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LATTICES AND LIE ALGEBRAS

LAURA GEATTI

The purpose of these lectures is to explain the connection between complex semisimple Lie
algebras and root lattices. Root lattices form a special family of lattices admitting a large amount of
symmetries. Among them is the lattice LE8 . The link between the above two categories of objects
is provided by the notion of an abstract root system, which is a combinatorial object canonically
associated to a complex semisimple Lie algebra. Root systems were introduced by W. Killing
around 1890 in his attempt to classify complex simple Lie algebras.

We beging by introducing the notion of an abstact root system ∆: it is a finite set of vectors in
a real vector space endowed with a positive definite scalar product. In addition, it is stable under
the orthogonal reflections determined by its elements and satisfies some integrality conditions.

We will show that a root system ∆ admits a base: by definition it is a set of elements which is
a basis of the ambient vector space and whose integral span contains every element of ∆, with
coefficients either all positive or all negative. All such bases are conjugate under the symmetries
of ∆. In this way, the integral span of ∆ coincides with the integral span of any of its bases and it
is indeed a lattice. Its name root lattice comes from being generated by a root system.

The conditions defining a root system are very restrictive. Irreducible root systems are com-
pletely classified: they fall into four infinite families and five exceptional examples. The root
system E8 is one of them, and the lattice LE8 is its associated root lattice.

Later we outline the construction of the root system a complex semisimple Lie algebra. In doing
that an important role is played by the Lie algebra slp2,Cq and its finite dimensional complex
representations.

1. ABSTRACT ROOT SYSTEMS AND ROOT LATTICES.

Let E be an n-dimensional vector space over R, endowed with a positive definite inner product
p , q : E ˆ E Ñ R.

An abstract root system ∆ in E is a finite set with the following properties:

pR1q ∆ spans E and does not contain 0;
pR2q if α P ∆ and cα P ∆, for some c P R, then c “ ˘1;
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pR3q for every α P ∆, the orthogonal reflection

sα : E Ñ E, sαpxq “ x ´ 2
px, αq

pα, αq
α

maps ∆ to itself;
pR4q if α, β P ∆, then 2 pβ,αq

pα,αq
P Z.

A root system in R. A root system in R2: the vertices of a regular hexagon.

The subgroup W of GLpEq generated by the reflections σα, for α P ∆, is called the Weyl group of
the root system ∆. It is a finite group, as it is a subgroup of the permutations of the finite set ∆.

‚ Condition pR3q implies that if α P ∆ then also ´α P ∆.
‚ The integer 2 pβ,αq

pα,αq
is referred to as the Cartan integer cβα. Because of condition pR4q a root system

is a very rigid object. Denote by xαβ the angle between α and β (with respect to the Euclidean
structure of E). Then

2
pβ, αq

pα, αq
and 2

pα, βq

pβ, βq
P Z ñ 2

pβ, αq

pα, αq
¨ 2

pα, βq

pβ, βq
“ 2

|β|

|α|
cos xαβ ¨ 2

|α|

|β|
cos xαβ “ 4pcos xαβq2 P Z.

It follows that
4pcos xαβq2 “ 0, 1, 2, 3, 4

which implies
2 cos xαβ “ 0,˘1,˘

?
2,˘

?
3,˘2.

Let’s look what we find by combining for example

|β|

|α|
2 cos xαβ

looooomooooon

PZ

¨
|α|

|β|
2 cos xαβ

looooomooooon

PZ

“ 2 and 2 cos xαβ “
?
2.

The integers factors on the left-hand side of the first relation above must have the same sign and
one of the two must have modulus 2, say |β|

|α|
2 cos xαβ (and the other one modulus 1). It follows that

cos xαβ “
?
2{2, xαβ “ π{4 and |β| “

?
2|α|.
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In other words, the combination of the integrality conditions forces the angle between α and β

(which are not orthogonal nor parallel) and the ratio between their lengths.

Going through all cases, one finds that for a pair of nonproportional roots α, β P ∆, up to switching
them, the only possibilities are the ones listed in the next table.

