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Abstract: Let G/H be a pseudo-Riemannian semisimple symmetric space. The tangent bundle T (G/H) contains a

maximal G-invariant neighbourhood Ω of the zero section where the adapted-complex structure exists. Such Ω is endowed with a

canonical G-invariant pseudo-Kähler metric of the same signature as the metric on G/H. We use the polar map φ: Ω→ GC/HC

to define a G-invariant pseudo-Kähler metric on distinguished G-invariant domains in GC/HC or on coverings of principal orbit

strata in GC/HC. In the rank-one case, we show that the polar map is globally injective and the domain φ(Ω) ⊂ GC/HC is

an increasing union of q-complete domains.

Introduction.

Let G/H be a non-compact semisimple symmetric space embedded in its complexification GC/H C. It is
natural to ask whether there exists a G-invariant open set

G/H ⊂ D ⊂ GC/H C,

whose complex analytic properties reflect the geometry and the harmonic analysis of G/H. Since GC/H C

contains G-invariant open sets with very different complex analytic properties (cf.[Ge]), one should expect
D to be a proper subdomain of GC/H C. The situation is best understood in the case of an irreducible
Riemannian symmetric space G/K. In this case there is a distinguished G-invariant subdomain

G/K ⊂ D ⊂ GC/KC,

which in many respects may be considered the canonical complexification of G/K. The domain D, introduced
by Akhiezer, Gindikin in [AG] and intensively studied in recent years, has several remarkable properties: ev-
ery eigenfunction of the algebra of G-invariant differential operators on G/K admits a holomorphic extension
to D and every unitary spherical representation of G/K can be realized on a Hilbert space of holomorphic
functions on D. Moreover D is Stein, carries plenty of G-invariant plurisuharmonic functions, and is a
maximal connected set where the G-action is proper (see [B],[BHH],[H],[KS1],[KS2]).

The Akhiezer–Gindikin domain D can be described as follows. Let g be the Lie algebra of G and let
g = k ⊕ p be a Cartan decomposition. The tangent bundle T (G/K) of G/K may be identified with the
homogeneous vector bundle G ×K p → G/K, where K acts on p by the Adjoint representation. Then the
polar map

φ:G×K p −→ GC/KC, [g,X] 7→ g exp iXKC

may be viewed as a G-equivariant map from T (G/K) with values in GC/KC. The domain D is the image
in GC/KC of the largest connected neighbourhood Ω of G/K in T (G/K), where the differential of the polar
map φ has maximum rank. It turns out that the domain Ω also coincides with the maximal connected
neighbourhood of G/K in T (G/K) where the so-called adapted complex structure exists (see [LS],[Sz1]
[GS1], [GS2]). As a result, Ω carries a canonical G-invariant Kähler structure extending the Riemannian
structure of G/K. Since the polar map is globally injective on Ω, such a G-invariant Kähler structure can
be pushed-forward onto D. This makes the domain D interesting also from the geometric point of view.

In this paper we consider a semisimple pseudo-Riemannian symmetric space G/H, embedded in its
complexification GC/H C, with the aim of determining how the above facts generalize to this situation. If
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G/H is a compactly causal symmetric space, then GC/H C contains a maximal G-invariant Stein domain D
having G/H in its Shilov boundary. The domain D, which may be considered as a one-sided complexification
of G/H, has been investigated in [Ne1].

However, in the general case the Stein manifold GC/H C might contain no Stein G-invariant subdomains,
and that the G-action might fail to be proper on every invariant open subset of GC/H C. This happens
for example when G/H is a real hyperboloid SO(p, q)0/SO(p − 1, q), with p, q > 2. Let g = h ⊕ q be the
decomposition of g induced by the symmetry of G/H at the base point. Identify the tangent bundle T (G/H)
with the homogeneous vector bundle G ×H q → G/H, where H acts on q by the Adjoint representation.
Consider then the corresponding polar map

φ:G×H q −→ GC/H C, [g,X] 7→ g exp iXH C.

Like in the Riemannian case, the maximal connected set G/H ⊂ Ω where the polar map has maximum rank
is a proper G-invariant subdomain in T (G/H). The domain Ω also coincides with the maximal connected
neighbourhood of G/H in T (G/H) where the adapted complex structure exists (cf. [Sz2], [HI]). As a result,
Ω carries a canonical G-invariant pseudo-Kähler structure extending the pseudo-Riemannian structure of
G/H.

If G/H is a pseudo-Riemannian symmetric space of rank one, we show that the restriction of the polar
map φ: Ω −→ GC/H C is globally injective. In particular, the canonical G-invariant pseudo-Kähler structure
of Ω can be pushed forward onto D = φ(Ω). Moreover, if the metric on G/H has signature (p, q), the domain
D an increasing union of q-complete domains (by our convention, 0-complete is Stein). In general, D is not
a Stein domain.

In the higher rank case, the polar map φ: Ω −→ GC/H C in generally not injective. However, φ is
injective on close orbits of maximal dimension in Ω. Moreover, the restriction of φ to distinguished G-
invariant subsets of Ω defines G-equivariant coverings of principal orbit strata in D = φ(Ω).

As a result, a canonical G-invariant pseudo-Kähler structure is defined on coverings of principal orbit
strata in D or on suitable neighbourhoods of closed orbits of maximal dimension in D. These results extend
the ones obtained by Fels in the group case, using different methods (cf. [Fe]).

The paper is organized as follows. In section 1, we recall some definitions and set up the notation. In section
2, we give several characterizations of the singular set of the differential of the polar map and we define the
distinguished G-invariant neighbourhood Ω of G/H in its tangent bundle T (G/H). In section 3, we briefly
recall the definition and the main properties of the adapted complex structure on T (G/H). In section 4,
we prove two preliminary lemmas about the G-action on GC/H C, which may be of independent interest.
These lemmas are used to prove the main results in sections 5 and 6. In section 5, we deal with semisimple
symmetric spaces of rank one. We also work out in detail a family of examples. In section 6, we deal with
symmetric spaces of rank higher than one.
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1. Preliminaries.

A semisimple symmetric space is a coset space G/H, where G is a real semisimple Lie group and H ⊂ G is
an open subgroup of the fixed point group of an involution τ :G −→ G.

In what follows, we consider semisimple symmetric spaces G/H which admit a G-equivariant embedding
into a simply connected complexification GC/H C. They arise in the following way. Start with a simply
connected complex semisimple Lie group GC endowed with a Cartan involution Θ, a conjugation σ (different
from Θ) and a holomorphic involution τ satisfying the commutativity relations

στ = τσ, Θσ = σΘ, Θτ = τΘ. (1.1)

Denote by U = Fix(Θ, GC) the corresponding compact real form, by G = Fix(σ,GC) the corresponding
non-compact real form and by H C = Fix(τ,GC) the complex fixed point subgroup of τ . By (1.1), the
restriction of Θ to G defines a Cartan involution θ of G so that the maximal compact subgroup of G is given
by K = G∩U . Similarly, the restriction of τ to G defines an involution of G commuting with θ, whose fixed
point subgroup is given by H = G ∩H C. In this way, the space G/H admits an equivariant embedding in
the complex symmetric space GC/H C as the G-orbit of the base point eH C.

The product involution σc := στ defines a conjugation of GC with real form denoted by Gc; since
σcτ = τσc, the restriction of τ to Gc defines an involution of Gc, with fixed point subgroup Gc ∩H C = H.
The restriction of Θ to Gc defines a Cartan involution θc of Gc, commuting with τ . The G-orbit and Gc-orbit
of the base point eH C ∈ GC/H C define transversal totally real embeddings

G/H ↪→ GC/H C ←↩ Gc/H

of so-called c-dual symmetric spaces [HO]. One has that

dimIRG/H = dimIRG
c/H = dimCG

C/H C.

