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Abstract. We introduce and investigate the notion of a quasi-complete group. A group G is
quasi-complete if every automorphism f A AutðGÞ, with the property that p and p � f are uni-
tarily equivalent for every unitary irreducible representation p of G, is an inner automorphism
of G. Our main result is that every connected linear real reductive Lie group is quasi-complete.
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Introduction

The study of the automorphisms group AutðGÞ of a topological group G and of its
distinguished normal subgroups raises many interesting questions. In connection with
the normal subgroup of inner automorphisms, it was shown in [DG] that any group
G can be realized as the outer automorphism group of some group H, i.e. GG
AutðHÞ=InnðHÞ. In another direction, an abstract characterization of inner auto-
morphisms in terms of their extension properties was recently given in [Sc].

Other distinguished normal subgroups of AutðGÞ are the automorphisms AutðGÞC
preserving the conjugacy classes of G and the automorphisms AutðGÞĜG preserving the
equivalence classes of (continuous) unitary representations of G. These definitions
appear in [Bu] for finite groups, but carry over to more general settings. In general,
one has the inclusions InnðGÞJAutðGÞĜG JAutðGÞC JAutðGÞ. On the other hand,
if G is an arbitrary compact group, one has that AutðGÞC ¼ AutðGÞĜG. The groups all
of whose automorphisms are inner are called complete and have been extensively
studied (cf. [Sz] [Hu]).

In this paper, we consider a notion which generalizes the one of completeness. We
call quasi-complete the groups for which AutðGÞĜG ¼ InnðGÞ: if f A AutðGÞ is an auto-
morphism with the property that the representations p and p � f are unitarily equiv-
alent for every unitary representation p of G, then f is an inner automorphism of G.

Our interest in quasi-complete groups arose in connection with C �-algebras.
Given a C �-algebra A one can consider the crossed product B of A by the dual
of a compact group G (see [DR]) and study extensions of automorphisms or anti-



automorphisms from A to B. Extensions commuting with the action of G on B may
not exist. If the group G is quasi-complete one can give necessary and su‰cient con-
ditions for such extensions to exist. For more details we refer to [CD] or to [BDLR].

Like completeness, the property of being quasi-complete makes sense also for
non-compact, locally compact groups. As one can easily deduce from [Pe1] [Pe2],
interesting examples of quasi-complete non-complete groups are provided by the non-
commutative free groups Fs over a finite number of generators. Of course, complete
groups such as AutðFrÞ, AutðAutðB3ÞÞ, AutðBnÞ ðnb 4Þ, where Bn denotes the braid
group over n strands, are quasi-complete (see [DF] [DG2]). However direct products
of complete groups need not be complete, while direct products of finitely many
quasi-complete groups are quasi-complete. In view of the above remarks, our inves-
tigation goes beyond the compact case and our main result is the following theorem.

Theorem. Let G be a connected linear real reductive Lie group. Let f A AutðGÞ be an

automorphism with the property that the representations p and p � f are unitarily

equivalent, for every unitary representation p of G. Then f is an inner automorphism of

G. In short, G is quasi-complete.

This theorem covers locally compact groups like SLðn;RÞ, SO0ðm; nÞ, Spðm; nÞ, etc.
In the course of our investigation we recover the well-known result that an arbitrary
compact connected group is quasi-complete. See [Mc] [Wa] [Ha] for further motiva-
tions and discussions on the compact case. More generally, we show that the class of
quasi-complete compact groups is stable under taking projective limits, and that an
arbitrary direct product of compact groups is quasi-complete if and only if every
factor is (cf. Sect. 2).

In general, as soon as we relax the connectedness assumption quasi-completeness
may fail. An example of a finite group which is not quasi-complete was given by
G. C. Wall (see [Hu]). We show that such an example is not isolated but fits into a
more general pattern.

From the point of view of abstract DR-duality theory (cf. [DR]), compact con-
nected groups play a distinguished role because an isomorphism of their fusion rings
already implies an isomorphism of the underlying groups. In view of possible exten-
sions of duality theory to the non-compact setting our results should supply a large
class of examples for which the description of the groups by their duals is somehow
‘‘redundancy-free’’ and thus more accessible.

The paper is organized as follows. In section 1, we give the basic definitions. In
section 2, we deal with projective limits and direct products of quasi-complete com-
pact groups. In sections 3–5, we deal with connected linear real reductive groups.
In section 3, we reduce to the semisimple case. In section 4, we show that a connected
linear real reductive group satisfying the equal-rank condition is quasi-complete. In
section 5, using the results about equal-rank groups and parabolic induction, we
prove that a connected linear real reductive Lie group is quasi-complete. In section 6
we consider finite groups. We construct a family of finite groups which are not quasi-
complete. Wall’s counterexample fits into this pattern.
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We thank the referee for suggesting the proof of Lemma 3.1 in the present form.

1 Preliminaries

Throughout the paper we denote a Lie group by a roman letter and its Lie algebra by
the corresponding gothic letter: if G;H are groups, g; h are the corresponding Lie
algebras. We denote by gC the complexification of a Lie algebra g. We say that a
group G is a real form of a complex group GC if there exists a conjugation k of GC

whose fixed point set is G. We write G0 for the connected component of the identity
of a group G.

We denote by AutðGÞ the group of (continuous) automorphisms of G and by
InnðGÞ the normal subgroup of the inner automorphisms. For x A G, we denote by
Adx the inner automorphism fðgÞ ¼ xgx�1, g A G. In general, we denote by the
same symbol an automorphism of a Lie group, the derived automorphism of its Lie
algebra and its extension to the complexified Lie algebra. Since we mainly deal
with linear groups, the corresponding actions actually coincide. Let OutðGÞ ¼
AutðGÞ=InnðGÞ be the quotient group. We say that f A OutðGÞ, meaning that the
image of f in OutðGÞ is di¤erent from the identity.

We denote by ĜG the set of equivalence classes of irreducible unitary representations
of G, i.e. the homomorphisms p of G into the unitary linear operators of a Hilbert
space V p, such that the resulting map of G � V p into V p is continuous (cf. [Kn1],
Ch. 1). Recall that the unitary representations of a non-compact Lie group are gen-
erally infinite dimensional. We write pG t meaning that the unitary representations p
and t are unitarily equivalent.

Definition 1.1. A group G is quasi-complete if every automorphism f A AutðGÞ, with
the property that the representations p and p � f are unitarily equivalent for every
irreducible unitary representation p of G, is an inner automorphism of G. In short if
AutðGÞĜG ¼ InnðGÞ.

The notion of quasi-complete group generalizes the one of complete group, for which
every automorphism is an inner automorphism (and the center is trivial).