Table 1

‚ (a) 2 pβ,αq

pα,αq
“ 0 2 pα,βq

pβ,βq
“ 0 xαβ “ π{2 |β|, |α| arbitrary

‚ (b) 2 pβ,αq

pα,αq
“ 1 2 pα,βq

pβ,βq
“ 1 xαβ “ π{3 |β| “ |α|

‚ (c) 2 pβ,αq

pα,αq
“ ´1 2 pα,βq

pβ,βq
“ ´1 xαβ “ 2π{3 |β| “ |α|

‚ (d) 2 pβ,αq

pα,αq
“ 1 2 pα,βq

pβ,βq
“ 2 xαβ “ π{4 |β| “

?
2|α|

‚ (e) 2 pβ,αq

pα,αq
“ ´1 2 pα,βq

pβ,βq
“ ´2 xαβ “ 3π{4 |β| “

?
2|α|

‚ (f) 2 pβ,αq

pα,αq
“ 1 2 pα,βq

pβ,βq
“ 3 xαβ “ π{6 |β| “

?
3|α|

‚ (g) 2 pβ,αq

pα,αq
“ ´1 2 pα,βq

pβ,βq
“ ´3 xαβ “ 5π{6 |β| “

?
3|α|

Later we will use the following fact.

Lemma 1. Let α, β P ∆ be non-proportional roots. If pα, βq ą 0, then α ´ β is a root. Likewise if
pα, βq ă 0, then α ` β is a root.

Proof. If pα, βq ą 0, then, after possibly switching α and β, we may assume 2 pβ,αq

pα,αq
“ 1 (see above

table). Then α ´ β “ ´sαpβq, which is a root by pR3q. The second statement follows in a similar
way. □

A base of a root system ∆ is a subset Π which is a basis of the vector space E and such that every
element of ∆ can be written as a linear combination of elements of Π with integer coefficients, all
non-negative or all non-positive.

The link between root systems and root lattices is provided by the following theorem.

Theorem 2. A root system ∆ admits a base.
3



Proof. Fix t P E with property that pt, αq ­“ 0, for every α P ∆: for such t one can take any element
in Ez

Ť

α α
K.

Then ∆ “ ∆`
Ť

´∆`, where ∆` “ tα : pt, αq ą 0u: clearly if α P ∆`, then ´α P ´∆`.

Call a root in ∆` simple or indecomposable if it not the sum of roots in ∆`. We claim that every
α P ∆` can be written as a sum of indecomposable roots with non-negative integer coefficients:
if α is indecomposable, we are done. Otherwise write α “ β ` γ, with β, γ P ∆`. Note that
pt, αq “ pt, βq ` pt, γq, with pt, βq, pt, γq ą 0 and strictly smaller than pt, αq. Since ∆ is finite, the set
of numbers tpt, αquαP∆` has a minimum. Hence after finitely many steps we obtain the desired
decomposition.

Denote by Π the set of indecomposable roots in ∆`. We are going to show that Π is a base of ∆.
The above arguments already show that every root in ∆ is a Z-linear combination of elements of
Π, with coefficients either all positive or all negative. It remains to prove that the elements of Π
are linearly independent.

Observe first that pα, βq ď 0, for all α, β P Π: otherwise, if it were pα, βq ą 0, then γ “ α´β would
be a root by Lemma 1. If γ P ∆`, then α “ γ ` β; likewise, if γ P ´∆`, then β “ γ ` α. In both
cases the indecomposability of either α or of β is contradicted.