Troughout the paper, the Lie algebra of a group is denoted by the corresponding gothic letter. For
example, g and gC denote the Lie algebras of G and GC, respectively. An involution of a group and the
derived involution of its Lie algebra are denoted by the same symbol. The commutativity relations (1.1)
ensure that the decompositions induced by Θ, σ and τ on gC and by their restrictions on g are all compatible
with each other. For example, if g = k⊕p is the Cartan decomposition of g and g = h⊕q is the decomposition
of g induced by τ , then both h and q are θ-stable and g has a combined decomposition

g = h⊕ q = k⊕ p = h ∩ k ⊕ h ∩ p ⊕ q ∩ k ⊕ q ∩ p.

In this setting, the c-dual symmetric spaces G/H and Gc/H are the analogues of the non-compact Rieman-
nian symmetric space G/K and its compact dual U/K in GC/KC. The decompositions of g and gc by τ
are given by

g = h⊕ q, and gc = h⊕ iq,

respectively. If (g = h⊕q, τ) is a symmetric algebra, a Cartan subspace of q is by definition a maximal abelian
subspace c ⊂ q consisting of semisimple elements. The rank of a symmetric space G/H is the dimension of
an arbitrary Cartan subspace in q.

In this paper, we do not deal with the group case, i.e. with symmetric spaces of the form G×G/Diag(G).
Such spaces have already been investigated in [Br2],[Fe].
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2. A distinguished G-invariant neighbourhood of G/H in T (G/H).

Let G/H be a semisimple symmetric space. Identify the tangent bundle T (G/H) with the homogeneous
vector bundle G×H q, defined as the quotient of G× q by the H-action h · (g,X) := (gh−1, AdhX). Identify
G/H with the zero section in G×H q. In this way, the polar map

φ:G×H q −→ GC/H C, [g,X] 7→ g exp iXH C, (2.1)

defines a G-equivariant map from the tangent bundle of G/H with values in GC/H C.

The next proposition gives several characterizations of the set where the map φ has non-singular differential.
By the G-equivariance of φ it is sufficient to consider the differential dφ at the points [e,X], with X ∈ q.

Proposition 2.1. Let φ be the map defined in (2.1).
(i) Let X ∈ q. Then the differential dφ[e,X] is non-singular if and only if

Adexp iXh ∩ iq = {0}. (2.2)

(ii) Let X ∈ q. Then Adexp iXh ∩ iq = {0} if and only if adX : g→ g has no real eigenvalue

λ ∈ IR, λ ≡ π/2 mod π.

(iii) Let X ∈ q and let X = Xs + Xn be its Jordan decomposition, with Xs semisimple, Xn nilpotent, Xs,
Xn ∈ q. Then Adexp iXh ∩ iq = {0} if and only if

Adexp iXsh ∩ iq = {0}. (2.3)

If the semisimple element Xs sits in a Cartan subspace c ⊂ q and ∆c denotes the restricted root system
of gC under cC, condition (2.3) is satisfied if and only if

α(Xs) 6≡ π/2 mod π, for all α ∈ ∆c.

Proof.
(i) The proof is similar to that of Prop.3 in [AG], where the compact real form U of GC is replaced by the
c-dual real form Gc. Let Gc/H the c-dual symmetric space of G/H. Observe that for X ∈ q, one has that

u = exp iX ∈ Gc and uH ∈ Gc/H.

Consider the diagram
G×Gc π−→ G×H (Gc/H)

φ−→ GC/H Cy1×ρ−1
u ↗ τu

G×Gc ψu−→ GC/H C

where the maps are defined as follows
π:G×Gc −→ G×H Gc/H, (g, v) 7→ [g, vH] = [gh−1, hvH], h ∈ H;
φ:G×H (Gc/H) −→ GC/H C, [g, vH] 7→ gvH C;
1× ρu−1 :G×Gc −→ G×Gc, (g, v) 7→ (g, vu−1), u ∈ Gc;
ψu:G×Gc −→ GC/H C, (g, v) 7→ u−1gvuH C, u ∈ Gc;
τu:GC/H C −→ GC/H C, x 7→ uxH C, u ∈ Gc.
One easily checks that the diagram is commutative:

φπ(g, v) = τuψu1× ρu−1(g, v), for all (g, v) ∈ G×Gc, and u ∈ Gc.

In order to determine the points [e,X] ∈ GC×H q where the differential dφ has maximum rank, we examine
the rank of dφ at the points [e, uH], u = exp iX ∈ Gc.
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Since 1× ρu−1 and τu are diffeomorphisms and dπ is onto, such rank is maximum if and only if the map ψu
has differential of maximum rank at (e, e). The differential dψu,(e,e): g⊕ gc −→ qC is given by

dψu,(e,e)(A,B) = Adu−1(A+B) mod hC, (A,B) ∈ g⊕ gc, gc = h⊕ iq,

and the kernel is given by

ker dψu,(e,e) = {(C,−C) | C ∈ h} ⊕ {(0, AduD) | D ∈ h} ⊕ {(E, 0) | E ∈ Aduih ∩ q}.

The differential dψu,(e,e) has maximum rank if and only if dim(ker dψu,(e,e)) = 2 dim h. This happens precisely
when

Aduh ∩ iq = {0}.

(ii) Let X ∈ q. The operator Adexp iX : gc −→ gc can be written as

Adexp iX = exp adiX = cos adX + i sin adX . (2.4)

Since cos adX(h) ⊂ h and i sin adX(h) ⊂ iq, the condition Adexp iXh∩ iq = {0} is equivalent to the injectivity
of the map cos adX |h: h→ h, namely

cos adX(H) 6= 0, for all H ∈ h, H 6= 0. (2.5)

Indeed if cos adX : g→ g is injective, condition (2.5) is clearly satisfied. Conversely, assume that cos adX : g→
g is not injective. Then cos adX has an eigenvalue µ = 0 and adX has a real real eigenvalue λ ≡ π/2 mod π.
In particular, there exists a λ-eigenvector Z ∈ g, and τZ 6= ±Z. Since ker cos adX is τ -stable, the vectors
H := Z + τZ and Q := Z − τZ define non-zero elements in ker cos adX ∩ h and ker cos adX ∩ q, respectively.
It follows that cos adX |h: h → h is not injective either. In conclusion, cos adX |h is injective if and only if
cos adX : g→ g is injective, and this happens if and only if adX has no eigenvalues{

λ ∈ IR
λ ≡ π/2 mod π.

(iii) We already saw in (ii) that condition (2.2) is equivalent to the injectivity of the operator cos adX : g −→ g.
So we need to prove that cos adX is injective if and only if cos adXs is injective. From the decomposition
X = Xs +Xn and the fact that [Xs, Xn] = 0, it follows that

cos adX = cos adXs + (cos adXs(cos adXn − I)− sin adXs sin adXn) (2.6).

Since cos adXs is semisimple, cos adXs(cos adXn − I) − sin adXs sin adXn is nilpotent and these operators
commute, equation (2.6) is the Jordan decomposition of cos adX . It follows that cos adX is injective if and
only if cos adXs is injective, as requested.

Remark 2.2. By Proposition 2.1, the regular set of dφ[e,X] is a proper AdH-invariant subdomain of q. A
result by Halversheid (cf. [Ha], p.17), implies that the singular subset of dφ[e,X] in q disconnects q. So the
connected component of the regular set of dφ containing G/H is a proper G-invariant subdomain of G×H q,
namely

Ω = G×H ω, ω = {X ∈ q | |λ| < π/2, for all λ ∈ spec(adX) ∩ IR}. (2.7)

(Here spec(L) denotes the spectrum of an operator L). Since ω is starlike, Ω is smoothly retractible to G/H.