Observe that if a is an automorphism of G and p � a is unitarily equivalent to p for
every irreducible unitary representation p of G, then p � a is unitarily equivalent to p

for every unitary representation p of G. The argument goes essentially as follows. If p
is not irreducible, it can be disintegrated in a direct integral, with respect to a maxi-
mal abelian subalgebra in pðGÞ0 (the set of all operators which commute with pðGÞ)

pG
ðl

pm dm;

where the representations pm are irreducible almost everywhere with respect to m (see
[Ma], Ch. II). The fact that such a decomposition is generally not unique is irrele-
vant. Then p � aG

Ðlðpm � aÞ dm. Since pm G pm � a for almost every m, there is a uni-
tary Um such that pmðgÞUm ¼ Umðpm � aÞðgÞ, for all g A G. By the Measurable Cross
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Section Theorem ([Ta], Thm. A16) the function m! Um can be chosen to be mea-

surable and U ¼
Ðl

Um dm implements the equivalence pG p � a.

2 Projective limits and direct products of quasi-complete compact groups

In this section we collect some useful results concerning projective limits and direct
products, thus showing that the class of quasi-complete groups has natural stability
properties.

We briefly recall some facts about ‘‘inverse systems’’ and projective limits, taking as a
reference [Du].

Let G be a compact group and let A be a maximal collection of pairwise
inequivalent finite-dimensional continuous representations of G. For a A A, define
Ka :¼ ker a and Ga :¼ G=Ka. Denote by pa the canonical projection pa : G ! Ga,
x 7! xKa. Observe that Ga is a Lie group, since it is isomorphic with a closed sub-
group of UðdimðaÞÞ. The set A is a partially ordered directed set when we define
aa b if Kb JKa; This yields a continuous suriective map fba : Gb ! Ga, fbaðxKbÞ :¼
xKa. For every aa b, we have the following commutative diagram

G ���!pb Gb???ypa fba

Ga

pa ¼ fba � pb; for all b > a:

���!
In other words, ðG;Ga; pa; fbaÞ is an ‘‘inverse system’’ and G is the projective limit
G ¼ lim � Ga of the Ga. The elements x A G can be identified with the infinite tuples
fxa ¼ paðxÞga AA satisfying xa ¼ fbaxb, for every b > a. The group G is connected if
and only if all the Ga are connected.

Definition 2.1. A homomorphism between two inverse systems ðX ;Xa; pa; fbaÞ and
ðY ;Ya; p

0
a; gbaÞ is a family of maps fhaga AA, ha : Xa ! Ya yielding the following com-

mutative diagram

Xb ���!hb Yb???y fba

???ygba

Xa ���!ha Ya

gba � hb ¼ ha � fba; for all bb a:

Remark 2.2. Given a homomorphism between two inverse systems ðX ;Xa; pa; fbaÞ
and ðY ;Ya; p

0
a; gbaÞ, there exists a unique homomorphism h : X ! Y such that

p 0a � h ¼ ha � pa, for all a A A (see [Du]).

The next result follows e.g. from the analysis in [Wa]. For reader’s convenience we
sketch the arguments.
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Theorem 2.3. Let G be a compact group, G ¼ lim � Ga, and assume that every Ga is

quasi-complete. Then G is quasi-complete.

Proof of the theorem. The proof is divided into several elementary steps.

(1) Let s A AutðGÞĜG. Then s induces an automorphism fsaga AA of the inverse system
ðG;Ga; pa; fbaÞ. Of course s also coincides with the automorphism arising from
fsaga AA (cf. Remark 2.2).

Proof of (1). Let s A AutðGÞĜG. Then, for every a A A, one has that sðKaÞ ¼ Ka and
s induces an automorphism sa of Ga by

saðpaðxÞÞ ¼ paðsðxÞÞ:

One can check that

fba � sb ¼ sa � fba; for every bb a:

By Remark 2.2, there exists a sy A AutðGÞ satisfying pa � sy ¼ sa � pa, for all a. By
the uniqueness, it coincides with s.

(2) Let s A AutðGÞĜG. For all a A A, the automorphism sa of Ga induced by s satisfies
the condition

wa G wa � sa;ð�Þ

for every unitary representation wa of Ga.

Proof of (2). Given a unitary representation wa : Ga ! UðCNÞ, define

~wwa : G ! UðCNÞ; ~wwaðgÞ :¼ waðpaðgÞÞ:

Then ~wwa A ĜG and ker ~wwa IKa. Similarly define

gwa � sawa � saðgÞ :¼ wa � saðpaðgÞÞ ¼ wapaðsðgÞÞ ¼ ~wwa � sðgÞ:

Since s A AutðGÞĜG, the representations ~wwa and gwa � sawa � sa ¼ ~wwa � s of G are equivalent,
for all a A A. This yields

wa � sa G wa; Ea A A:

(3) The automorphism s ¼ sy of G is inner.

Proof of (3). Since sa is an automorphism of Ga satisfying condition ð�Þ, and Ga is
assumed to be quasi-complete, for every a A A, sa is the inner automorphism of Ga
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defined by some gaKa, with ga A G. Since G is compact, after passing to a subnet if
necessary, one can assume that ga ! g in G. Then it is straightforward to verify that
s ¼ Adg. This concludes the proof of (3) and of the theorem.

Remark 2.4. An arbitrary compact connected group is a projective limit of compact
connected Lie groups (cf. [P]). A straightforward application of the Highest Weight
Theorem shows that compact connected Lie groups are quasi-complete. Hence from
the above result one recovers in particular the well-known fact that a compact con-
nected group G is quasi-complete (see [Mc] [Wa] [Ha]).

Next we give a precise characterization of direct products of compact groups which
are quasi-complete.

Theorem 2.5. Let fGigi A I be a family of compact groups, parametrized by an arbitrary

non-empty set I. Then the direct product G :¼Ui A I Gi is a quasi-complete compact

group if and only if every factor Gi is quasi-complete.

Proof. Recall that the characters of the irreducible representations of G are exactly
those of the form g ¼ ðgiÞ ! wi1ðgi1Þ . . . winðginÞ, where n ranges over all finite integers,
the indices ik, for 1a ka n, are all distinct and wik are the characters of the irreduc-
ible representations of Gik (see [HR], 27.43).

If a A AutðGÞ leaves all the characters of G invariant, i.e. w � a ¼ w for all w, then it
is easy to see that it preserves each factor Gi. Thus, for every i A I , the restriction ajGi

defines an automorphism ai of Gi such that wi � ai ¼ wi for every irreducible character
wi of Gi. If the Gi are quasi-complete, it follows that ai is inner, i.e. ai ¼ Adg �i for some
g�i A Gi. Since the Gi generate G, the automorphism a is completely determined by the
ai and it is inner: a ¼ Adg � , where g

� ¼ ðg�i Þ.
In order to show the converse, consider first the case where G is quasi-complete

and of the form G ¼ G1 � G2. Let a1 be an automorphism of G1 with the property
that r1 � a1 is equivalent to r1 for every unitary representation r1 of G1. Define a A
AutðGÞ by a ¼ a1 � IdG2

. Then

ðr1 � r2Þ � ða1 � IdG2
Þ ¼ ðr1 � a1Þ � ðr2 � IdG2

ÞG r1 � r2

for all unitary representations r1 and r2 of G1 and G2 respectively. Since G is quasi-
complete, a1 � IdG2

is an inner automorphism of G. It follows that there exists g ¼
ðg�1 ; g�2 Þ A G such that Adg ¼ a1 � IdG2

. In particular, a1 ¼ Adg �
1
and G1 is quasi-

complete. Similarly one obtains that G2 is quasi-complete. The general case is now
immediate.

