Laura Geatti and Martin Moskowitz^{*}

Abstract. In Moskowitz M., and R.Sacksteder, An extension of the Minkowski-Hlawka theorem, Mathematika 56 (2010), 203-216, essential use was made of the fact that in its natural linear action the real symplectic group, $\operatorname{Sp}(n, \mathbb{R})$, acts transitively on $\mathbb{R}^{2n} \setminus \{0\}$ (similarly for the theorem of Hlawka itself, $\operatorname{SL}(n, \mathbb{R})$ acts transitively on $\mathbb{R}^n \setminus \{0\}$). This raises the natural question as to whether there are proper connected Lie subgroups of either of these groups which also act transitively on $\mathbb{R}^{2n} \setminus \{0\}$, (resp. $\mathbb{R}^n \setminus \{0\}$). Here we determine all the minimal ones. These are $\operatorname{Sp}(n, \mathbb{R}) \subseteq \operatorname{SL}(2n, \mathbb{R})$ and $\operatorname{SL}(n, \mathbb{C}) \subseteq \operatorname{SL}(2n, \mathbb{R})$ acting on $\mathbb{R}^{2n} \setminus \{0\}$; on $\mathbb{R}^{4n} \setminus \{0\}$, they are $\operatorname{Sp}(2n, \mathbb{R}) \subseteq \operatorname{SL}(4n, \mathbb{R})$ and $\operatorname{SL}(n, \mathbb{H})(= \operatorname{SU}^*(2n)) \subseteq \operatorname{SL}(4n, \mathbb{R})$.

Mathematics Subject Classification 2000: 22E46, 22F30, 54H15, 57S15. Key Words and Phrases: Transitive linear action, reductive group, actions of compact groups on spheres, special linear and real symplectic groups.

1. Introduction

The article [6] is concerned with an extension of the following theorem of Hlawka. Theorem (Minkowski-Hlawka). If $\operatorname{vol}(D) < \zeta(n)$, then there exists a lattice Γ in \mathbb{R}^n of $\operatorname{vol}(\mathbb{R}^n/\Gamma) = 1$ with $D \cap \Gamma = \{0\}$.

Here ζ denotes the Riemann zeta function, \mathbb{R}^n takes Lebesgue measure and D is a domain in \mathbb{R}^n star shaped about the origin. Of course, Hlawka's result can be expressed in terms of the group $\mathrm{SL}(n,\mathbb{R})$. Namely, if $\mathrm{vol}(D) < \zeta(n)$, then there exists a $g \in \mathrm{SL}(n,\mathbb{R})$ with $gD \cap \mathbb{Z}^n = \{0\}$ and in this form it was reproved by both Siegel [10] and Weil [11]. In [6] the authors did similarly for the symplectic group. Given a fixed choice of Haar measure for the ambient group, the volume, V_n , of a fundamental domain for the lattice $\mathrm{Sp}(n,\mathbb{Z})$ in $\mathrm{Sp}(n,\mathbb{R})$ was calculated: $V_n = \frac{1}{\sqrt{2}} \prod_{k=1}^n \zeta(2k)$, and as a consequence,

- 1. If $\operatorname{vol}(D) > V_n$, some lattice in \mathbb{R}^{2n} contains a non zero point of D.
- 2. If $\operatorname{vol}(D) < V_n$, some lattice in \mathbb{R}^{2n} contains only the zero point of D.
- 3. If D is star shaped about the origin and $\operatorname{vol}(D) < \zeta(2n)V_n$, some lattice in \mathbb{R}^{2n} contains only the zero point of D.

^{*}This paper is dedicated to the memory of Gerhard Hochschild

In that study essential use was made of the fact that in its natural linear action the real symplectic group, $\operatorname{Sp}(n, \mathbb{R})$, acts transitively on $\mathbb{R}^{2n} \setminus \{0\}$ (similarly for the theorem of Hlawka itself, $\operatorname{SL}(n, \mathbb{R})$ acts transitively on $\mathbb{R}^n \setminus \{0\}$). This raises the natural question as to whether there are *proper connected* Lie subgroups, G, of either of these groups which also act transitively on $\mathbb{R}^{2n} \setminus \{0\}$, (resp. $\mathbb{R}^n \setminus \{0\}$).