Now suppose that an R-linear combination of the elements of Π is zero. Collecting the coeffi-
cients with the same sign, we can rewrite it as

ÿ

xαα “
ÿ

yββ

with α1s and β1s contained in disjoint subsets of Π and the coefficients xα and yβ all non-negative.
Set λ :“

ř

xαα “
ř

yββ. Since pα, βq ď 0, for all α, β P Π, α ­“ β, one has

0 ď pλ, λq “ p
ÿ

xαα,
ÿ

yββq “
ÿ

xαyβpα, βq ď 0,

which implies λ “ 0. Now pt, λq “
ř

α xapt, αq “ 0 and pt, αq ą 0 for all α P Π, forces xα “ 0

for all α. In the same way one can show that yβ “ 0 for all β. So the elements of Π are linearly
independent and the proof of the theorem is complete. □

Remark 3. Since a base of a root system ∆ is also a basis of the vector space E, every base has the
same number of elements, equal to the dimension of E. One can show that the Weyl group acts
transitively on the set of bases of ∆ (cf. [Hu], Thm. 10.3, p. 51, or [Se], Thm.2, p.33).

The root lattice L∆ associated to a root system ∆ is by definition the integral span of the elements
of ∆. By the above theorem it is indeed a lattice and by Remark 3 it coincides with the integral
span of any of its bases Π

L∆ :“ SpanZp∆q “ SpanZpΠq.

We will see that different root systems may give rise to isomorphic or homothetic root lattices.
Because of its definition, a root lattice L∆ inherits all the symmetries of the root system ∆. The
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automorphism group of the root system ∆ is given by the semidirect product of the Weyl group
W and S, the group of permutations of ∆ leaving the Cartan integers invariant, namely Autp∆q “

W ¨ S (see [Se], Prop.9, p. 35). Note that, by [Se], Prop.8, p.35, the elements of S are induced by
linear isomorphisms of the vector space E.

Remark 4. The notion of a base of a root system ∆ is more restrictive than the notion of a basis
of the associated lattice L∆: the angle between arbitrary elements of a base Π of ∆ is necessarily
obtuse, equivalently pα, βq ď 0, for all α, β P Π, α ­“ β. In fact, if it were pα, βq ą 0 for some
α, β P Π, then α ´ β would be a root by Lemma 1. This would contradict the definition of a base
of a root system, which requires that every element α P ∆ is an integral combination of elements
of Π, with coefficients either all non-negative or all non-positive.

Bases of root systems in R2, corresponding to cases (c), (e) and (g) in Table 1.

Exercise 5. Let ∆ be a root system in a vector space E with inner product p , q. Then ∆ is also a
root system in E with inner product cp , q, for some c P Rą0. Conversely, let ∆ be a root system in
a vector space E both with inner products p , q1 and p , q2. Then p , q1 “ cp , q2, for some c P R ą 0.

Exercise 6. Let ϕ be an orthogonal linear transformation of E preserving the root system ∆. Show
that
(a) 2pϕpβq,ϕpαqq

pϕpαq,ϕpαqq
“

2pβ,αq

pα,αq
, for all α, β P ∆;

(b) sϕpαq “ ϕ ˝ sα ˝ ϕ´1, for all α P ∆.

Remark 7. Part (b) of the above excercise and the fact that every element of ∆ can be mapped into
a given base by some element w P W (cf. [Se], Thm.2, p. 33), implies that the Weyl group W is
already generated by the reflections in the simple roots.

Example 8. (The inverse root system). Let ∆ be a root system in E. To every α P ∆ there is
associated the element α_ :“ 2α

pα,αq
P E. The set

∆_ “ tα_ | α P ∆u
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is another root system in E. It is called the inverse root system, as the map α ÞÑ 2α
pα,αq

is the inversion
in the sphere of radius

?
2 in E. It is easy to see that pα_q_ “ α, for all α P ∆, implying that

p∆_q_ “ ∆.
As an excercise, let us show that ∆_ satisfies the four axioms of a root system:
It is clear that ∆_ satisfies pR1q and pR4q.
pR2q: suppose that for some α, β P ∆ and c P R one has

c
2α

pα, αq
“

2β

pβ, βq
ô c

pβ, βq

pα, αq
α “ β.

Then, by pR2q applied to ∆, one finds

c
pβ, βq

pα, αq
“ ˘1 ô c “ ˘

pα, αq

pβ, βq
.