Remark 2.6. A similar argument (but using directly representations instead of char-
acters) applies to the case where G is the direct product of groups Gi which are
compact for all but finitely many indices i and locally compact otherwise, so that the
resulting G is locally compact. If the Gi are quasi-complete for all i A I then G is
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quasi-complete too. Conversely, if such a G ¼Ui Gi is quasi-complete, then every Gi

is, provided that the Gi are of type I (see [Di], for a definition).

3 Connected linear real reductive groups: reduction to the semisimple case

The main goal of this paper is to prove that connected linear real reductive Lie groups
are quasi-complete. In this section we show that it is su‰cient to consider the semi-
simple ones. The result is a consequence of the following general lemma.

Lemma 3.1. Let G be a locally compact group and suppose that G ¼ ZH, where both Z

and H are closed characteristic subgroups of G and Z is contained in the center of G. If

H is quasi-complete, then so is G.

Proof. Let f be an automorphism of G such that p � fG p for all p A ĜG. Since H and
Z are both characteristic, fðHÞ ¼ H and fðZÞ ¼ Z.

Let p A ĜG and denote by Hp the Hilbert space of p. Then, since p is irreducible
and Z is central, pðzÞ is a multiple of the identity for each z A Z. Thus every pðHÞ-
invariant subspace of Hp is already pðGÞ-invariant, whence pjH is irreducible.
Clearly, pjH � fjHG pjH. Moreover, since every character w A ðZXH Þ̂ extends to a
character w A ẐZ (see [HR]), when p varies in ĜG, the restrictions pjH vary in all ĤH.
Hence, by hypothesis, there exists h0 A H such that fðhÞ ¼ h�10 hh0 for all h A H.

We claim that fjZ ¼ IdZ. Since the characters of Z separate the points of Z (see
[HR]), it su‰ces to show that w � fjZ ¼ w for all w A ẐZ. Fix w A ẐZ. There exists a
unitary representation p of G such that pjZ is a multiple of w, that is, hpðzÞw; hi ¼
wðzÞhw; hi for all x; h A Hp. For example, the induced representation p ¼ Ind G

Z ðwÞ has
this property. Let U be a unitary operator in Hp such that p � fðxÞ ¼ U�1pðxÞU for
all x A G. Then, for any x A Hp with kxk ¼ 1 and z A Z

wðzÞ ¼ wðzÞhUx;Uxi ¼ hpðzÞUx;Uxi

¼ hU�1pðzÞUx; xi ¼ hðp � fÞðzÞx; xi ¼ wðfðzÞÞ:

This proves the above claim. It follows that fðzhÞ ¼ fðzÞfðhÞ ¼ zh�10 hh0 ¼ h�10 ðzhÞh0
for all z A Z and h A H, as required.

Corollary 3.2. Let G be a connected linear real reductive group. Then G is quasi-

complete if the semisimple subgroup Gs is quasi-complete.

Proof. Let G be a connected linear real reductive Lie group. Then G decomposes as
the commuting product

G ¼ ZðGÞ0Gs;

where ZðGÞ is the center of G and Gs is the connected semisimple subgroup of G with
Lie algebra ½g; g�. By applying Lemma 3.1 to Z ¼ ZðGÞ0 and H ¼ Gs we obtain the
desired result.
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4 The case of equal-rank connected linear real reductive Lie groups

In this section we consider non-compact connected linear real reductive Lie groups G
which satisfy the ‘‘equal-rank’’ condition rankðKÞ ¼ rankðGÞ, where K is a maximal
compact subgroup of G. We show that they are quasi-complete by using their discrete
series representations. The proof generalizes the one for compact connected Lie
groups, which is a straightforward application of the Highest Weight Theorem. The
reference for this section is [Kn1], Ch. 9, Thm. 9.20.

Fix a maximal compact subgroup K of G and a compact Cartan subgroup T sat-
isfying T HK HG. Denote by gC and kC the complexifications of g and k respectively,
and by k the conjugation of gC with respect to g. Denote by D ¼ DðgC; tCÞ and DK ¼
DðkC; tCÞ the root systems of gC and kC with respect to tC. For a A D, denote by ga

the corresponding root space in gC. Denote by W and WK the Weyl groups generated
by the reflections with respect to the roots in D and DK respectively. Both groups act
on it. Since WK HW , each WK -chamber contains a union of W -chambers.

For a fixed positive system DþHD, a positive system can be chosen in DK so that
DþK ¼ DK XDþ. In terms of Weyl chambers this corresponds to taking the positive
chamber for W inside the positive chamber for WK . Denote by rD and rDK

the half
sum of the positive roots in Dþ and DþK respectively. Let l A t� be a non-singular
weight with respect to D, i.e. such that hl; ai0 0, for all a A D. Here h ; i is the
restriction of the Killing form of gC. We denote by Dþl ¼ fa A D j ha; lib 0g the
positive system in D determined by l and by DþK;l the compatible positive system in
DK . The next lemma generalizes the result which characterizes inner automorphisms
of a compact connected Lie group as those leaving a maximal torus pointwise fixed
(cf. [Lo], Ch. 6, Thm. 4.5).

Lemma 4.1. Let G be a connected non-compact linear real semisimple Lie group sat-

isfying the equal rank condition. Let T HK HG be a compact Cartan subgroup, and

let f A AutðGÞ be such that

fðxÞ ¼ x Ex A T :ð4:1Þ

Then f is an inner automorphism of G. More precisely, f ¼ Adx0 , for some x0 A T .

Proof. The proof is similar to the proof of [Lo], Ch. 6, Thm. 4.5 and is omitted.

Corollary 4.2. Let f A OutðGÞ be such that fðKÞ ¼ K . Then fjK A OutðKÞ.

Proof. Assume by contradiction that fjK is inner. By [Lo], Ch. 6, Thm. 4.5, there
exists a maximal torus T HK which is left pointwise fixed by fjK . Since T is also a
maximal torus of G, by Lemma 4.1, f is an inner automorphism of G. This contra-
dicts the assumptions and the lemma follows.

Proposition 4.3. Let G be a non-compact connected linear real semisimple Lie group

satisfying the equal-rank condition. Let f A AutðGÞ be an automorphism with the prop-
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erty that p and p � f are equivalent for every irreducible unitary representation p of G.

Then f is an inner automorphism of G. In short, G is quasi-complete.