For $n \geq 2$, $\operatorname{Sp}(n, \mathbb{R})$ is indeed a proper connected Lie subgroup of $\operatorname{SL}(2n, \mathbb{R})$ which acts transitively on $\mathbb{R}^{2n} \setminus \{0\}$. Thus leaving open the case of $\operatorname{SL}(n, \mathbb{R})$, for n odd, and $\operatorname{Sp}(n, \mathbb{R})$, for 2n even. However the same argument (see pg. 24 of [1]) showing that $\operatorname{SL}(n, \mathbb{R})$ acts transitively on $\mathbb{R}^n \setminus \{0\}$ also proves $\operatorname{SL}(n, \mathbb{C})$ acts transitively on $\mathbb{C}^n \setminus \{0\} = \mathbb{R}^{2n} \setminus \{0\}$ and $\operatorname{SL}(n, \mathbb{H})$ acts transitively on $\mathbb{H}^n \setminus \{0\} = \mathbb{R}^{4n} \setminus \{0\}$.

Our purpose here is to determine the *minimal* ones, i.e. those which contain no proper connected Lie subgroup with the same property. Namely,

Theorem 1.1. When n is odd, no connected Lie subgroup of $SL(n, \mathbb{R})$ can act transitively on $\mathbb{R}^n \setminus \{0\}$. When n = 2k is even, with k odd, both $Sp(k, \mathbb{R})$ and $SL(k, \mathbb{C})$ act transitively on $\mathbb{R}^{2k} \setminus \{0\}$ and they are the minimal ones. When k = 2m is even and n = 4m, both $Sp(2m, \mathbb{R}) \subseteq SL(4m, \mathbb{R})$ and $SL(m, \mathbb{H})(=$ $SU^*(m)) \subseteq SL(4m, \mathbb{R})$ act transitively on $\mathbb{R}^{4m} \setminus \{0\}$ and they are the minimal ones.

Presumably a similar study as in [6] could be made for $SL(n, \mathbb{C})$ and $SL(n, \mathbb{H})$.

2. Reduction of the problem.

In this section we reduce the question to the case of a non-compact simple Lie group by proving Theorem 2.2 below.

Let G be any closed connected Lie subgroup of $\mathrm{SL}(n,\mathbb{R})$ acting transitively on $\mathbb{R}^n \setminus \{0\}$. By Proposition 6.4.5 of [2] the Lie algebra of G is reductive, i.e. $\mathfrak{g} = \mathfrak{z}(\mathfrak{g}) \oplus [\mathfrak{g}, \mathfrak{g}]$, where $\mathfrak{z}(\mathfrak{g})$ is the center of \mathfrak{g} and the derived subalgebra, $[\mathfrak{g}, \mathfrak{g}]$, is semisimple and so $G = Z(G)_0 \cdot [G, G]$, where $Z(G)_0$ is the connected component of the center of G and the derived subgroup, [G, G], is connected and semisimple. Moreover, $Z(G)_0$ acts completely reducibly by [3]. By Mostow's Theorem 6 of [7] (which is equivalent to the Theorem of Section 6) we can assume, which we do from now on, that the Cartan involution of G is the restriction of the usual Cartan involution of $\mathrm{SL}(n,\mathbb{R})$. By a *real reductive* subgroup of $\mathrm{SL}(n,\mathbb{R})$ we always mean a reductive self-conjugate subgroup of $\mathrm{SL}(n,\mathbb{R})$.

Lemma 2.1. Let G be a connected, non-compact, real reductive Lie subgroup of $GL(n, \mathbb{R})$ and K be a maximal compact subgroup.¹ Then G acts transitively on $\mathbb{R}^n \setminus \{0\}$, if and only if K acts transitively on the unit sphere, S^{n-1} .