This implies α “ ˘β, respectively, and likewise α_ “ ˘β_.
pR3q: we are going to show that sα_pβ_q “ psαpβqq_. One has

sα_pβ_q “ β_ ´ pβ_, pα_q_qα_ “
2β

pβ, βq
´ p

2β

pβ, βq
, αq

2α

pα, αq

psαpβqq_ “
2sαpβq

psαpβq, sαpβqq
“

2pβ ´ pβ, α_qαq

psαpβq, sαpβqq
“

2pβ ´ pβ, α_qαq

pβ, βq
“ sα_pβ_q.

In the last equality we used the fact that each reflection sα is an isometry for p , q, hence
psαpβq, sαpβqq “ pβ, βq.

‚ If Π is a base of ∆, then Π_ is a base of ∆_ (the proof is left as an excercise).

2. THE CLASSIFICATION OF IRREDUCIBLE ROOT SYSTEMS.

A root system ∆ Ă E is called irreducible if it cannot be partitioned into the union of two proper
subsets ∆1 Y ∆2, such that each root in one set is orthogonal to each root in the other. If ∆ is not
irreducible, then E is the orthogonal direct sum of vector spaces E1 and E2, with ∆1 a root system
in E1 and ∆2 a root system in E2 (a proof is left as an excercise). Irreducible root systems are
classified. They fall into four infinite families, An, Bn, Cn, Dn, and five sporadic examples E6, E7,
E8, F4 and G2.

For every m ě 1, denote by ei the ith vector of the canonical basis of Rm. The inner product p , q

on Rm is the standard one. Here is a realization of all irreducible root systems, without repetitions
(see [Bou]).
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‚ Type An, n ě 1

In the space Rn`1

An :“ tei ´ ej | 1 ď i, j ď n ` 1, i ­“ ju;

a base of An is given by Π “ tei ´ ei`1 | 1 ď i ď nu.

‚ Type Bn, n ě 2

In the space Rn

Bn :“ t˘ei ˘ ej , ˘ei | 1 ď i ă j ď nu;

A base of Bn is given by Π “ tei ´ ei`1, en | 1 ď i ď n ´ 1u.

‚ Type Cn, n ě 3

In the space Rn

Cn :“ t˘ei ˘ ej , ˘2ei | 1 ď i ă j ď nu;

a base of Cn is given by Π “ tei ´ ei`1, 2en | 1 ď i ď n ´ 1u.

‚ Type Dn, n ě 4

In the space Rn

Dn :“ t˘ei ˘ ej | 1 ď i ă j ď nu “ tα P Zn | pα, αq “ 2u;

a base of Dn is given by Π “ tei ´ ei`1, en´1 ` en | 1 ď i ď n ´ 1u.

‚ Type G2

In the space R3

G2 :“ t˘pe2 ´ e3q,˘pe1 ´ e3q,˘pe1 ´ e2q,˘p2e1 ´ e2 ´ e3q,˘p2e2 ´ e1 ´ e3q,˘p2e3 ´ e1 ´ e2qu

“ tα P Z3 X tx1 ` x2 ` x3 “ 0 | pα, αq “ 2 or pα, αq “ 6u;

a base of G2 is given by Π “ tpe1 ´ e2q, p´2e1 ` e2 ` e3qu.

‚ Type F4

In the space R4

F4 :“ t ˘ei, 1 ď i ď 4, ˘pei ˘ ejq, 1 ď i ă j ď 4,
1

2
p˘e1 ˘ e2 ˘ e3 ˘ e4qu

“ tα P Z4 ` Zpe1 ` e2 ` e3 ` e4q{2 | pα, αq “ 2u;

a base of F4 is given by Π “ tpe2 ´ e3q, pe3 ´ e4q, e4,
1
2pe1 ´ e2 ´ e3 ´ e4qu.
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‚ Type E8

In the space R8

E8 “ t˘ei ˘ ej , 1 ď i ă j ď 8,
1

2

8
ÿ

i“1

p´1qνpiqei,
8

ÿ

i“1

νpiq “ evenu;

a base of E8 is given by
Π “ t1

2pe1`e8q´ 1
2pe2`e3`e4`e5`e6`e7q, e1`e2, e2´e1, e3´e2, e4´e3, e5´e4, e6´e5, e7´e6u.