Proof. Let T HKHG be a compact Cartan subgroup of G. Modulo InnðGÞ, we can
assume fðKÞ ¼ K , fðTÞ ¼ T , and fðitþÞ ¼ itþ, where itþ is a fixed positive Weyl
chamber with respect to WK . Under these assumptions, f induces a map of the dual
space t� into itself, given by l 7! l � f, for l A t�. Let pl be a discrete series repre-
sentation of G, with Harish-Chandra parameter l (see [Kn1], Ch. IX, Sect. 7). Recall
that l A t� is a non-singular weight, such that lþ rDþ

l
is analytically integral. The

restricted representation pljK contains with multiplicity one the lowest K-type

L0 ¼ lþ rDþ
l
� 2rDþ

K ; l

and the other K-types are of the form

L 0 ¼ L0 þ
P

a ADþ
l

naa; na A Zb0:

Consider now the unitary representation pl � f. One has that l � f is a regular weight
with respect to D and fðDþl Þ ¼ Dþl�f. In particular, rDþ

l�f
¼ rDþ

l
and l � fþ fðDþl Þ is

analytically integral. Moreover, since fðKÞ ¼ K , one also has fðDþK ;lÞ ¼ DþK;l�f and
rDþ

K; l�f
¼ rDþ

K; l
. The restricted representation ðpl � fÞ jK contains with multiplicity one

the K-type

L0 � f ¼ l � fþ rDþ
l
� f� 2rDþ

K; l
� f ¼ l � fþ rDþ

l�f
� 2rDþ

K; l�f

and for the other K-types we have

L 0 � f ¼ L0 � fþ
P

a ADþ
l

naa � f ¼ L0 � fþ
P

a�f ADþ
l�f

naa � f; na A Zb0:

In other words, L0 � f is the lowest K-type for pl � f. Suppose now that pl and pl � f
are equivalent representations. Then pl � f is a discrete series representation with
Harish-Chandra parameter l � f. In particular, l and l � f lie on the same WK -orbit.
On the other hand, since l and l � f lie on the same Weyl chamber with respect to
WK and fjK is an outer automorphism of K , it follows that

l ¼ l � f:ð4:2Þ

Observe that Harish-Chandra parameters of discrete series representations of G

include non-singular weights of the form

m ¼ lþ
P

a ADþ
l

naa; na A Zb0;
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provided that Dþm ¼ Dþl . If p and p � f are equivalent for every unitary representation
p of G, and in particular for every discrete series representation pl of G, equation
(4.2) implies that fjT 1 IdT . By Lemma 4.1, f is an inner automorphism of G and
the proposition follows.

Corollary 4.4. By Proposition 4.3 and Corollary 3.2, equal-rank connected linear real

reductive Lie groups are quasi-complete.

Remark 4.5. The result of Corollary 4.4 could have also been obtained directly. Dis-
crete series representations r of an equal-rank connected linear real reductive Lie
group G are parametrized by pairs ðl; wÞ, where l is the Harish-Chandra parameter
of the dicrete series representation rjGs of Gs, w is a character of ZðGÞ0 and on the
finite group ZðGÞ0 XGs the restriction of rjGs coincides with the scalar character
determined by w. Two discrete series representations rl;w and rl 0;w 0 are equivalent
if and only if w ¼ w 0 and the parameters l; l 0 are conjugate by WGðtÞ (see [Kn1],
p. 469–470).

5 The case of arbitrary connected linear real reductive Lie groups

In this section, using the results of sections 3 and 4, we prove that an arbitrary con-
nected linear real reductive Lie group G is quasi-complete.

Fix a maximal compact subgroup K of G. Let y be the Cartan involution of g with
Cartan decomposition g ¼ kl p. Fix a maximally split y-stable Cartan subalgebra
h ¼ sl a0, where a0 is a maximal abelian subspace in p and sH k. Denote by
m0 ¼ zkða0Þ the centralizer of a0 in k. Then m0 is a compact reductive subalgebra

m0 ¼ zðm0Þl ½m0;m0�;

with center zðm0Þ and semisimple subalgebra ½m0;m0�. If s 0 is a Cartan subalgebra of
½m0;m0�, then

s ¼ zðm0Þl s 0;

is a Cartan subalgebra of m0. Denote by M0 ¼ ZKða0Þ the centralizer of a0 in K. One
has that M0 is a compact reductive group with Lie algebra m0, generally discon-
nected. One can write M0 ¼ F �M 0

0 , where F ¼ K X expðia0Þ is a finite abelian group
of involutive elements contained in the center of M0 (see [Kn2], Thm. 7.53, and
[Kn1], p. 468). Let D ¼ DðgC; hCÞ be the root system of gC with respect to hC. Denote
by D0 the subsystem of imaginary roots, i.e. the roots in D which vanish identically
on a0. Then

mC
0 ¼ sC l

P
a AD0

ga and ½m0;m0�C ¼ ðs 0ÞC l
P
a AD0

ga:

Let S ¼ Sðg; a0Þ be the restricted root system of g with respect to a0. For l A S, denote
by gl the corresponding root space in g.
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Fix a basis of hR ¼ isl a0, consisting of a basis of a0 followed by a basis of is. The
lexicographic ordering defines compatible notions of positivity on S, D0 and D. For
roots with non-zero restrictions to a0, one has that a A Dþ if and only if aja0 A Sþ.
Similarly, for roots vanishing identically on a0, one has that a A Dþ if and only if
a A Dþ0 . Denote by aþ0 , h

þ
R and isþ the corresponding positive Weyl chambers in a0,

hR and is respectively.

Let P0 be the minimal parabolic subgroup associated with Sþ. Then P0 ¼M0A0N0,
where A0 ¼ exp a0 and N0 ¼ exp n0, for n0 ¼

L
l ASþ g

l. Every parabolic subgroup
of G is conjugate to a unique ‘‘standard’’ parabolic subgroup Q ¼MAN containing
P0. The Lie algebra of Q decomposes as q ¼ ml al n, where aH a0, nH n0 and
mIm0 (Langlands decomposition). A standard parabolic subgroup Q ¼MAN is
called cuspidal if m possesses a compact Cartan subalgebra.

