action on Rn is absolutely irreducible, then G 6= KC

(see Onishchik [8], Thm.1, pg.65).

As we already know, for every integer n the group SL(n,R) acts transitively
on Rn \ {0} by its standard representation.

Let n = 2k + 1 be odd. We claim there exists no simple group, G , properly
contained in SL(2k + 1,R), which acts transitively on R2k+1 \ {0} .

The group K = SO(2k + 1) is also a maximal compact subgroup of G =
SO0(2k + 1, 1), but this group has no linear action on R2k+1 . If k = 3, the
compact group G2 acts transitively on S6 via its 7-dimensional fundamental
representation. If a non-compact simple group G properly contained in SL(7,R)
were transitive on R7 \ {0} , then one of its maximal compact subgroups would
satisfy G2 ⊂ K ⊂ SO(7) and would act transitively on S6 as well. Then either
K = G2 and G = GC

2 , or K = SO(7) and G = SL(7,R). Since the 7-dimensional
fundamental representation of G2 is absolutely irreducible, by the first observation
G 6= GC

2 , and G = SL(7,R). We conclude, when n is odd, there are no proper
subgroups of SL(n,R) acting transitively on Rn \ {0} .

Now we turn to even dimensional real vector spaces R2k, k ≥ 1. Assume
first k odd. We claim there exists no simple group, G , properly contained in
Sp(k,R), which acts transitively on R2k \ {0} .

From the compact groups K = SU(k) and K = U(k) we get

G = SL(k,C) ⊂ SL(2k,R), G = GL(k,C) ⊂ GL(2k,R),

G = Sp(k,R) ⊂ SL(2k,R).

Each of the above non-compact groups acts transitively on R2k \ {0} via the
standard representation of GL(2k,R). Both SL(k,C) and Sp(k,R) are minimal,
SL(k,C) is the one of smallest dimension. In particular, no proper subgroup of
Sp(k,R) acts transitively on R2k \ {0} .
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Assume now k = 2m even. We claim there exists no simple group G ,
properly contained in Sp(2m,R), which acts transitively on R4m \ {0} . In this
case there are additional compact groups acting transitively on the sphere S4m−1 .

For K = Sp(m) ⊂ SU(2m), we get G = SU∗(m) acting transitively on
R4m \ {0} . We have the inclusions

SU∗(m) ⊂ SL(2m,C) ⊂ SL(4m,R), GL(2m,C) ⊂ GL(4m,R),

Sp(2m,R) ⊂ SL(4m,R),

where each of the above non-compact groups acts transitively on R4m \ {0} . Both
SU∗(m) = SL(m,H) and Sp(2m,R) are minimal, SU∗(m) = SL(m,H) is the
one of smallest dimension. In particular, no proper subgroup of Sp(2m,R) acts
transitively on R4m \ {0} .

It remains to show no other groups, G , act transitively on R4m \ {0} .
Consider Sp(m) ⊂ Sp(m) ·S1 ⊂ Sp(m) ·Sp(1) ⊂ SO(4m). Since K = Sp(m) ·Sp(1)
is a maximal compact subgroup of G = Sp(m, 1) and G does not act on R4m , we
get nothing new from these cases.

For the transitive actions of Spin(7) and Spin(9) on the spheres S7 and S15 ,
respectively, we argue as in the case of G2 on S6 . If a simple group G = K exp p ,
properly contained in SL(8,R) (resp. in SL(16,R)), were transitive on R8 \ {0}
(resp. R16 \ {0}), then one of its maximal compact subgroups would satisfy
Spin(7) ⊂ K ⊂ SO(8) (resp. Spin(9) ⊂ K ⊂ SO(16)). If K = Spin(7) (resp.
K = Spin(9)), then G = Spin(7,C) (resp. G = Spin(9,C), or G = F4(−20) ). This
is impossible because Spin(7,C) has no 8-dimensional real representations (resp.
Spin(16,C) and FC

4 have no 16-dimensional real representation).

We conclude the discussion by remarking that U(2m) is also a maximal
compact subgroup of SO∗(4m), which does not act on R4m , that Sp(4) is also
a maximal compact subgroup of E I, which does not act on R8 , that SO(16) is
also a maximal compact subgroup of E VIII, and SU(8) is a maximal compact
subgroup of E V, which do not act on R16 = C8 . Since we checked all compact
groups acting transitively on spheres, the proof of the theorem is complete.
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