‚ Type E7

In the space R8

E7 “ t˘ei ˘ ej , 1 ď i ă j ď 6, ˘pe7 ´ e8q, ˘
1

2
pe7 ´ e8 `

6
ÿ

i“1

p´1qνpiqeiq,
6

ÿ

i“1

νpiq “ oddu;

“ E8 X te8 ` e7uK;

a base of E7 is given by the first 7 vectors of the above base of E8.

‚ Type E6

In the space R8

E6 “ t˘ei ˘ ej , 1 ď i ă j ď 5, ˘
1

2
pe7 ´ e8 ´ e6 `

5
ÿ

i“1

p´1qνpiqeiq,
5

ÿ

i“1

νpiq “ evenu;

“ E8 X te8 ` e7uK X te8 ` e6uK;

a base of E6 is given by the first 6 vectors of the above base of E8.

It follows from the classification that there are three distinct irreducible root systems in the plane,
namely A2, B2 and G2:

All the irreducible root systems in the plane.
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Example 9. Using the above description, let’s show that A2 satisfies axioms pR1q ´ pR4q.

‚ It is easy to see that the elements in Π generate the plane x2 `x2 `x3 “ 0, hence pR1q is satisfied.
‚ It is immediate from the list of elements in A2 that also pR2q is satisfied.
‚To check pR3q, it is sufficient to show that the set of roots in A2 is stable under the symmetries in
the roots in Π (cf. Remark 7):

se1´e2pe1 ´ e2q “ ´pe1 ´ e2q, se1´e2pe2 ´ e3q “ pe1 ´ e3q, se1´e2pe1 ´ e3q “ pe2 ´ e3q;

se2´e3pe2 ´ e3q “ ´pe2 ´ e2q, se2´e3pe1 ´ e2q “ pe1 ´ e3q, se2´e3pe1 ´ e3q “ pe1 ´ e2q.

Obviously...if sαpβq P ∆, also sαp´βq P ∆.
‚ Finally, observe that pα, αq “ 2, for all α P A2. Hence 2 pβ,αq

pα,αq
“ pβ, αq, which is an integer for all

α, β P A2. So also pR4q is satisfied.

Exercise 10. Verify that B2 and G2 satisfy axioms pR1q ´ pR4q.

Exercise 11. Prove that
(a) ∆ “ ∆_, for ∆ “ An, Dn, E6, E7, E8.

Two root systems ∆ Ă pE, p , qq and ∆1 Ă pE1, p , q1q are said isomorphic if there exists a vector
space isomorphism (not necessarily an isometry) ϕ : E Ñ E1, mapping ∆ onto ∆1 and such that

2pϕpβq, ϕpαqq

pϕpαq, ϕpαqq
“

2pβ, αq

pα, αq
, @ α, β P ∆.

Show that
(b) B_

n – Cn.
(c) G_

2 – G2.
(d) F_

4 – F4.

‚ The Cartan matrix of ∆. Let ∆ be a root system and let Π “ tα1, . . . , αnu be a base of ∆. Its
associated Cartan matrix is the n ˆ n matrix with integral entries

cii “ cαiαi “ 2, for i “ 1, . . . , n, cij “ cαiαj :“ pαi, α
_
j q “

2pαi, αjq

pαj , αjq
, for i ­“ j.

If the root system is not irreducible, the Cartan matrix is block diagonal with the Cartan matrices
of the irreducible components as blocks. For example, the Cartan matrices of A2 , G2 and F4 (in
the description of the previous section) are given by

˜

2 ´1

´1 2

¸

,

˜

2 ´1

´3 2

¸

,

¨

˚

˚

˚

˝

2 ´1 0 0

´1 2 ´2 0

0 ´1 2 ´1

0 0 ´1 2

˛

‹

‹

‹

‚

,
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respectively. The Cartan matrix is always an invertible matrix, since its columns are multiples

of the columns of the Gram matrix of the base α1, . . . , αn. The Cartan matrix of the inverse root
system ∆_ is the transpose of the Cartan matrix of ∆. In particular, the Cartan matrix is symmetric
when Π “ Π_. In that case, it coincides with the Gram matrix of α1, . . . , αn.