Proof. Let G = KAN = KB be an Iwasawa decomposition of G (see [1]). Since B is in real triangular form, let $e_1, \ldots e_n$ be the basis of \mathbb{R}^n that puts B into this form consisting of vectors of norm 1. Then $be_1 = \lambda(b)e_1$ for all $b \in B$,

¹Since G is linear, K is actually compact

where λ is a non-trivial element in $\text{Hom}(B, \mathbb{R}^{\times}_{+})$. In particular, $\lambda(b) \not\equiv 1$ on Band $Be_1 = \mathbb{R}^{\times}_{+}e_1$. Now it is clear that if K is transitive on the unit sphere then Gis transitive on $\mathbb{R}^n \setminus \{0\}$. Conversely, assume G is transitive on $\mathbb{R}^n \setminus \{0\}$. Given an arbitrary unit vector v, there is some g = kb so that $g(e_1) = v$. That is, $kb(e_1) = k(\lambda(b)e_1) = v$. Thus $k(e_1) = \frac{1}{\lambda(b)}v$. Since K preserves the norm, $\frac{1}{\lambda(b)}v$ also has norm 1. Hence $\frac{1}{\lambda(b)} = 1$ and so $k(e_1) = v$.

Theorem 2.2. Suppose G is a connected Lie subgroup of $SL(n, \mathbb{R})$ which acts transitively on $\mathbb{R}^n \setminus \{0\}$ and is minimal with respect to this property. Then G is a non-compact simple Lie group.

Proof. Let H be a subgroup of $SL(n, \mathbb{R})$, acting transitively on $\mathbb{R}^n \setminus \{0\}$. As above, we may assume H is a non-compact, real reductive group. By Lemma 2.1, a maximal compact subgroup, K, acts transitively on the sphere S^{n-1} . By [5], Thm. I and Thm. I', the group K is either simple, or, only when n is even, it is possibly a finite quotient of the product of two compact simple groups K_1 and K_2 . When this happens, $K_2 = SO(2)$ or SU(2) and K_1 is a simple group acting transitively on S^{n-1} . Also, the subgroup of K corresponding to K_1 under the quotient map acts transitively on S^{n-1} as well.

Let $\mathfrak{h} = \mathfrak{z}(\mathfrak{h}) \oplus \mathfrak{h}_s$ be the Lie algebra of H, where $\mathfrak{z}(\mathfrak{h})$ is the center and $\mathfrak{h}_s = [\mathfrak{h}, \mathfrak{h}]$ is the derived subalgebra. Recall that such a decomposition is compatible with the Cartan decomposition $\mathfrak{h} = \mathfrak{k} \oplus \mathfrak{m}$, where \mathfrak{k} is the Lie algebra of a maximal compact subgroup of H.

If K is simple, then $\mathfrak{k} \cap \mathfrak{z}(\mathfrak{h}) = \{0\}$. It follows that there exists a noncompact simple component \mathfrak{g} of \mathfrak{h} with a maximal compact subalgebra equal to \mathfrak{k} . Let G be the connected subgroup of H with Lie algebra \mathfrak{g} . Then by [5], Thm. I, a maximal compact subgroup of G acts transitively on S^{n-1} . By Lemma 2.1, the simple group G acts transitively on $\mathbb{R}^n \setminus \{0\}$.