Lemma 5.1. Let G be a connected non-compact linear real semisimple Lie group. Let

f A AutðGÞ. Then, modulo InnðGÞ, one can assume:

fðKÞ ¼ K fðkÞ ¼ k fðpÞ ¼ p

fða0Þ ¼ a0 fðaþ0 Þ ¼ aþ0 fðsÞ ¼ s fðisþÞ ¼ isþ:

Proof. Since all maximal compact subgroups in G are conjugate by InnðGÞ, one
has that f�1ðKÞ ¼ AdgðKÞ, for some g A G, and ðf � AdgÞðKÞ ¼ K . In particular,
ðf � AdgÞðkÞ ¼ k and ðf � AdgÞðpÞ ¼ p. Equivalently, f � Adg commutes with the
Cartan involution y on g. Since all maximal abelian subspaces a0 H p are conju-
gate by InnðKÞ, one has that ðf � AdgÞ�1ða0Þ ¼ Adkða0Þ, for some k A K . Then
ðf � Adg � AdkÞða0Þ ¼ a0. Since the Weyl group WKða0Þ acts transitively on the set
of Weyl chambers in a0, by a similar argument one has ðf � Adg � Adk � AdwÞðaþ0 Þ
¼ aþ0 , for some w A NKða0Þ. In particular, ðf � Adg � Adk � AdwÞðM0Þ ¼M0 and
ðf � Adg � Adk � AdwÞðM 0

0 Þ ¼M 0
0 . Since all Cartan subalgebras in m0 are conjugate

by InnðM 0
0 Þ, there exists m A M 0

0 such that ðf � Adg � Adk � Adw � AdmÞðsÞ ¼
s. Finally, since the Weyl group WM 0

0
ðsÞ acts transitively on the set of Weyl cham-

bers in is, one also has that ðf � Adg � Adk � Adw � Adm � AdvÞðisþÞ ¼ isþ, for some
v A WM 0

0
ðsÞ.

Corollary 5.2. Let f A AutðGÞ be an automorphism of G satisfying the conditions of

Lemma 5.1. Then fðDþÞ ¼ Dþ. In particular, f induces a (possibly trivial) permuta-

tion of the simple roots in Dþ, commuting with the conjugation action kðaÞðHÞ :¼
aðHÞ, H A h, a A D.

(a) If such a permutation is non-trivial, then f either induces a non-trivial permutation

of the simple restricted roots in Sþ or it restricts to an outer automorphism of M 0
0 and

of M0, i.e.

fjM 0
0 A OutðM 0

0 Þ; fjM0 A OutðM0Þ:
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(b) If such a permutation is trivial, then f A InnðgCÞ and fjh ¼ Idh. As a consequence, f

preserves all standard y-stable Cartan subalgebras of g. Moreover, f preserves all stan-

dard parabolic subgroups Q containing P0 and respects their Langlands decomposition.

Proof. Let a A Dþ. If aja0 2 0, then aja0 A Sþ. By Lemma 5.1, aja0 � f A Sþ and
a � f A Dþ. If aja0 1 0, then a A Dþ0 . By Lemma 5.1, a � f A Dþ0 and in particular
a � f A Dþ.

(a) Assume that f induces a non-trivial permutation of the simple roots in Dþ. Since
fða0Þ ¼ a0, one has that fðM0Þ ¼M0 and fðM 0

0 Þ ¼M 0
0 . Also recall that the restric-

tions of the simple roots in Dþ map surjectively onto the simple roots in Sþ (cf. [He], p.
585). Suppose that f induces a trivial permutation of the simple roots in Sþ. Since
such roots span a�0, one has that fja0 1 Ida0 . On the other hand, since fjhR 2 IdhR , it
follows that fjs2 Ids. Moreover, fðisþÞ ¼ isþ implies that fðDþ0 Þ ¼ Dþ0 . At this point,
eitherf induces anon-trivial permutationof the simple roots inDþ0 orf acts non-trivially
on zðm0Þ. In both cases, f A OutðM 0

0 Þ. Since f acts non-trivially onM 0
0 , while the finite

group F centralizesM 0
0 , one also has that f A OutðM0Þ.

(b) If f induces a trivial permutation of the simple roots in Dþ, it acts as the identity
on the positive Weyl chamber hþR and on h. In particular it stabilizes all root spaces
ga, for a A D, and all y-stable standard Cartan subalgebras in g (see [Su]). Moreover,
since f acts as the identity on a0, it also acts trivially on the simple restricted roots in
Sþ and stabilizes the restricted root spaces gl, for l A S. As a consequence, f sta-
bilizes the minimal parabolic subgroup P0 ¼M0A0N0 associated to Sþ. The auto-
morphism f also stabilizes all standard parabolic subgroups Q containing P0 and
respects their Langlands decomposition (cf. [Kn1], Ch. 5, Sect. 5).

For every outer automorphism of G, we now construct an irreducible unitary repre-
sentation p of G with the property that p � f is not unitarily equivalent to p. We do
this by using parabolic induction. Let Q ¼MAN be a standard parabolic subgroup
containing P0. Denote by Sðg; aÞ the set of restricted roots of g with respect to a and
by Sþðg; aÞ the set of positive roots determined by n (i.e. the roots whose root spaces
gm lie in n). Define r ¼ 1

2

P
Sþðg;aÞðdim gmÞm.

Let s : ðM;V sÞ be an irreducible unitary representation of M and ein a unitary char-
acter of A, for some real valued linear functional n A a�. Consider the following sub-
space of continuous functions on G with values in V s

C s; n :¼ f f A CðG;V sÞ j f ðgmanÞ ¼ sðmÞ�1e�ðinþrÞ logðaÞ f ðgÞ;man A MAN; g A Gg;

with norm

k f k2 :¼
ð
K

k f k2V s

and G-action given by

g � f ðxÞ :¼ f ðg�1xÞ g A G; f A C s; n:
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Denote by H s; n the Hilbert space given by the completion of C s; n with respect to the
above norm and by ps; n :¼ Ind G

MANðsn ein n 1Þ the corresponding representation of

G on H s; n. One has that Ind G
MANðsn ein n 1Þ is a unitary representation of G (see

[Kn1], p. 169).

Lemma 5.3. Let f A AutðGÞ be an automorphism satisfying fðKÞ ¼ K . Assume in

addition that fðQÞ ¼ Q and precisely that fðM Þ ¼M, fðAÞ ¼ A and fðNÞ ¼ N.
Then Ind G

MANðsn ein n 1Þ � f is a unitary representation of G, unitarily equivalent

to Ind G
MANððs � fÞn ein�f n 1Þ.

Proof. Consider the map

A : H s; n ! H s�f; n�f; Að f Þ 7! f � f:

The map A is densely defined on H s; n, with domain containing C s; n. For every
f A C s; n, the image Að f Þ satisfies the functional equation

Að f ÞðxmanÞ ¼ f ðfðxÞfðmÞfðaÞfðnÞÞ ¼ sðfðm�1ÞÞe�ðinþrÞ logðfðaÞÞf ðfðxÞÞ

¼ sðfðm�1ÞÞe�ðin�fþrÞ logðaÞAð f ÞðxÞ:

In other words, Að f Þ A C s�f; n�f, for all f A C s; n. Note that we have used the fact that
fðSþðg; aÞÞ ¼ Sþðg; aÞ and therefore r � f ¼ r. Moreover, the map A is a densely
defined intertwining operator between ps; n � f (acting on H s; n) and ps�f; n�f, namely

Aððps; n � fÞ � f ÞðxÞ ¼ ps�f; n�f � Að f ÞðxÞ; Ef A C s; n; Ex A G:

Indeed, evaluating the left-hand side and the right-hand side of the above equality
we get

Að f � L
fðgÞ�1ÞðxÞ ¼ ð f � LfðgÞ�1 � fÞðxÞ ¼ f ðfðgÞ�1fðxÞÞ;

and

ðAð f Þ � Lg�1ÞðxÞ ¼ ð f � f � Lg�1ÞðxÞ ¼ f ðfðg�1xÞÞ ¼ f ðfðgÞ�1fðxÞÞ;

respectively. Since f preserves the Haar measure on K , one has that kAð f Þk2 ¼ k f k2.
Hence A can be extended to a unitary operator

A : H s; n ! H s�f; n�f

intertwining ps; n � f with ps�f; n�f.