By Proposition 2.1(ii), one has that dφ[e,0] is non-singular and dφ[e,N ] is non-singular for every nilpotent
element N ∈ q. In this framework, one can consider the map p: q −→ q||AdH , which associates to X ∈ q the
unique closed AdH -orbit in the closure of AdH(X) (see [Br1]). Each fiber of this map contains a unique closed
orbit, which is also the unique orbit of minimum dimension. Recall that an AdH -orbit in q is closed if and
only if X is semisimple (cf. [vD]). By Proposition 2.1(iii), both ω and its boundary ∂ω are AdH -saturated
sets, i.e. satisfy p−1p(ω) = ω (resp. p−1p(∂ω) = ∂ω).
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Proposition 2.3. Let q = q∩ k⊕q∩p be the Cartan decomposition of q, let a ⊂ q∩p be a maximal abelian
subspace (not necessarily maximal abelian in q) and let ∆a = ∆a(g, a) be the corresponding restricted root
system. Define ω0 = {A ∈ a | |α(A)| < π/2, ∀α ∈ ∆a}. Then the set ω defined in (2.7) is given by

ω = p−1(p(AdH(q ∩ k⊕ ω0))).

Proof. Both sets AdH(q ∩ k ⊕ ω0) and ω are AdH -stable. So we need to show that they have the same
semisimple elements. Let X ∈ AdH(q ∩ k ⊕ ω0). If λ ∈ spec(adX) ∩ IR, then |λ| < π/2. This shows that
AdH(q ∩ k⊕ ω0) ⊂ ω.
To prove the converse statement, let X ∈ ω be a semisimple element. Then X is H-conjugate to an element
S = Sk +Sp = AdhX in a standard Cartan subspace c = ck ⊕ cp, with ck ⊂ q∩ k and cp ⊂ a (see [Ma], p.79).
In particular Sp ∈ ω0 ⊂ a and X ∈ AdH(q ∩ k⊕ ω0).

3. The adapted complex structure on Ω.

The notion of an adapted complex structure on the tangent bundle of a Riemannian manifold was introduced
and developed in [LS], [Sz1], [GS1], [GS2]. Its definition and many of its features have a straightforward
generalization to the pseudo-Riemannian case [Sz2].

Definition 3.1. Let (M, g) be a pseudo-Riemannian manifold and let U be an open neighbourhood of M
in its tangent bundle TM. A complex structure J on U is called adapted if for every geodesic γ: IR −→ M,
the differential

dγ:T IR ∼= C −→ TM, (x, y) 7→ (γ(x), yγ′(x))

is holomorphic on dγ−1(U).

A semisimple symmetric space G/H is in a natural way a pseudo-Riemannian manifold. The tangent space
T (G/H)eH to G/H at the base point eH, can be identified with q = q ∩ k ⊕ q ∩ p; the restriction of the
Killing form of g to q× q

Bg|q(X,Y ) = Tr(adX ◦ adY ), X, Y ∈ q

induces on G/H a G-invariant metric g of signature (σ+, σ−), where σ+ = dim q ∩ p and σ− = dim q ∩ k.

Let Ω be the domain in G×H q ∼= T (G/H) defined in (2.7). In analogy with the Riemannian case, one has
that (cf. [HI], [Sz2])

(a) The complex structure on Ω given by the pull-back of the complex structure of GC/H C by the polar
map (2.1) is adapted.

(b) Ω is the “largest” G-invariant connected subset of T (G/H) containing G/H and carrying an adapted
complex structure.

(c) The energy function

E:T (G/H) −→ IR, E(x, v) :=
1

2
gx(v, v)2, x ∈ G/H, v ∈ T (G/H)x (3.1)

is a smooth G-invariant function on Ω. Its complex Hessian of E has σ+ positive and σ− negative
eigenvalues.

(d) The formula

h(Z,W ) := − i
2
∂∂E(Z,W ), Z,W ∈ T CΩ. (3.2)

defines a G-invariant pseudo-Kähler metric on Ω with the same signature as g.
(e) The function

√
|E| satisfies the homogeneous complex Monge-Ampere equation

(∂∂̄
√
|E|)n ≡ 0,

outside the null set in Ω.
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4. The G-action on GC/H C.

In this section we prove two preliminary lemmas regarding the G-action on GC/H C. These are used in the
next sections to prove the main results.

Resume the notation introduced in section 1. Denote by AutIR(gC) the group of the real automorphisms
of the complex Lie algebra gC. Define a map η:GC → AutIR(gC) by η(x) = σAdxτAdx−1 (see [Ma], p.51).
An element x ∈ GC is called regular semisimple with respect to σ, τ if its image η(x) is a regular semisimple
element in the real algebraic group AutIR(gC) or equivalently when it sits on a closed G × H C-orbit of
maximal dimension in GC. Let x̄ denote the image of x under the canonical projection π:GC → GC/KC.
Then x is regular semisimple with respect to σ, τ if and only if its image x̄ ∈ GC/H C sits on a closed G-orbit
of maximal dimension in GC/H C (see [Ma]). Let X ∈ q, such that x = exp iX ∈ GC is a regular semisimple
with respect to σ, τ . Then X sits in some Cartan subspace c in q and can be characterized in terms of the
restricted roots ∆c = ∆c(g

C, cC) as follows (see [Ge], Prop. 3.14): X sits in the complement in c of the set

⋃
α∈∆r

c

{α(X) ≡ 0 mod π/2}
⋃
α∈∆i

c

{α(X) = 0}
⋃
α∈∆c

c

{{
Reα(X) ≡ 0 mod π/2
Imα(X) = 0

}
(4.1)

(here ∆r
c , ∆i

c, ∆c
c denote the sets of roots which restricted to c take real, imaginary or complex values,

respectively). Observe that one such X is in particular regular semisimple in q, which by definition means
that the centralizer Zq(X) is abelian and equal to c. This last condition is characterized by α(X) 6= 0, for
all α ∈ ∆c.

Remark 4.1. Let X = Xs + Xn be the Jordan decomposition of X in q. Let x = exp iX = xsxn be the
corresponding Jordan decomposition in GC, with xs = exp iXs and xn = exp iXn. One has that

η(x) = Adx−2
n
στAdx−2

s
= Adx−2

n
η(xs).

Set u = Adx−2
n

and s = στAdx−2
s

= Adx−2
s
στ. It is easy to check that u is unipotent, s is semisimple, and

su = us. So η(x) = us is the Jordan decomposition of η(x) in AutIR(gC). Moreover, one has that

σ(iXn) = AdxsτAdx−1
s

(iXn) = −iXn.

Then by [Ma], Prop.2 (ii), p.66, the decomposition x = xsxn also coincides with the lifting to GC of the
Jordan decomposition of η(x) in AutIR(gC).

Lemma 4.2. Let X ∈ q. Let x = exp iX be the corresponding element in GC and x̄ its image in GC/H C.
Then
(i) The isotropy subgroup of x̄ in G is given by Gx̄ = {g ∈ G | gx2 = x2τ(g)};

(ii) Gx̄ ⊂ ZG(x4);
(iii) ZG(x4) = ZG(x2) implies Gx̄ = ZH(x2);
(iv) Assume that [e,X] ∈ G×H q lies in the regular set of dφ. Then Gx̄ = ZH(x2);
(v) Let c be a Cartan subspace in q and let X ∈ c. Assume that x = exp iX is a regular semisimple element

with respect to σ, τ . Then Gx̄ = ZH(x) = ZH(X) = ZH(c).