Assume now that n is even and the maximal compact subgroup K is not simple. If n = 2, then K = SO(2) and $G = SL(2, \mathbb{R})$. If $n \ge 4$, then there are the following possibilities for the Lie algebra of H:

- (2.a) $\mathfrak{h} = \mathfrak{z}(\mathfrak{h}) \oplus \mathfrak{h}_s$, with \mathfrak{h}_s simple, $\mathfrak{k} = \mathfrak{k}_1 \oplus \mathfrak{k}_2$ maximal compact in \mathfrak{h}_s and $\mathfrak{k} \cap \mathfrak{z}(\mathfrak{h}) = \{0\};$
- (2.b) $\mathfrak{h} = \mathfrak{z}(\mathfrak{h}) \oplus \mathfrak{h}_s$, with \mathfrak{h}_s simple, \mathfrak{k}_1 maximal compact in \mathfrak{h}_s and $\mathfrak{k}_2 \cong \mathbb{R}$ contained in $\mathfrak{z}(\mathfrak{h})$ (this happens for example if $H = \mathrm{Sp}(k, \mathbb{R})$);
- (2.c) $\mathfrak{h} = \mathfrak{z}(\mathfrak{h}) \oplus \mathfrak{h}_1 \oplus \mathfrak{h}_2$, with \mathfrak{h}_i simple, \mathfrak{k}_i maximal compact in \mathfrak{h}_i , and $\mathfrak{k} \cap \mathfrak{z}(\mathfrak{h}) = \{0\}$ (this happens for example if $H = \operatorname{Sp}(k, 1)$).

We claim that there exists a non-compact simple subgroup $G \subset H$, acting transitively on $\mathbb{R}^n \setminus \{0\}$. In case (2.a) and case (2.b), such group G is the connected subgroup generated by \mathfrak{h}_s . In case (2.c), G is the connected subgroup generated by \mathfrak{h}_1 , for all even n > 6. For n = 6, the subgroup G is generated either by \mathfrak{h}_1 or by \mathfrak{h}_2 . In all cases, by [5], Thm. I, a maximal compact subgroup of G acts transitively on S^{n-1} , implying that G acts transitively on $\mathbb{R}^n \setminus \{0\}$. The next lemma shows that the Lie algebra \mathfrak{g} and the maximal compact subgroup K uniquely determine G within $\mathrm{SL}(n,\mathbb{R})$.

Lemma 2.3. Let G and H be connected Lie subgroups of $GL(n, \mathbb{R})$ which are locally isomorphic and K_G and K_H be maximal compact subgroups of each. If K_G and K_H are isomorphic, by say ϕ , then G and H are also isomorphic, by say ψ . By changing K_H via a conjugation by something in H we can arrange for ψ to be an extension of ϕ .

Proof. Since K_G and K_H are isomorphic they must have the same fundamental groups; $\Pi_1(K_G) = \Pi_1(K_H)$. On the other hand, since K_G is a retract of G and similarly for H we know $\Pi_1(G) \cong \Pi_1(K_G)$ and $\Pi_1(H) \cong \Pi_1(K_H)$ so that $\Pi_1(G) \cong \Pi_1(H)$. Let L be the common universal cover of both G and H, with π_G and π_H the respective covering maps. Then $L/\Pi_1(G) = G$ and $L/\Pi_1(H) = H$ and since $\Pi_1(G) \cong \Pi_1(H)$ it follows that $G \cong H$ (by say ψ).

Now consider the differentials of these isomorphisms $d(\phi) : \mathfrak{k}_G \to \mathfrak{k}_H$ and $d(\psi) : \mathfrak{g} \to \mathfrak{h}$. Since $d(\psi)$ is a Lie algebra isomorphism it takes a maximum compact subalgebra of \mathfrak{g} onto one of \mathfrak{h} and since such things are conjugate we can replace \mathfrak{k}_H by a new maximal compact subalgebra of \mathfrak{h} so that $d(\psi)(\mathfrak{k}_G) = \mathfrak{k}_H$.