Note that by Remark 3 and Excercise 6 (a), the Cartan matrix remains the same when we trans-
form the given base by the action of the Weyl group. Hence the Cartan matrix only depends on the
labelling of the roots in Π and on the root system ∆. If we choose Π1 “ tp´2e1 ` e2 ` e3q, pe1 ´ e2qu

for G2, the corresponding Cartan matrix is
˜

2 ´3

´1 2

¸

.

A root system ∆ can be reconstructed from its Cartan matrix (see [Hu], Ch. 3, Sect.11).

Exercise 12. Compute the Cartan matrix of the root systems B3 and C3.

3. ROOT LATTICES

For every m ě 1, denote by ei the ith vector of the canonical basis of Rm, and by Zm :“

SpanZte1, . . . , emu the integral lattice in Rm. In this section we describe the root lattices arising
from the various root systems. We will see that in some cases non-isomorphic root systems give
rise to isomorphic root lattices.

Lemma 13. The root lattice LAn is given by

LAn “ Zn`1 X tx1 ` . . . ` xn`1 “ 0u “ t

n`1
ÿ

i“1

aiei | ai P Z,
n`1
ÿ

i“1

ai “ 0u Ă Rn`1.

Proof. By the description of An given in Section 2, an element v P LAn is of the form

v “ a1pe1 ´ e2q ` . . . ` anpen ´ en`1q “ a1e1 ` pa2 ´ a1qe2 ` . . . ` pan ´ an´1qen ´ anen`1,

with ai P Z. For such a vector the sum of the coordinates is zero

a1 ` pa2 ´ a1q ` . . . ` pan ´ an´1q ´ an “ 0.

Conversely, a vector v “
řn`1

i“1 aiei, with
řn`1

i“1 ai “ 0 can be written as

v “ a1pe1 ´ e2q ` pa1 ` a2qpe2 ´ e3q ` . . . ` pa1 ` . . . ` anqpen ´ en`1q ` pa1 ` . . . ` an`1qen`1.

□
10



The root system A1 and its associated root lattice.

The root system A1 ˆ A1 and the orthogonal sum of two A1 lattices.

The root lattice LA2 coincides the hexagonal lattice in the plane tx1 ` x2 ` x3 “ 0u Ă R3.

The root system A2 and its associated root lattice.

11



Lemma 14. The root lattice LBn (n ě 2) coincides with the integral lattice

LBn “ t

n
ÿ

i“1

aiei | ai P Zu “ Zn Ă Rn.

Proof. The proof is left as an excercise. □

The root system B2 and its associated root lattice.

Lemma 15. The root lattice LCn (n ě 3q) is given by

LCn “ t

n
ÿ

i“1

aiei | ai P Z,
n

ÿ

i“1

ai P 2Zu.

Proof. By the description of Cn given in Section 2, an element v P LCn is of the form

v “ a1pe1 ´ e2q ` . . . ` an´1pen´1 ´ enq ` an2en

“ a1e1 ` pa2 ´ a1qe2 ` . . . ` pan´1 ´ an´2qen´1 ` p2an ´ an´1qen,

with ai P Z. For such a vector the sum of the coordinates is even

a1 ` pa2 ´ a1q ` . . . ` pan´1 ´ an´2q ` p2an ´ an´1q “ 2an P 2Z.

Conversely, a vector v “
řn`1

i“1 aiei, with
řn`1

i“1 ai P 2Z can be written as

v “ a1pe1 ´ e2q ` pa1 ` a2qpe2 ´ e3q ` . . . ` pa1 ` . . . ` an´1qpen´1 ´ enq `
1

2
pa1 ` . . . ` anq2en.

Since pa1 ` . . . ` anq is even, v P LCn . □

Remark 16. For n “ 2 the root lattice LC2 is isomorphic to
?
2Z2. However for n ě 3, the lattices

?
2Zn and Cn are distinct. This can be seen for example by counting shortest vectors.
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The root system C2 and its associated root lattice.