Proof.
(i) By definition, g ∈ Gx̄ if there exists hc ∈ H C such that gx = xhc. Write hc = x−1gx. Since hc ∈ H C,
one has that τ(hc) = hc. This is equivalent to

xτ(g)x−1 = x−1gx and x2τ(g) = gx2.

Conversely, assume that g ∈ {g ∈ G | gx2 = x2τ(g)}. Then

gx = gx2 · x−1 = x2τ(g)x−1 = x · xτ(g)x−1.
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Define hc := xτ(g)x−1. One has that

τ(hc) = τ(xτ(g)x−1) = x−1gx = x−1gx2x−1 = x−1x2τ(g)x−1 = xτ(g)x−1 = hc.

So hc ∈ H C and g ∈ Gx̄, as desired.
(ii) Let g ∈ Gx̄. Then by (i) one has that gx2 = x2τ(g) and g = x2τ(g)x−2. Since g ∈ G, one has that
σ(g) = g, which is equivalent to

σ(x2)τ(g)σ(x−2) = x2τ(g)x−2 ⇔ x4τ(g) = τ(g)x4 ⇔ x4g = gx4.

In other words, g ∈ Gx̄ implies g ∈ ZG(x4).
(iii) Assume that ZG(x2) = ZG(x4). By (ii) one has that Gx̄ ⊂ ZG(x2). This together with (i) implies that
gx2 = x2τ(g) = x2g. Then g ∈ H and Gx̄ = ZH(x2).
(iv) By (iii) it is sufficient to show that ZGC(x4) = ZGC(x2), and actually that ZGC(x4) ⊂ ZGC(x2), the
opposite inclusion being obvious. Assume first that X is a semisimple element in some Cartan subspace
c ⊂ q. Since GC is simply connected, the centralizers ZGC(x2) and ZGC(x4) are connected (cf. [Hu]) and
hence determined by their Lie algebras. Denote by ∆c = ∆(gC, cC) the restricted root system of gC with
respect to cC. Let gC = ZgC(cC)⊕

⊕
α∈∆c

gα be the corresponding root decomposition. The Lie algebra of

ZGC(x4) is given by

ZgC(x4) = {Z ∈ gC | Adx4Z = Z} = ZgC(c)⊕
⊕

α(X)=0

gα ⊕
⊕

α(X) 6=0
α(4X)≡0 mod 2π

gα.

By Prop. 2.1(iii), the element [e,X] lies in the regular set of dφ if and only if α(X) 6= (2k + 1)π/2, k ∈ ZZ,
for all α ∈ ∆c. As a consequence, β(4X) ≡ 0 mod 2π, for some root β, if and only if

β(X) = mπ/2, for some m ∈ 2 ZZ, m 6= 0.

It follows that β(2X) ≡ 0 mod 2π, which means that ZgC(x4) ⊂ ZgC(x2) and ZGC(x4) ⊂ ZGC(x2), as
requested.

Assume now that X is non-semisimple. Let X = Xs+Xn be its Jordan decomposition in q, with Xs, Xn ∈ q
and [Xs, Xn] = 0. Write x = xsxn = exp iXs exp iXn. By Remark 4.1 and [Ma], Prop.2, p.66, the equation

gxsxn = xsxnhc, g ∈ G, hc ∈ H C

is equivalent to the system {
g exp iXs = exp iXshc
AdgXn = Xn.

In particular, g ∈ Gx̄s ∩ ZG(Xn). Since [e,Xs] lies in the regular set of dφ (by Proposition 2.1(iii)), one has
that g ∈ H. It follows that

Gx̄ = Gx̄s ∩ ZG(Xn) = ZH(x2
s) ∩ ZG(Xn) ⊂ H, and Gx̄ = ZH(x2),

as requested.
(v) If x = exp iX is a regular semisimple element with respect to σ, τ , then X is a semisimple element in
some Cartan subspace c ⊂ q and [e,X] lies in the regular set of dφ. The same argument used in (iv) shows
that

ZgC(x4) = ZgC(cC) = ZgC(x) = ZgC(c) = ZgC(X).

As a consequence, the σ-stable connected groups ZGC(x), ZGC(x4), ZGC(c) and ZGC(X) all coincide (for
the connectedness of such groups, see [Hu][St]). In particular (see also [Ge], Sect.3.3), one has that

Gx̄ = H ∩ ZGC(x) = ZH(x) = H ∩ ZGC(X) = ZH(X) = ZH(c). (4.2)
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Lemma 4.3. Let X,Y ∈ q. Let x = exp iX, y = exp iY be the corresponding elements in GC and x̄, ȳ
their images in GC/H C. One has that:
(i) x̄, ȳ sit on the same G-orbit if and only if gx2 = y2τ(g), for some g ∈ G;

(ii) x̄, ȳ sit on the same H-orbit in GC/H C if in addition gx2 = y2g holds;
(iii) if x̄, ȳ sit on the same G-orbit, then y4 = gx4g−1, for some g ∈ G.
Let X,Y be semisimple elements in the same Cartan subspace c ⊂ q. Assume that x, y are regular semisimple
elements with respect to σ, τ and that x̄, ȳ sit on the same G-orbit, i.e. (4.3) holds. Then:
(iv) gτ(g)−1 ∈ ZH(c) and τ(g) = zg, for some z ∈ ZH(c), with z2 = 1;
( v) AdgX ∈ c and g ∈ NG(c);
( vi) gxg−1 = yq, with g ∈ NG(c) and q4 = 1.

Proof.
(i) By definition, x̄, ȳ sit on the same G-orbit in GC/H C if

gx = yhc, for some g ∈ G, hc ∈ H C. (4.3)

Write hc = y−1gx. Then τ(hc) = hc implies gx2 = y2τ(g). Conversely, assume that gx2 = y2τ(g), for
some g ∈ G. Write gx = gx2x−1 = y2τ(g)x−1 = yyτ(g)x−1 and set hc = yτ(g)x−1. One can check that
τ(hc) = hc and hc ∈ H C. This shows that (4.3) is satisfied and x̄, ȳ sit on the same G-orbit.
(ii) If g ∈ H, then τ(g) = g and one has gx2 = y2g by statement (i). Conversely, assume that (4.3) holds
and that moreover gx2 = y2g, for g ∈ G. Then by (i) τ(g) = g and g ∈ H.
(iii) By (i), our assumption is equivalent to gx2 = y2τ(g), for some g ∈ G. Write g = y2τ(g)x−2. Then
σ(g) = g implies τ(g)x4 = y4τ(g). By applying the involution στ to both terms of the equality, we get
y4 = Adgx

4, as desired.
(iv) By applying the map ηστ (x) := xστ(x)−1 to both terms of equation (4.3), we get

gτ(g)−1y = yhcσ(hc)
−1.

This means that gτ(g)−1 is an element in Gȳ, the isotropy subgroup in G of ȳ. Since y is regular semisimple
with respect to σ, τ , by Lemma 4.2(v), one has that gτ(g)−1 ∈ ZH(c). Equivalently, τ(g) = zg, for some
z ∈ ZH(c). Since τ(z) = z = z−1, it follows that z2 = 1.
(v) We first prove that AdgX ∈ q. We need to show that τ(AdgX) = −AdgX, which is equivalent to
g−1τ(g) ∈ ZG(X). From στ(y) = y, στ(y4) = y4 and y4 = Adgx

4 (by (iii)), we obtain

y4 = Adgx
4 = Adτ(g)x

4 and g−1τ(g) ∈ ZG(x4).