3. Proof of Theorem 1.

Effective transitive actions of connected compact Lie groups on spheres have been studied and classified by Montgomery-Samelson and Borel. We refer to the list given in [4]:

1. n = 2, K = SO(2); 2. n = 2k + 1, K = SO(2k + 1); 2.a. n = 7, $K = G_2$; 4. n = 2k, k > 1, K = SO(2k), U(k), SU(k); 5. n = 4k, K = SO(4k), U(2k), SU(2k), $Sp(k) \cdot S^1$, $Sp(k) \cdot Sp(1)$; 5.a. n = 16, K = Spin(9); 5.b. n = 8, K = Spin(7);

with the *only* inclusions:

 $G_{2} \subset SO(7);$ $SU(k) \subset U(k) \subset SO(2k);$ $Sp(k) \subset Sp(k) \cdot S^{1} \subset Sp(k) \cdot Sp(1) \subset SO(4k);$ $Sp(k) \subset Sp(k) \cdot S^{1} \subset U(2k);$ $SU(4) \subset Spin(7) \subset SO(8);$ $Spin(9) \subset SO(16);$

The inclusions $\mathrm{SU}(k) \subset \mathrm{U}(k) \subset \mathrm{SO}(2k)$ are given by equivariantly identifying \mathbb{C}^k and \mathbb{R}^{2k} under the standard actions of $\mathrm{U}(k)$ and $\mathrm{SO}(2k)$; the inclusions $\mathrm{Sp}(k) \subset \mathrm{Sp}(k) \cdot \mathrm{S}^1 \subset \mathrm{Sp}(k) \cdot \mathrm{Sp}(1) \subset \mathrm{SO}(4k)$ are given by equivariantly identifying \mathbb{H}^k and \mathbb{R}^{4k} under the quaternionic representation $\rho_k \otimes \rho_1$ of $\mathrm{Sp}(k) \cdot \mathrm{Sp}(1)$ on \mathbb{H}^k

and the standard action of SO(4k) on \mathbb{R}^{4k} , where ρ_k denotes the standard action of Sp(k) on \mathbb{H}^k .

The inclusion $G_2 \subset SO(7)$ is given by the 7-dimensional representation of G_2 , which is absolutely irreducible (see Samelson [9], Thm.E, pg.140) (a representation of a compact group K on a real vector space V is said to be absolutely irreducible if it remains irreducible over \mathbb{C}); the inclusion $Spin(7) \subset SO(8)$ is given by the 8-dimensional spin representation of Spin(7). Since $7 = 2 \cdot 3 + 1$ and $3 \neq 1, 2 \mod 4$ such a representation is absolutely irreducible (see [9], Thm.E, pg.140); the inclusion $Spin(9) \subset SO(16)$ is given by the 16-dimensional spin representation of Spin(9). Since $9 = 2 \cdot 4 + 1$ and $4 \neq 1, 2 \mod 4$ such a representation is absolutely irreducible (see [9], Thm.E, pg.140); the inclusion Spin(9). Since $9 = 2 \cdot 4 + 1$ and $4 \neq 1, 2 \mod 4$ such a representation is absolutely irreducible (see [9], Thm.E, pg.140).

Proof. Let $G \subset SL(n, \mathbb{R})$ be a non-compact simple group acting transitively on $\mathbb{R}^n \setminus \{0\}$. Then by Lemma 2.1, one of its maximal compact subgroups Kmust appear in the above list. Further, by Lemma 2.3, the group G is completely determined by K and its Lie algebra \mathfrak{g} . Now we are left to check which K in the above list is a maximal compact subgroup of some non-compact simple group $G \subset SL(n, \mathbb{R})$, which in addition, is transitive on $\mathbb{R}^n \setminus \{0\}$.

Observe that if the K-action on \mathbb{R}^n is absolutely irreducible, then $G \neq K^{\mathbb{C}}$ (see Onishchik [8], Thm.1, pg.65).

As we already know, for every integer n the group $SL(n, \mathbb{R})$ acts transitively on $\mathbb{R}^n \setminus \{0\}$ by its standard representation.

Let n = 2k + 1 be odd. We claim there exists no simple group, G, properly contained in $SL(2k + 1, \mathbb{R})$, which acts transitively on $\mathbb{R}^{2k+1} \setminus \{0\}$.