Lemma 17. The root lattice LDn is given by

LDn “ t

n
ÿ

i“1

aiei | ai P Z,
n

ÿ

i“1

ai P 2Zu.

Proof. By the description of Dn given in Section 2, an element v P LDn is of the form

v “ a1pe1 ´ e2q ` . . . ` an´1pen´1 ´ enq ` anpen´1 ` enq

“ a1e1 ` pa2 ´ a1qe2 ` . . . ` pan´1 ´ an´2 ` anqen´1 ` pan ´ an´1qen,

with ai P Z. For such a vector the sum of the coordinates is even

a1 ` pa2 ´ a1q ` . . . ` pan´1 ´ an´2 ` anq ` pan ´ an´1q “ 2an P 2Z.

Conversely, a vector v “
řn`1

i“1 aiei, with
řn`1

i“1 ai P 2Z can be written as

v “ a1pe1´e2q`pa1`a2qpe2´e3q`. . .`
1

2
pa1`. . .`an´1´anqpen´1´enq`

1

2
pa1`. . .`anqpen´1`enq.

Note that pa1`. . .`anq is even, hence 1
2pa1`. . .`anq is an integer. Moreover 1

2pa1`. . .`an´1´anq “

pa1 ` . . . ` an´1q ´ 1
2pa1 ` . . . ` anq is an integer as well. Hence v P LDn . □

Proposition 18. All irreducible distinct root lattices are:
1. LAn , n ě 1;
2. LDn , n ě 4;
3. LE6 ;
4. LE7 ;
5. LE8 .
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Proof. The proof consists of showing that all lattices in the list are distinct and that the remaining
root lattices are isomorphic to lattices in the list. For the first part, it is sufficient to count the
number of shortest vectors in each case of the list:
we find

npn ` 1q, pn ě 1q 2npn ´ 1q, pn ě 4q, 72, 126, 240,

respectively.

For the second part it remains to show that
- LC3 is isometric to LA3 ,
- LG2 coincides with LA2 ,
- LF4 can be mapped into to LD4 by the composition of an homothety with an isometry (see the
Excercises below). □

Exercise 19. Prove that LC3 is isomorphic LA3 . In other words, for n “ 3 the “sum of coordinates
zero” lattice in R4 and the “sum of coordinates even” in R3 are isomorphic.
Suggestion: consider the map

ϕ : R4 Ñ R3,

¨

˚

˚

˚

˝

x1

x2

x3

x4

˛

‹

‹

‹

‚

ÞÑ

¨

˚

˝

x1 ` x4

x2 ` x4

x1 ` x2

˛

‹

‚

.

Exercise 20. Prove that LG2 “ LA2 . In other words LG2 , like LA2 , coincides with the hexagonal
lattice in the plane x1 ` x2 ` x3 “ 0 in R3.

The root system G2 and its associated root lattice.

Exercise 21. Prove that LF4 can be mapped into to LD4 by the composition of an homothety with
an isometry.
Sugg.: consider the map

ϕ : R4 Ñ R4, ϕpe1q “ e1 ` e2, ϕpe2q “ e1 ´ e2, ϕpe3q “ e3 ` e4, ϕpe4q “ e3 ´ e4.
14



Remark 22. For every irreducible root lattice L∆ listed in Proposition 18, one has that:
(a) L∆ is integral, namely pv, wq P Z, for all v, w P L∆;
(b) L∆ is even, namely (v, vq P 2Z, for all v P L∆.

Part (a) follows from the fact that all elements of ∆ “ An, Dn, E6, E7, E8 have the same length
squared equal to 2. In particular the Cartan matrix of any base of ∆ (which has integral entries) is
symmetric and coincides with the Gram matrix. Part (b) follows from the fact that all elements on
the diagonal of the Gram matrix are equal to 2.

Even without using the classification of Proposition 18, one can prove that root lattices are rational,
namely pv, wq P Z, for all v, w P L∆:

2pβ, αq

pα, αq
P Z, @α, β P ∆ ñ pβ, αq P Q,@α, β P ∆.