Since x is regular semisimple with respect to σ, τ , by Lemma 4.2(v), one has that ZG(x4) = ZG(X). Then
g−1τ(g) ∈ ZG(X) and AdgX ∈ q, as requested.
By (4.1), the operator ad4Y has no real eigenvalue λ = k2π, k ∈ ZZ \ {0}. As a consequence, the element
i4Y lies in the regular set of the differential of the exponential map exp: gC → GC (cf.[Va]). From exp i4Y =
Adg exp i4X = exp i4AdgX, by [Ne2], one obtains

[Y,AdgX] = 0, or equivalently AdgX ∈ Zq(Y ) = c.

Since X, AdgX are regular semisimple in q, from

c = Zq(X) = Zq(AdgX) = AdgZq(X) = Adgc,

it follows that g ∈ NG(c), as requested.
(vi) By (i) and (iv) we can write gx2g−1 = y2τ(g)g−1 = y2z, for some z ∈ ZH(c), with z2 = 1. By (v), we
can also write exp i2(AdgX−Y ) = exp γ, for some γ in the square lattice 1

2Γ (here Γ denotes the unit lattice
in ic ∩ u ⊂ gC). It follows that AdgX = Y + η, for some η ∈ 1

4Γ, and gxg−1 = yq, for some q ∈ exp ic, with
q4 = 1.
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5.1. The rank-1 case.

Let G/H be a semisimple symmetric space of rank one. Let Ω ⊂ G ×H q be the domain defined in (2.7).
The main goal of this section is to prove that the polar map φ: Ω → GC/H C is globally injective (cf.
Proposition 5.4). This shows that the image domain D = φ(Ω) in GC/H C is the direct generalizazion of the
Akhiezer-Gindikin domain. However, in the pseudo-Riemannian case the domain D is generally not Stein.

Recall that in tthe rank-one case every Cartan subspace in q is one-dimensional. Up to AdH -conjugacy, there
are precisely two θ-stable Cartan subspaces in q: a compact one t ⊂ q ∩ k and a non-compact one a ⊂ q ∩ p.
As a consequence, given a semisimple element in X ∈ q, the eigenvalues of adX are either all real or all
imaginary. Let a be the non-compact Cartan subspace in q and let ∆a = ∆a(g, a) denote the corresponding
restricted root system. Then either ∆a = {±α} is of type A1 (reduced case) or ∆a = {±α,±2α} is of typre
BC1 (non-reduced case). A list of all rank-1 semisimple symmetric algebras and their restricted root systems
can be found in [OS]. Here is the list:

• so(p+ 1, q + 1)0/so(p+ 1, q), for p ≥ 0, q ≥ 0
q = 0 Riemannian
∆a = A1.

• su(p+ 1, q + 1)/s(u(p+ 1, q)× u(1)), for p ≥ 0, q ≥ 0
q = 0 Riemannian
∆a = BC1.

• sp(p+ 1, q + 1)/sp(p+ 1, q)× sp(1)), for p ≥ 0, q ≥ 0
q = 0 Riemannian
∆a = BC1.

• sl(n+ 2, IR)/gl(n+ 1, IR), for n ≥ 0
∆a = BC1.

• sp(n+ 2, IR)/sp(n+ 1, IR)× sp(1, IR), for n ≥ 0
∆a = BC1.

• f4(−20)/so(8, 1)
∆a = BC1.

• f4(4)/so(5, 4)
∆a = BC1.

Let l = b⊕ a = bk ⊕ bp ⊕ a be a θ-stable Cartan subalgebra of g extending a and let ∆ = ∆(gC, lC) denote
the corresponding root system. By [OS], Sect. 3.2, there exists a positive system ∆+ in ∆ which is stable
both under −τ and −θ. Let Π = {λi}i=1,...,n be the corresponding set of simple roots. Let Γ be the inverse
lattice in ilIR

Γ =
⊕
λi∈Π

ZZ2πihλi ⊂ ilIR, λi(hλi) = 2.

Recall that in a simply connected compact Lie group U , the lattice Γ coincides with the unit lattice exp−1
U (e).

Denote by 〈·, ·〉 the euclidean inner product induced on lIR by the restriction of the Killing form of g. Then
the following relations hold

‖hλi‖ =
4

‖λi‖
, 〈hλi , hλj 〉 =

2

‖λi‖
cij =

2

‖λj‖
cji, cij ∈ {0,−1,−2,−3}.
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Lemma 5.1. Let ∆ be a root system, all of whose roots have the same lenght (namely An, Dn, E6 , E7, E8).
(i) The generators {iπhλi} of 1

2Γ are vectors of shortest length in 1
2Γ.

(ii) Let τ be an involutive automorphism of 1
2Γ, which is an isometry and satisfies the conditions

〈hλi , τhλi〉 ≥ 0, i = 1, . . . , n.

Then X := iπ(hλi − τhλi) is the shortest vector in IRX ∩ 1
2Γ.

Proof. Without loss of generality we can prove the corresponding statements for a lattice L with basis
vectors {v1, . . . , vn}, satisfying

‖vi‖2 = 2, 〈vi, vj〉 = 0,−1.

(i) Let v =
∑
imivi, mi ∈ ZZ. The formula

‖v‖2 = 2(
∑
i

m2
i −

∑
i<j

ε(i, j)mimj) ≥ 2, ε(i, j) = 0, 1

show that the square of the norm of every vector in the lattice satisfies is a positive even number. Hnece
the basis vectors are vectors of shortest length as requested.

(ii) Write v := vi − τvi. The formula

‖v‖2 = ‖vi‖2 + ‖τvi‖2 − 2〈vi, τvi〉 = 2(‖vi‖2 − 〈vi, τvi〉)0

implies that the inner product 〈vi, τvi〉 can only take the values 1 or 0. In the first case, ‖v‖2 = 2 and v
is a vector of shortest length. In the second case, ‖v‖2 = 4. Assume that there is a vector v′ ∈ IRv ∩ L
which is shorter than v. By (i), ‖v′‖2 = 2. Since v′ = qv, for some rational number q ∈ Q, the equation

‖v′‖2 = q24 = 2

implies that q = 1√
2
. This is absurd.

Lemma 5.2. Let ∆ be the root system Bn. A generator {iπhλi0 } of 1
2Γ is a vector of shortest length if and

only if λi0 is a long root in ∆.

Proof. Without loss of generality we can prove the corresponding statement for a lattice L with basis
{v1, . . . , vn−1, vn} satisfying

‖v1‖2 = . . . = ‖vn−1‖2 = 2, ‖vn‖2 = 4,

〈vi, vj〉 = −1, 1 ≤ i < j ≤ n− 1, 〈vn−1, vn〉 = −2.

The first n − 1 vectors correspond to the long roots in ∆, while vn corresponds to the short root. Observe
that if v =

∑
imivi is an element in L, then ‖v‖2 is a positive even integer. Consider then v = vi − τvi, for

some i = 1, . . . , n− 1. The inequality

‖v‖2 = 2(‖vi‖2 − 〈vi, τvi〉) > 0,

implies that 〈vi, τvi〉 can only take the values 1 or 0. In the first case ‖v‖2 = 2 and v is a vector of shortest
length. In the second case, ‖v‖2 = 4. Since no rational number satisfies q2 = 1

2 , one has that v = vi − τvi
is the shortest vector in IRv ∩ L. On the other hand, one easily checks that if v = vn − τvn, then 1

2v is the
shortest vector in IRv ∩ L.
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Lemma 5.3. Let γ be a non-zero vector in a∩ i 1
2Γ. Then for every root α in the restricted root system ∆a,

one has that
(i) α(γ) ∈ ZZπ;

(ii) |α(γ)| ≥ π;
(iii) |α(γ)| ≥ 2π, if ∆a is reduced.