The group $K = \mathrm{SO}(2k + 1)$ is also a maximal compact subgroup of $G = \mathrm{SO}_0(2k + 1, 1)$, but this group has no linear action on \mathbb{R}^{2k+1} . If k = 3, the compact group G_2 acts transitively on S^6 via its 7-dimensional fundamental representation. If a non-compact simple group G properly contained in $\mathrm{SL}(7,\mathbb{R})$ were transitive on $\mathbb{R}^7 \setminus \{0\}$, then one of its maximal compact subgroups would satisfy $G_2 \subset K \subset \mathrm{SO}(7)$ and would act transitively on S^6 as well. Then either $K = G_2$ and $G = G_2^{\mathbb{C}}$, or $K = \mathrm{SO}(7)$ and $G = \mathrm{SL}(7,\mathbb{R})$. Since the 7-dimensional fundamental representation of G_2 is absolutely irreducible, by the first observation $G \neq G_2^{\mathbb{C}}$, and $G = \mathrm{SL}(7,\mathbb{R})$. We conclude, when n is odd, there are no proper subgroups of $\mathrm{SL}(n,\mathbb{R})$ acting transitively on $\mathbb{R}^n \setminus \{0\}$.

Now we turn to even dimensional real vector spaces \mathbb{R}^{2k} , $k \geq 1$. Assume first k odd. We claim there exists no simple group, G, properly contained in $\operatorname{Sp}(k,\mathbb{R})$, which acts transitively on $\mathbb{R}^{2k} \setminus \{0\}$.

From the compact groups K = SU(k) and K = U(k) we get

$$G = \mathrm{SL}(k, \mathbb{C}) \subset \mathrm{SL}(2k, \mathbb{R}), \quad G = \mathrm{GL}(k, \mathbb{C}) \subset \mathrm{GL}(2k, \mathbb{R}),$$
$$G = \mathrm{Sp}(k, \mathbb{R}) \subset \mathrm{SL}(2k, \mathbb{R}).$$

Each of the above non-compact groups acts transitively on $\mathbb{R}^{2k} \setminus \{0\}$ via the standard representation of $\operatorname{GL}(2k,\mathbb{R})$. Both $\operatorname{SL}(k,\mathbb{C})$ and $\operatorname{Sp}(k,\mathbb{R})$ are minimal, $\operatorname{SL}(k,\mathbb{C})$ is the one of smallest dimension. In particular, no proper subgroup of $\operatorname{Sp}(k,\mathbb{R})$ acts transitively on $\mathbb{R}^{2k} \setminus \{0\}$.

Assume now k = 2m even. We claim there exists no simple group G, properly contained in $\operatorname{Sp}(2m, \mathbb{R})$, which acts transitively on $\mathbb{R}^{4m} \setminus \{0\}$. In this case there are additional compact groups acting transitively on the sphere S^{4m-1} .

For $K = \operatorname{Sp}(m) \subset \operatorname{SU}(2m)$, we get $G = \operatorname{SU}^*(m)$ acting transitively on $\mathbb{R}^{4m} \setminus \{0\}$. We have the inclusions

 $\mathrm{SU}^*(m) \subset \mathrm{SL}(2m, \mathbb{C}) \subset \mathrm{SL}(4m, \mathbb{R}), \quad \mathrm{GL}(2m, \mathbb{C}) \subset \mathrm{GL}(4m, \mathbb{R}),$

 $\operatorname{Sp}(2m,\mathbb{R})\subset \operatorname{SL}(4m,\mathbb{R}),$

where each of the above non-compact groups acts transitively on $\mathbb{R}^{4m} \setminus \{0\}$. Both $\mathrm{SU}^*(m) = \mathrm{SL}(m, \mathbb{H})$ and $\mathrm{Sp}(2m, \mathbb{R})$ are minimal, $\mathrm{SU}^*(m) = \mathrm{SL}(m, \mathbb{H})$ is the one of smallest dimension. In particular, no proper subgroup of $\mathrm{Sp}(2m, \mathbb{R})$ acts transitively on $\mathbb{R}^{4m} \setminus \{0\}$.