Proposition 5.4. Let G be a non-compact connected linear real semisimple Lie group.

Let h ¼ sl a0 be a maximally split Cartan subalgebra of g. Let f A AutðGÞ be an
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automorphism satisfying the conditions of Lemma 5.1 and of Corollary 5.2 (a). Then

there exists an irreducible unitary representation p A ĜG of the principal series such that

p � fZ p.

Proof. Suppose that f induces a non-trivial permutation of the simple restricted roots.
One can find a regular n A a�0 (i.e. hn; ai0 0, for all a A Sðg; a0Þ) such that n0 n � f.
Then, for an arbitrary s A M̂M0, the induced representation p ¼ Ind G

P0
ðsn ein n 1Þ is

an irreducible unitary representation of G (see [Kn1], Thm. 7.2). Moreover, by
Lemma 5.3 and [Kn1], p. 174, the representation p has the property that p � fZ p.

Suppose now that f restricts to an outer automorphism of M 0
0 and of M0. Let s

be an irreducible unitary representation of M 0
0 such that s � fjM 0

0 Z s. Such a rep-
resentation exists because compact connected Lie groups are quasi-complete. Let w
be the character determined by the restriction of s to ZðM 0

0 Þ
0. We can extend s

from M 0
0 to M0, by extending w from F XZðM 0

0 Þ
0 to F . In this way, we get a repre-

sentation of M0 which satisfies the condition s � fjM0 Z s. For every regular n A a�0 ,
the induced representation p ¼ Ind G

P0
ðsn ein n 1Þ is an irreducible unitary represen-

tation of G (by [Kn1], Thm. 7.2) with the property that p � fZ p (by Lemma 5.3 and
[Kn1], p. 174).

Lemma 5.5. Let G be a connected non-compact linear real semisimple Lie group. Let

f A AutðGÞ be an automorphism satisfying the conditions of Lemma 5.1 and of Corol-

lary 5.2 (b). If f A OutðGÞ, then fjK A OutðKÞ.

Proof. First we show that it is su‰cient to prove Lemma 5.5 for a real simple group
G with simply connected complexification GC. Embed G in a complexification GC, as
the connected component of the identity of a real form of GC. Let k be the corre-
sponding conjugation of GC. Denote by ~GGC the universal covering group of GC and
by �GG the real form of ~GGC with respect to the lifted conjugation ~kk. The group �GG is
always connected and G ¼ �GG=G, for some central subgroup GH �GG. Let f be an
automorphism of G satisfying the conditions of Lemma 5.1 and of Corollary 5.2 (b).
It follows that f is the restriction to G of an inner automorphism of GC commuting
with k, namely f ¼ Adz, for some z A GC. In the same way, there exists ~zz A ~GGC such

that ~ff ¼ Ad~zz is an inner automorphism of ~GGC preserving �GG and which is the lifting of
f. If ~ff A Innð �GGÞ, then also f A InnðGÞ. Recall that a simply connected complex sem-
isimple Lie group decomposes as the direct product

~GGC ¼ ~GGC
1 � � � � � ~GGC

n ;

where each ~GGC
i is a simply connected complex simple group. Likewise, a real form �GG

of ~GGC decomposes as the direct product of real forms of the following two types:

– �GGi ,! ~GGC
i , with

�GGi real simple and ~GGC
i complex simple;

– �GGi ¼ ~GGC
j ,! ~GGC

j � ~GGC
j, with ~GGC

j complex simple embedded in ~GGC
j � ~GGC

j as the
diagonal subgroup. Here ~GGC

j denotes a copy of ~GGC
j with the opposite complex

structure.
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By the above remarks, G can be assumed to be a real simple group with simply con-
nected complexification GC. If G satisfies the equal-rank condition, the lemma fol-
lows from Corollary 4.2. Suppose now that G is a simple group with rankðKÞ <
rankðGÞ. Assume by contradiction that fjK ¼ AdzjK ¼ Adk, for some k A K . Then
k�1z A ZGCðKÞ. We claim that ZGCðKÞ ¼ ZðGCÞ. The inclusion ZðGCÞHZGCðKÞ is
obvious. For the opposite inclusion let x A ZGCðKÞ and let k be an arbitrary regular
elliptic element in G (one such element exists). If x centralizes k, it centralizes a y-
stable maximally compact Cartan subgroup H of G containing k. Let h ¼ hk l hp be
the Cartan decomposition of the Lie algebra of H. Then x centralizes K ; hp andS

k AK Adkhp. Since G is simple and AdK acts irreducibly on p, the element x cen-
tralizes p and also G ¼ K exp p. Therefore x A ZGCðGÞ ¼ ZðGCÞ and the claim is
proved. It follows that k�1z A ZGCðKÞ ¼ ZðGCÞ and f ¼ Adz ¼ Adk, contradicting
the assumption that f A OutðGÞ.

Let Q ¼MAN be a maximal standard cuspidal parabolic subgroup of G containing
P0. Unless G is equal-rank, M is a proper subgroup of G. If Q ¼ P0, then g has a
unique conjugacy class of Cartan subalgebras and M ¼M0 is a connected compact
reductive group. If Q0P0, then M is a non-compact linear real reductive group, sat-
isfying the equal-rank condition. Moreover, M is non-abelian, with non-trivial semi-
simple part, and is generally disconnected: M ¼M 0 � F , where F HK is a finite abe-
lian group (cf. [Kn1], p. 468–469, [Kn2], Prop. 7.87). If tHmX k is a compact
Cartan subalgebra of m, then h ¼ tl a is a maximally compact Cartan subalgebra
of g. Since DðgC; hCÞ contains no real roots, it follows that F XZðMÞ ¼ 1 (see [Kn1],
p. 468). Since t is also a Cartan subalgebra of k, there is an inclusion of Weyl groups
WM 0ðtÞHWMðtÞHWKðtÞ. Finally observe that by Corollary 5.2 (b), the compact
Cartan subalgebra tHm can be assumed f-stable.

Corollary 5.6. Let Q be a standard maximal cuspidal parabolic subgroup of G.

Under the assumptions of Lemma 5.5, if f A OutðGÞ then fjM A OutðM Þ and

fjM 0 A OutðM 0Þ.