Proof. It is sufficient to prove the lemma for the simple root in α ∈ ∆a. Recall that α can be written as
α = 1

2 (λi0 − τλi0), for some simple root λi0 ∈ Π. Let γ = π
∑
mihλi ∈ i 1

2Γ, with mi ∈ ZZ. Then

α(γ) =
1

2
(λi0 − τλi0)(γ) =

1

2
(λi0(γ)− τλi0(γ)) =

1

2
(λi0(γ)− λi0(τγ)) =

= λi0(γ) = π
∑

miλi0(hλi) ∈ π ZZ,

proving (i). To prove (ii), we need to show that

α(γ) 6= 0, for all γ ∈ i1
2

Γ ∩ a, γ 6= 0.

Observe that the vector γ0 = π(hλi0 − τhλi0 ) is a non-zero vector a ∩ i 1
2Γ, and that every γ ∈ a ∩ i 1

2Γ is of
the form γ = qγ0, for some q ∈ Q. So we need to show that

α(γ0) = λi0(γ0) = π(2− λi0(τhλi0 )) = π(2− λi0(hτλi0 )) 6= 0.

Suppose by contradiction that λi0(hτλi0 ) = 2. Then both λi0 − τλi0 and λi0 − 2τλi0 are roots in ∆. Since
by assumption λi0 and τλi0 have non-zero restrictions to a, it means that

1

2
(λi0 − τλi0)|a = α, (λi0 − τλi0)|a = 2α, (λi0 − 2τλi0)|a 6= 0, α, 2α, (5.1)

which is absurd. This concludes the proof of (ii).

(iii) Assume now that ∆a is reduced. Formulas (5.1) imply that λi0(hτλi0 ) ≤ 0. If λi0(τhλi0 ) < 0, one has
that τλ = −λ (see [OS], Lemma 3.10). Then λi0(hτλi0 ) = −2 and λi0(γ0) = 4π.
If λi0(τhλi0 ) = 0, one has that λi0(γ0) = 2π. To conclude the proof, we need to show that in both cases, γ0

is the shortest vector in a ∩ i 1
2Γ. By the classification results in [OS], Sect. (5.8), the restricted root system

∆a is reduced if and only if (g, h) = (so(p + 1, q + 1), so(p + 1, q). In this case, the root system ∆ is either
of type Bn or of type Dn, depending on whether p+ q is odd or even. In the first case, any root λi0 whose
restriction to a is equal to α is a long root ([OS], p.466, [Wa], p.30). In the second case, all roots in ∆ have
the same length. By Lemma 5.1 and Lemma 5.2, in both cases γ0 is the shortest vector in a ∩ i 1

2Γ and the
proof of (iii) is complete.

Proposition 5.4. Let G/H be a rank-one symmetric space. Then the polar map φ: Ω −→ GC/H C is
globally injective.

Proof. Let [g1, X], [g2, Y ] ∈ Ω be two points with the same image φ([g1, X]) = φ([g2, Y ]).This means that

g1 exp iX = g2 exp iY hc, for some hc ∈ H C, and g1, g2 ∈ G,

or equivalently
exp iX = g exp iY hc for hc ∈ H C, and g = g−1

1 g2 ∈ G. (5.2)

We want to show that [g1, X] = [g2, Y ], i.e. that there exists h ∈ H such that{
g1 = g2h

−1

X = AdhY.
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Let X = Xs+Xn and Y = Ys+Yn be the Jordan decomposition of X and Y in q. Write x = exp iX = xsxn,
with xs = exp iXs and xn = exp iXn, and similarly y = exp iY = ysyn, with ys = exp iYs and yn = exp iYn.
By Remark 4.1 and [Ma], Prop.2 (ii)a, p.66, equation (5.2) is equivalent to the system{

exp iXn = g exp iYng
−1

exp iXs = g exp iYshc.
(5.3)

Let ω ⊂ q be the subset defined in (2.7). Observe that in the rank-one case, for every non-zero semisimple
element Z ∈ ω, the element z = exp iZ ∈ GC is necessarily regular semisimple with respect to σ, τ . In
particular Z is regular semisimple in q. As a consequence, the elements X,Y in (5.2) are either both
nilpotent or both semisimple. In the first case, system (5.3) reduces to{

exp iXn = g exp iYng
−1

ghc = e.

Since the exponential map is injective on the set of nilpotent elements, from the equation exp iXn =
g exp iYng

−1 = exp iAdgYn, we obtain

Xn = AdgYn, with g ∈ G ∩H C = H,

as requested. If X,Y are both semisimple, system (5.3) reduces to the equation

exp iX = g exp iY hc g ∈ G, hc ∈ H C. (5.4)

Moreover, by [Ma], Thm.3, the elements X,Y may be assumed to sit in the same Cartan subspace in q. By
Lemma 4.3(iii), equation (5.4) implies then

exp i4X = g exp i4Y g−1 = exp i4AdgY. (5.5)

Recall that the compact Cartan subspace t of q is all contained in ω and that the restriction of the exponential
map exp: it→ GC is injective. Hence, if X,Y ∈ t, equation (5.5) implies

X = AdgY, and x = exp iX = g exp iY g−1 = gyg−1.

From the last relation one obtains that g−1 = hc ∈ G ∩H C = H, as requested.

Assume now that X,Y ∈ ω ∩ a, where a is the non-compact Cartan subspace in q. By Lemma 4.3(v), one
has that Adg−1X ∈ a and g ∈ NG(a). Moreover, by Lemma 4.3(iv) one has that g−1τ(g) ∈ ZH(a). Therefore
from (5.2) and Lemma 4.3(ii) it follows that

y2 = g−1x2τ(g) = g−1x2gc, for c = g−1τ(g) ∈ ZH(a), c2 = 1.

Write the element c = g−1x−2gy2 ∈ exp ia ∩ {x2 = 1} as

c = exp iγ, with γ = 2(Y −Adg−1X) ∈ a ∩ 1

2
iΓ.

Let α be the simple root α ∈ ∆a. Since X,Y ∈ a ∩ ω, it follows from (2.7) that{
|α(γ)| = |α(2(Y −AdgX))| < 2π, in the reduced case
|α(γ)| = |α(2(Y −AdgX))| < π, in the non-reduced case.

By Lemma 5.3, the element c is necessarily the identity element in G and

y2 = gx2g−1. (5.6)
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By Lemma 4.3(ii), condition (5.6) implies that g ∈ H. Finally, recall that 2ω is contained in the injectivity
set of exp: gC → GC. Then from (5.6) or equivalently from exp i2Y = exp i2AdgX, it follows that Y =
AdgX, g ∈ H, as requested.

The preceeding proposition shows that in the rank-one case, the domain D = φ(Ω) is an analogue of the
Akhiezer-Gindikin domain. The push-forward of the canonical pseudo-Kähler metric of Ω, deriving from the
adapted complex structure, defines a G-invariant pseudo-Kähler metric on D, of the same signature (σ+, σ−)
as the metric on G/H. Next we show that D is an increasing union of q-complete smoothly bounded domains,
where q = σ−. As we shall see in the examples at the end of this section, in general D is not a Stein domain.
(Recall that an n-dimensional complex manifold X is called q-complete if it admits an exhaustion function
of class C2, whose complex Hessian has at least n − q non-negative eigenvalues. By this definition, a Stein
manifold is 0-complete).

Let E: Ω −→ IR be the Energy function defined in (3.1). Since E is G-invariant, one has that E([g,X]) =
1
2Bg(X,X), where Bg denotes the restriction of the Killing form of g to q. It follows that E([g,N ]) = 0, for
every nilpotent element N ∈ q. Let t be the compact Cartan subspace in q and let ∆t = ∆t(g

C, tC) denote
the corresponding restricted root system. Then t ⊂ ω and for X ∈ t, one has

E([g,X]) = −(Imα(X))2(dim gα + 4 dim g2α) ≤ 0, α ∈ ∆t, (g2α possibly trivial).