It remains to show no other groups, G, act transitively on $\mathbb{R}^{4m} \setminus \{0\}$. Consider $\operatorname{Sp}(m) \subset \operatorname{Sp}(m) \cdot \operatorname{S}^1 \subset \operatorname{Sp}(m) \cdot \operatorname{Sp}(1) \subset \operatorname{SO}(4m)$. Since $K = \operatorname{Sp}(m) \cdot \operatorname{Sp}(1)$ is a maximal compact subgroup of $G = \operatorname{Sp}(m, 1)$ and G does not act on \mathbb{R}^{4m} , we get nothing new from these cases.

For the transitive actions of Spin(7) and Spin(9) on the spheres S^7 and S^{15} , respectively, we argue as in the case of G_2 on S^6 . If a simple group $G = K \exp \mathfrak{p}$, properly contained in SL(8, \mathbb{R}) (resp. in SL(16, \mathbb{R})), were transitive on $\mathbb{R}^8 \setminus \{0\}$ (resp. $\mathbb{R}^{16} \setminus \{0\}$), then one of its maximal compact subgroups would satisfy Spin(7) $\subset K \subset$ SO(8) (resp. Spin(9) $\subset K \subset$ SO(16)). If K = Spin(7) (resp. K = Spin(9)), then G = Spin(7, \mathbb{C}) (resp. G = Spin(9, \mathbb{C}), or $G = F_{4(-20)}$). This is impossible because Spin(7, \mathbb{C}) has no 8-dimensional real representations (resp. Spin(16, \mathbb{C}) and $\mathbb{F}_4^{\mathbb{C}}$ have no 16-dimensional real representation).

We conclude the discussion by remarking that U(2m) is also a maximal compact subgroup of $SO^*(4m)$, which does not act on \mathbb{R}^{4m} , that Sp(4) is also a maximal compact subgroup of EI, which does not act on \mathbb{R}^8 , that SO(16) is also a maximal compact subgroup of EVIII, and SU(8) is a maximal compact subgroup of EV, which do not act on $\mathbb{R}^{16} = \mathbb{C}^8$. Since we checked all compact groups acting transitively on spheres, the proof of the theorem is complete.

References

- Abbaspour H., and M. Moskowitz, "Basic Lie Theory", World Scientific Publishing Co., 2007.
- [2] Bourbaki N., "Lie Groups and Lie Algebras", Springer Verlag, 1989.
- Clifford A.H., Representations induced in an invariant subgroup, Annals of Mathematics 38 (1937), 533-550.
- [4] Eschemburg J.-H., and E. Heintze, On the classification of polar representations, Mathematische Zeitschrift 232 (1999), 391-398.
- [5] Montgomery D., and H. Samelson, *Transformation groups on spheres*, Annals of Mathematics **44** (1943), 454-470.

- [6] Moskowitz M., and R.Sacksteder, An extension of the Minkowski-Hlawka theorem, Mathematika 56 (2010), 203-216.
- [7] Mostow G.D., Some New Decomposition Theorems For Semisimple Groups, Memoirs of the AMS 14 (1955), 31-54.
- [8] Onishchik A.L., "Lectures on Real Semisimple Lie Algebras and their Representations", Lectures in Mathematics and Physics, EMS, 2004.
- [9] Samelson H., Notes on Lie Algebras, Universitex, Springer Verlag, 1990.
- [10] Siegel C.L., A mean value theorem in the geometry of numbers, Annals of Mathematics 46 (1945), 340-347.
- [11] Weil A., Sur quelques résults de Siegel, Summa Brasilienis Mathematicae 1 (1946), 21-39.

Laura Geatti Dipartimento di Matematica Università di Roma 2 Tor Vergata via della Ricerca Scientifica 00133 Roma (Italy) geatti@mat.uniroma2.it Martin Moskowitz Ph.D Program in Mathematics CUNY Graduate Center 365 Fifth Ave. New York, NY 10016, USA martin.moskowitz@gmail.com