Proof. By Lemma 5.5, if f A OutðGÞ, then fjK A OutðKÞ. Since fjK A OutðKÞ, one
has that fjt2 Idt, by [Lo], Ch. 6, Thm. 4.5. Moreover, the action of fjt does not
coincide with the action of any Weyl group element w A WKðtÞ (otherwise
Adw�1 � fjt1 Idt and fjK would be inner on K , by [Lo], Ch. 6, Thm. 4.5). In partic-
ular, the action of fjt does not coincide with the action of any Weyl group element
in WMðtÞ nor in WM 0ðtÞ. Therefore fjM A OutðM Þ and fjM 0 A OutðM 0Þ.

Proposition 5.7. Let G be a connected non-compact linear real semisimple Lie group,

not equal-rank. Let f A AutðGÞ be an automorphism satisfying the conditions of

Lemma 5.1 and of Corollary 5.2 (b). Then there exists an irreducible unitary repre-

sentation p A ĜG such that p � fZ p.

Proof. Let Q ¼MAN be a maximal cuspidal parabolic subgroup. By Corollary 5.2
(b) we have that fðM Þ ¼M and by Corollary 5.6 that fjM A OutðM Þ. Assume first
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that Q ¼ P0. Since compact connected groups are quasi-complete, there exists s A M̂M

such that s � fjMZ s. For an arbitrary regular n A a�0 , the induced representation
p ¼ Ind G

P0
ðsn ein n 1Þ is an irreducible unitary principal series representation of G

(by [Kn1], Thm. 7.2) with the required properties: by Lemma 5.3, p � f is equivalent
to Ind G

P0
ðs � fn ein n 1Þ, and by [Kn1], p. 174, one has that p � fZ p.

Assume now that Q0P0. We claim that there exists a unitary representation r in the
discrete series of M with the property that r � fjMZ r. (see [Kn1], Ch. XII, Sect. 8
for the appropriate definitions). Start with a unitary representation r0 in the discrete
series of M 0, with the property that r0 � fjM 0 Z r0. Such a representation exists
because equal-rank connected linear real reductive groups are quasi-complete (cf.
Proposition 4.3, Corollary 4.4, Remark 4.5). Recall that discrete series representa-
tions r0 of M 0 are parametrized by pairs ðl; wÞ, where l is the Harish-Chandra
parameter of the discrete series representation rjðM 0Þs of ðM 0Þs, w is a character of
ZðM 0Þ0 and on the finite group ZðM 0Þ0 X ðM 0Þs the restriction of rjðM 0Þ s coincides
with the scalar character determined by w. Hence, there exists r0 ¼ r0l;w such that

either w � f0 w or l � f does not belong to the WM 0ðtÞ-orbit of l. Since M 0 has finite
index in M and the action of fjt does not coincide with the action of any Weyl group
element in WMðtÞ, one can actually choose r0l;w such that either w � f0 w or l � f
does not belong to the WMðtÞ-orbit of l.

Consider next the discrete series representation of M given by rl;w :¼ IndM
M 0ðr0l;wÞ.

We claim that rl;w � fZ rl;w. Observe that rl;w � f is equivalent to rl�f;w�f ¼
IndM

M 0ðr0l�f;w�fÞ. On the other hand, by [Kn1], Prop. 12.32, two discrete series repre-
sentations rl;w and rl 0;w 0 of M are equivalent if and only if w 0 ¼ w and l 0 ¼ wl, for
some w A WMðtÞ. So the claim follows.

Finally, consider the induced representation p ¼ Ind G
Qðrl;w n ein n 1Þ. For an arbi-

trary regular n A a�, one has that p is an irreducible unitary tempered representation
of G (cf. [Kn1], Thm. 14.15). Moreover, since l is a regular weight, p is induced from
‘‘non-degenerate’’ data ([Kn1], p. 611). By Lemma 5.3 and [Kn1], Thm. 14.91, p has
the property that p � fZ p.

By the results of the previous sections, Corollary 3.2, Proposition 5.4 and Proposition
5.7, we finally obtain our main result.

Theorem 5.8. Let G be a connected linear real reductive Lie group. Let f A AutðGÞ be
an automorphism with the property that the representations p and p � f are unitarily

equivalent, for every irreducible unitary representation p of G. Then f is an inner

automorphism of G. In short, G is quasi-complete.

6 The case of finite groups

Finite abelian groups do not admit any non-trivial inner automorphisms. They are
quasi-complete, since characters separate points. On the other hand, arbitrary finite
groups are not necessarily quasi-complete. An example of a finite group which is not
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quasi-complete was given by G. C. Wall (cf. [Hu], p. 22). In this section we show that
this counterexample is not isolated, but fits into a more general pattern.

We recall some elementary notions from group cohomology (cf. [Se], Ch. VII).

Definition 6.1. Let G be a group, and let A be a G-module. A 1-cocycle is a function
s : G ! A satisfying the condition

sðg � g 0Þ ¼ sðgÞ þ gsðg 0Þ; for all g; g 0 A G:

The 1-cocycles form a group denoted by Z1ðG;AÞ.

Definition 6.2. A 1-coboundary is a function s : G ! A of the form

sðgÞ ¼ g � a� a;

for some fixed a A A independent of g A G. The 1-coboundaries form a subgroup of
the group of 1-cocycles. It is denoted by B1ðG;AÞ.

The first cohomology group of G with values in A is the quotient group

H 1ðG;AÞ ¼ Z1ðG;AÞ=B1ðG;AÞ:

To any exact sequence of G-modules

0! A!f B!c C ! 0ð6:1Þ

there is associated an exact cohomology sequence

0! AG ! BG ! CG !d H 1ðG;AÞ ! H 1ðG;BÞ ! H 1ðG;CÞ ! � � � ;

where AG;BG;CG denote the subgroups of G-invariant elements of A;B;C. The
connecting homomorphism d : CG ! H 1ðG;AÞ is defined in the following way. Let
c A CG. By the exactness of (6.1), one has c ¼ cðbÞ, for some b A B. Since c is G-
invariant, we have that g � b� b A kerðcÞ ¼ ImðfÞ for all g A G. Then define dðcÞ to
be the 1-cocycle G ! A that maps g A G to the unique a A A for which fðaÞ ¼
g � b� b.

Our examples of finite groups G that are not quasicomplete, are constructed as fol-
lows. Let R be a finite commutative local ring with identity 1, maximal ideal M and
residue field F ¼ R=M (see [AM]). Consider the multiplicative subgroup of the units
R�

U :¼ fu A R; u A 1þMg:

The additive group R is a U-module by multiplication. Now define

G :¼ 1 R

0 U

� �
¼ 1 x

0 u

� �
: x A R; u A U

� �
:
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Then G is a finite group. It is non-abelian when M0 0 or, equivalently, when R is not
a field. One can easily check that the map H 1ðU ;RÞ ! OutðGÞ given by s 7! fs
where

fs
1 x

0 u

� �
¼ 1 xþ sðuÞ

0 u

� �
;

is a well defined injective homomorphism. Indeed, fs is an automorphism of G if and
only if s is a 1-cocycle and it is inner if and only if s is a 1-coboundary.