In particular, E is non-positive and E([g,X])→ −∞, for |Imα(X)| → ∞. Let a be the non-compact Cartan
subspace in q and let ∆a = ∆a(gC, aC) denote the corresponding restricted root system. For X ∈ ω ∩ a, one
has

E([g,X]) = α(X)2(dim gα + 4 dim g2α), α ∈ ∆a, (g2α possibly trivial).

Let S be the supremum of E on Ω. For 0 < s < S, define

Ωs = {[g,X] ∈ Ω | E([g,X]) < s}, and Ds = φ(Ωs).

Proposition 5.5. For every s ∈ ]0, S[, the G-invariant domain Ds is q-complete, for q = σ−. The domain
D is an increasing union of q-complete domains

D =
⋃

0<s<S

Ds.

Proof. It is clear that D =
⋃

0<s<S Ds. It remains to show that each domain Ds is q-complete, for q = σ−.
For every s ∈ ]0, S[, the boundary ∂Ds is a regular orientable hypersurface. It consists of one or two closed
hypersurface G-orbits intersecting the slice A = exp ia. We can compute the Levi form of the boundary of
Ds by computing the Levi form of these orbits. Let x0 = exp iX0 ∈ ∂Ds be a base point, with X0 ∈ a ∩ ω.
By [Ge], Prop. 5.14(i), the Levi form of ∂Ds at x0 is a Hermitian matrix whose coefficients, up to a positive
scalar multiple, are given by

L(∂Ds)x0 ∼


Im+(α) 0 0 0

0 −Im−(α) 0 0
0 0 Im+(2α) 0
0 0 0 −Im−(2α)

 .

Here the numbers m+(α), m−(α), m+(2α), m−(2α) are the dimensions of the ±1-eigenspaces of the invo-
lution τθ on the root spaces gα and g2α. They are called the “signatures” of the restricted root spaces (cf.
[OS]). In our case, the numbers m+(α), m−(α), m+(2α), m−(2α) are given by

m+(α) +m+(2α) = dim q ∩ p− 1 = σ+ − 1, m−(α) +m−(2α) = dim q ∩ k = σ−.

14



Observe that the Levi form is positive definite when τ = θ and dim q ∩ k = 0. By [EVS], Thm. 3.8, p.421, a
smoothly bounded open set in a Stein manifold, satisfying the above conditions, is q-complete, for q = σ−.

Remark 5.6. The boundary ∂D of D is not smooth. In the examples below, the Levi form of ∂D at the
smooth points is indefinite and degenerate. This shows that in general D is not a Stein domain. In all such
examples the manifold GC/H C contains no G-invariant Stein subdomains.

Example 5.7. The real hyperboloids.
Let p, q be positive integers, p, q > 2. In Cp+q consider the manifold

X = {Z ∈ Cp+q | z2
1 + . . .+ z2

p − z2
p+1 − . . .− z2

p+q = −1}, dimC X = p+ q − 1.

The group GC = SO(p, q,C) acts transitively on X. Taking as a base point x = (0, . . . , 0, 1), there is an
identification

X = GC/H C = SO(p, q,C)/SO(p, q − 1,C).

Consider on X the action of the connected real form G = SO(p, q)0. It turns out that there are two pseudo-
Riemannian G-symmetric spaces, embedded in X as totally real submanifolds of maximal dimension. To
each of them there is associated a domain, image of the corresponding polar map. We determine such
domains and examine their complex analytic properties.

We begin by describing the G-orbit structure of X. The G-orbits in X are in one-to-one correspondence
with the following set

n m
Q(s) ∗ P (t) ∗ R(σ)

−−−− • • − −−−
G/H G/L

(5.7)

The left black dot corresponds to the G-orbit of the point x = (0, . . . , 0, 1), diffeomorphic to the pseudo-
Riemannian rank-one symmetric space G/H = SO(p, q)0/SO(p, q − 1), of signature (p, q − 1); the right
black dot corresponds to the G-orbit of the point y = (i, 0, . . . , 0), diffeomorphic to the pseudo-Riemannian
rank-one symmetric space G/L = SO(p, q)0/SO(p − 1, q), of signature (p − 1, q). Both G/H and G/L are
totally real submanifolds of X, of real dimension

dimIRG/H = dimIRG/L = dimC X.

The central segment and the two halflines parametrize the slices meeting the three types of closed orbits
of maximal dimension. Since G/H and G/L has rank one, closed orbits of maximal dimension are real
hypersurfaces in X. Let g = h⊕ q be the symmetric algebra associated to G/H and g = l⊕m the symmetric
algebra associated to G/L. The points

Q(s) = (0, . . . , 0, i sinh s, cosh s), for s ∈ ]−∞, 0[,

parametrize the orbits intersecting the slice C = exp it · x, where t is the compact Cartan subspace in q; the
points

P (t) = (i sin t, 0, . . . , 0, cos t), for t ∈]0, π/2[,

parametrize the orbits intersecting the slice A = exp ia, where a is the non-compact Cartan subspace both
in q and in m; the points

R(σ) = (i coshσ, sinhσ, 0, . . . , 0), for σ ∈ ]0,∞[,

parametrize the orbits intersecting the slice C ′ = exp it′ · y, where t′ is the compact Cartan subspace in m.
Observe that

Q(0) = P (0) = x, P (
π

2
) = Q(0) = y.
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In addition to the closed orbits, there are two nilpotent hypersurface orbits: one with base point

n = (i, 0, . . . , 0p, i, 0, . . . , 1)

having G/H in its closure, and the other with base point

m = (i, 0, . . . , 1p, 1, 0, . . . , 0),

having G/L in its closure (here the subscript p marks the pth coordinate of a point).

The domain D in GC/H C determined by G/H is given by

D =
⋃
s<0

G ·Q(s)
⋃

G/H ∪G · n
⋃

t∈]0,π2 [

G · P (t), ∂D = G/L ∪G ·m,

and corresponds to the following subset of diagram (5.7)

n
Q(s) ∗ P (t)

−−−− •
G/H

Consider now the real-valued G-invariant function

F : X −→ IR, Z 7→ F (Z) := |z1|2 + . . .+ |zp|2 − |zp+1|2 − . . .− |zp+q|2.

Evaluating F on the base points of all G-orbits in X, it is easy to see that F separates the closed G-orbits

−∞ ≤ F (Qs) = −(sinh2 s+ cosh2 s) < F (x) = −1 < F (Pt) = 1− 2 cos2 t <

< F (y) = 1 < F (Rσ) = sinh2 σ + cosh2 σ ≤ +∞. (5.8)

The domain D and its boundary ∂D can be easily described by means of F :

D = {Z ∈ X | F (Z) < 1}, ∂D = {Z ∈ X | F (Z) = 1}.

The boundary ∂D is not smooth (the set of smooth points coincides with the orbit G ·m). The Levi form of
∂D at the smooth points is degenerate with p− 2 positive eigenvalues, q− 1 negative eigenvalues and 1 zero
eigenvalue. Hence, for p, q sufficiently large, D is not a Stein domain. Let R ∈]− 1, 1[. For every such R, the
subdomain DR = {Z ∈ D | F (Z) < R} has smooth boundary, with non-degenerate Levi form of signature
(p − 1, q − 1). By [EVS], Thm. 3.8, the domain DR is (q − 1)-complete. As a result, the domain D is an
increasing union of (q − 1)-complete domains

D =
⋃
R<1

DR.

The domain D′ in GC/H C determined by G/L is given by

D′ =
⋃

t∈]0,π2 [

G · P (t)
⋃

G/L ∪G ·m
⋃
σ>0

G ·R(σ), ∂D = G/H ∪G · n,

and corresponds to the following subset of diagram (5.7)

m
P (t)) ∗ R(σ)

• − −−−
G/L

16



In terms of F , the domain D′ and its boundary are given by

D′ = {Z ∈ X | − F (Z) < 1}, ∂D′ = {Z ∈ X | F (Z) = −1}.

The set of smooth points in ∂D′ coincides with the orbit G·n and has degenerate Levi form with p−1 positive
eigenvalues, q − 2 negative eigenvalues and 1 zero eigenvalue. Hence, for p, q sufficiently large, the domain
D′ is not Stein either. Let R ∈] − 1, 1[. For every such R, the subdomain D′R = {Z ∈ D | − F (Z) < −R}
has smooth boundary with non-degenerate Levi form of signature (q − 1, p − 1). By [EVS], the domain D′

an the increasing union of (p− 1)-complete domains: D′ = ∪RD′R.

A few more remarks: for every s ∈]−∞,−1[, the level hypersurface XR = {F (Z) = R} consists of one orbit
with base point Qs = (0, . . . , 0, i sinh s, cosh s), for s ∈ ]−∞, 0[; its Levi form is non-degenerate with signature
(p, q − 2). For every R ∈] − 1,+∞[, the level hypersurface XR = {F (Z) = R} consists of one orbit with
base point Rσ = (i coshσ, sinhσ, 0, . . . , 0), for σ ∈ ]0,+∞[; its Levi form is non-degenerate with signature
(p− 2, q). From these computations we conclude that for p, q sufficiently large, the complex Hessian of every
G-invariant function on X has both positive and negative eigenvalues at all points. As a consequence, no
G-invariant open set in X admits G-invariant plurisubharmonic functions. One can easily check that the
G-action fails to be proper on every G-invariant open subset of X. So no G-invariant open subset of X
carries a G-invariant Kähler structure.

6. The higher rank case.

Let G/H be a pseudo-Riemannian symmetric space of rank higher than one. Let Ω ⊂ G×H ω be the domain
defined in (2.7). In this case, the polar map

φ: Ω −→ GC/H C

is generally non-injective. As a result the domain Ω with the adapted complex structure is a non-injective
Riemann domain over GC/H C.

One may see this as follows: let c = ck ⊕ cp be a maximally split θ-stable Cartan subspace in q, with both
ck and cp different from {0}, and let ∆c = ∆c(g

C, cC) denote the corresponding restricted root system. Fix
an element X ∈ ck with the property that Imα(X) 6= 0, for all imaginary and complex roots in ∆c. This
is possible by taking X in the complement of the finite set of hyperplanes {H ∈ ck | Imα(H) = 0}α∈∆c

in
ck. Let γ be an element in the intersection cp ∩ iΓ, where Γ denotes the unit lattice in u ⊂ gC. One such
element γ can be constructed as follows: let b ⊕ c be a τ, θ-stable Cartan subalgebra in g extending c. Let
λ be a root in ∆(gC, bC ⊕ cC) with non-zero restriction to c and let hλ ∈ bIR ⊕ cIR be its inverse root (with
λ(hλ) = 2). Then γ = 2π(hλ + θhλ + τhλ + θτhλ) lies in cp ∩ iΓ. The elements X and X + γ satisfy the
conditions

X, X + γ ∈ ω and exp iX = exp i(X + γ).

As a consequence, the corresponding elements [e,X] and [e,X+γ] in Ω have the same image under the polar
map. Moreover, since the inclusion ZH(X) ⊂ ZH(x2) may be a proper one, by Lemma 4.2(iv), the polar
map φ may also fail to be injective on some G-orbits in Ω.

In the next proposition, we show that the polar map is injective on every closed orbit of maximal dimension
and is a covering map, when restricted to certain distinguished G-invariant subsets of Ω. Such sets are
coverings of principal orbit strata in D.

Recall that when G acts on GC/H C, closed orbits of maximal dimension come in a finite number of orbit
types. Such orbits are called principal orbits, since their union is an open dense subset of GC/H C. The set
of principal orbits of a given type is an open subset in GC/H C, generally disconnected. It is referred to as
a principal orbit stratum. The domain D = φ(Ω) ⊂ GC/H C contains a number of connected components
of principal orbit strata. To be more precise, let c be a Cartan subspace of q. Denote by crs the set of all
elements X ∈ c with the property that x = exp iX ∈ GC is a regular semisimple element with respect to
σ, τ (cf.(4.1)). The set G exp icrsH

C is an open subset of GC/H C, consisting of closed orbits of maximal
dimension, all of the same type. One of its connected components is contained in D = φ(Ω).
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Consider now the subset
Ωc := G×NH(c) crs ⊂ G×H q.

Observe that crs is stable under the group NH(c), so the set Ωc is well defined and the restriction of the
polar map φ to Ωc has non-singular differential.

Proposition 6.1. The restriction of the polar map to Ωc

φ: Ωc −→ GC/H C

is a G-equivariant covering map.

Proof. First we prove that the restriction of φ to every G-orbit in Ωc is injective. Let [e,X] ∈ Ωc and
let x̄ = φ([e,X]) be its image in GC/H C. Since the map φ is equivariant, it induces an inclusion of the
corresponding isotropy subgroups G[e,X] ↪→ Gx̄. The injectivity of φ on the orbit G · [e,X] is equivalent to
showing that G[e,X] = Gx̄ = ZH(X). This follows from Lemma 4.2(v). Since the map

crs −→ exp icrs −→ exp icrs/ exp icrs ∩H C

is a covering map, the proof of the proposition is complete.

In the next proposition, we show that the polar map is always injective on a smaller G-invariant open
subdomain Ω′ ⊂ Ω, defined by

Ω′ = G×H ω′, ω′ = {X ∈ q | |Reλ| < π/4, for all λ ∈ spec(adX)}. (6.1)

Proposition 6.2. The polar map φ is injective on the domain Ω′ = G×H ω′.

Proof. Let [g1, X], [g2, Y ] ∈ G×H ω′ be points with the same image in GC/H C, i.e.

g exp iX = exp iY h, for h ∈ H C, g = g−1
2 g1 ∈ G. (6.2)

Lemma 4.3(iii) implies that
exp i4Y = g exp i4Xg−1 = exp iAdg4X.

Moreover, since 4ω′ is contained in the injectivity set of exp: gC → GC, one has that Y = AdgX. This
relation together with equation (6.2) implies that g = h ∈ G ∩H C = H. In other words{

g2 = g1h
−1

Y = AdhX
, h ∈ H,

as requested.

Corollary 6.3. By Proposition 6.1, a canonical G-invariant pseudo-Kähler metric is defined on coverings
of principal orbit strata in D. Proposition 6.1 and 6.2 extend similar results obtained in [Fe] and [Br2] for
the group case, by different methods.

Remark 6.4. If G/H is a non-Riemannian semisimple symmetric space, the domains D = φ(Ω) and
D′ = φ(Ω′) cannot be hyperbolic. Both D and D′ contain the complex homogeneous subvariety

KC/(K ∩H)C ↪→ D′ ⊂ D,

embedded as the KC-orbit of the base point eH C. The homogeneous subvariety KC/(K ∩H)C is also the
image of the set K ×K∩H k ∩ q ⊂ Ω′ ⊂ Ω by the map φ. Indeed, for every X ∈ k ∩ q, the eigenvalues of adX
are all purely imaginary and the restriction of φ to K ×K∩H k ∩ q has both non-singular differential and it
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is injective. It can be viewed as the complexification of the compact symmetric space K/K ∩H ↪→ G/H,
embedded in G/H as the K-orbit of the base point eH. One has that

dimCK
C/(K ∩H)C = dimIRK/K ∩H = dimIR q ∩ k.
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