Next we show that for certain choices of the ring R and the 1-cocycle s, the auto-
morphism fs preserves conjugacy classes.

Definition 6.3. A finite commutative local ring R with maximal ideal M and residue
field F ¼ R=M is called Gorenstein if the ideal

m ¼ AnnðMÞ ¼ fx A R j xy ¼ 0; for all y A Mg

is the unique minimal ideal of R.

When R is Gorenstein, the ideal m is by minimality a one-dimensional F-vector
space.

Consider the exact sequence of U-modules

0! m! R! R=m! 0

and the associated cohomology sequence

� � � ! ðR=mÞU ! H 1ðU ;mÞ ! H 1ðU ;RÞ ! � � � :

Proposition 6.4. If R is a finite local Gorenstein ring, then the 1-cocycles s in the image

of H 1ðU ;mÞ ! H 1ðU ;RÞ have the property that fsðgÞ is conjugate to g, for all g A G.

Proof. Let g ¼
�
1 x
0 u

�
A G and let s be a 1-cocycle in the image of the map

H 1ðU ;mÞ ! H 1ðU ;RÞ. If u ¼ 1, then sðuÞ ¼ 0 and fsðgÞ ¼ g. If u0 1, then the
minimal ideal m is contained in ðu� 1ÞR and in particular sðuÞ ¼ ðu� 1Þy, for some
y A R. Then

fs
1 x

0 u

� �
¼ 1 xþ ðu� 1Þy

0 u

� �
¼ 1 y

0 1

� �
1 x

0 u

� �
1 �y
0 1

� �

as required.

It follows from Proposition 6.4 that the group G associated to a finite local Goren-
stein ring is not quasi-complete whenever the image of the natural map

R. Conti, C. D’Antoni, L. Geatti500



H 1ðU ;mÞ ! H 1ðU ;RÞð6:2Þ

is not zero. The next proposition gives a characterization of the local Gorenstein
rings for which this map is zero. For any prime number p, let Fp denote the finite
field with p elements. If R is a ring and M1;M2 are R-modules, denote by
HomRðM1;M2Þ the group of homomorphisms between M1;M2 commuting with the
R-action.

Proposition 6.5. Let R be a finite local Gorenstein ring with maximal ideal M and

minimal ideal m. Then the natural map H 1ðU ;mÞ ! H 1ðU ;RÞ is zero if and only if

R=M ¼ Fp and ð1þMÞp ¼ 1þM2.

Proof. The map H 1ðU ;mÞ ! H 1ðU ;RÞ is zero if and only if the map ðR=mÞU !
H 1ðU ;mÞ is surjective. Recall that the connecting homomorphism d : ðR=mÞU !
H 1ðU ;mÞ maps x to the 1-cocycle given by u 7! ðu� 1Þx for all u A U . We write d

as the composite of several homomorphisms.

ðR=mÞU !G AnnðM2Þ=m ,!
g

HomRðM=M2;mÞ Hi HomZðM=M2;mÞ???yd G

H 1ðU ;mÞ ¼ HomZð1þM;mÞ  -
j

HomZðð1þMÞ=ð1þM2Þ;mÞ

���!
Here the homomorphism ðR=mÞU ! AnnðM2Þ=m is the inverse of the map induced
by the inclusion of AnnðM2Þ in R. The map g sends x to the homomorphism
given by y 7! xy, for all y A M=M2. It is injective. The diagonal homomorphism
maps an additive map f to the multiplicative map given by y 7! f ðy� 1Þ. It
is easily seen to be an isomorphism. Finally, note that U ¼ 1þM and that
H 1ðU ;mÞ ¼ HomZð1þM;mÞ because the action of U on m is trivial.

It follows that d is surjective if and only if the three maps g, i and j are surjective.
The map g is a bijection. Indeed, since R is Gorenstein, the functor HomRð�;RÞ
is exact. Applying it to the exact sequence 0!M=M2 ! R=M2 ! R=M! 0, we
obtain the exact sequence

0! m! AnnðM2Þ !g
0

HomRðM=M2;mÞ ! 0;

with g 0 inducing g. Here we used the fact that for every ideal I HR, the map
HomRðR=I ;RÞ ! AnnðIÞ given by f 7! f ð1Þ is an isomorphism and the fact that
the image of any homomomorphism f : M=M2 ! R is automatically contained in
AnnðMÞ ¼ m, so that HomRðM=M2;RÞ ¼ HomRðM=M2;mÞ. We conclude that g is
bijective. The inclusion map i is a bijection if and only if any homomorphism
M=M2 ! m is automatically R-linear. Since both M=M2 and m are F-vector spaces,
this happens precisely when F is equal to the prime field Fp. The map j is surjective if
and only if every homomorphism f : 1þM! mGF has 1þM2 in its kernel. Since
mGF is killed by p, this happens precisely when 1þM2 H ð1þMÞp.
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This proves the proposition.

Remark 6.6. Finally we observe that there are plenty of finite local Gorenstein rings:
Z=pnZ, for p prime, is a finite local Gorenstein ring with minimal ideal m generated
by pn�1. If R is a finite local Gorenstein ring and f A R½X � is a monic polynomial
for which R½X �=ðfÞ is local, then the ring R½X �=ðfÞ is Gorenstein as well. Examples
of finite groups G which are not quasi-complete arise whenever at least one of the two
conditions in Proposition 6.5 is not fulfilled.

An example where the first condition is not satisfied, (i.e. the residue field R=M is
not a prime field) is given by R ¼ F4½X �=ðX 2Þ. In this case, M ¼ m ¼ ðX Þ and U ¼
1þ ðXÞ. The corresponding group G has cardinality jGj ¼ 64. In Wall’s example the
second condition is not fulfilled: ð1þMÞp 0 1þM2.

Example 6.7. Wall’s example corresponds to the ring R ¼ Z=8Z with maximal ideal
M ¼ ð2Þ and residue field of characteristic p ¼ 2. Since ð1þMÞp is trivial, while
1þM2 is cyclic of order 2, the second condition of Prop. 6.5 is not satisfied. There-
fore the corresponding group G is not quasi-complete.

Explicitly, G is the 32 element group given by

G ¼ 1 x

0 u

� �
: x A Z=8Z; u A f1; 3; 5; 7g

� �
:

The map s : U ! R given by sðuÞ :¼ u2�1
2 is a non-trivial 1-cocycle in H 1ðU ;RÞ.

Since u2�1
2 is divisible by 4, it lies in the image of the map (6.2). The corresponding

map

fs
1 x

0 u

� �
:¼ 1 xþ sðuÞ

0 u

� �

is an involutive outer automorphism of G which preserves every conjugacy class of G.
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