The argument is the one used in [Hu], Sect.8.5, p.39.

Exercise 23. Let L be a lattice in a vector space E with inner product p , q.
If L is even and L X tpv, vq “ 2u spans E, then L X tpv, vq “ 2u is a root system in E.

Remark 24. In an irreducible root lattice L∆ (see Proposition 18) the shortest vectors are exactly the
vectors of ∆.

More about the lattice LE8 .
Since it is so special, let’s compute some of the relevant quantities for this lattice.

‚ The covolume covolpLE8q of LE8 is the volume of the ”parallelepiped” spanned by an arbitrary
basis of the lattice. We choose the base of LE8 given in Section 2, we have

BE8 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1{2 1 ´1 0 0 0 0 0

´1{2 1 1 ´1 0 0 0 0

´1{2 0 0 1 ´1 0 0 0

´1{2 0 0 0 1 ´1 0 0

´1{2 0 0 0 0 1 ´1 0

´1{2 0 0 0 0 0 1 ´1

´1{2 0 0 0 0 0 0 1

1{2 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and covolpLE8q :“ | detpBE8q| “ | ´ 1| “ 1. Hence LE8 is unimodular. In particular, it coincides
with its dual lattice L˚

E8
“ tλ P R8 | pλ,Xq P Z, @X P LE8u

LE8 “ L˚
E8
.

15



‚ The Gram matrix GpLE8q of the above basis, i.e. the matrix whose entries Gij are the inner
products of the ith and the jth vectors, is given by

GpLE8q “ tBE8 ¨ BE8 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 0 ´1 0 0 0 0 0

0 2 0 ´1 0 0 0 0

´1 0 2 ´1 0 0 0 0

0 ´1 ´1 2 ´1 0 0 0

0 0 0 ´1 2 ´1 0 0

0 0 0 0 ´1 2 ´1 0

0 0 0 0 0 ´1 2 ´1

0 0 0 0 0 0 ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

As we already mentioned, GpLE8q coincides with the Cartan matrix of the root system E8. One
has

covolpLE8q “
a

detpGpBE8qq “ 1.

‚ The kissing number, which coincides the number of shortest vectors in LE8 , is equal to |E8| “ 240

(cf. Excercise 23). The norm squared of the shortest vectors is equal to 2.

‚ The lattice LE8 has a large group of isometries AutpLE8q, namely linear orthogonal transforma-
tions which take the lattice to itself: AutpLE8q contains the Weyl group W of the root system E8,
which is generated by reflections in the simple roots, and has order 21435527 “ 696.729.600.
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4. COMPLEX SEMISIMPLE LIE ALGEBRAS.

A complex Lie algebra g is a complex algebra whose “product”, called Lie bracket and usually
denoted by r¨, ¨s, is bilinear, skew-symmetric, and satisfies the Jacobi identity

rX, rY,Zss ` rZ, rX,Y ss ` rY, rZ,Xss “ 0, @X,Y, Z P g.

A subalgebra of a Lie algebra g is a vector subspace closed under the Lie bracket. An ideal l of g
is a subalgebra such that rg, ls Ă l. A Lie algebra is called simple if it is non-abelian and its only
ideals are t0u and itself; it is called semisimple if it is the direct sum of simple ideals. In particular, a
semisimple Lie algebra has trivial center. The direct sum of Lie algebras g1 ‘ g2, with Lie bracket
given by rX1 ` X2, Y1 ` Y2s :“ rX1, Y1s ` rX2, Y2s, for X1, Y1 P g1 and X2, Y2 P g2, is a Lie algebra.
Moreover, g1 ‘ t0u and t0u ‘ g2 are ideals of g1 ‘ g2.

Example 25. An important example of a Lie algebra is given by glpV q, the Lie algebra of endo-
morphims of a complex n-dimensional vector space V , with the Lie bracket rf, gs “ f ˝ g ´ g ˝ f ,
where ˝ denotes the composition of maps. If a basis of V is fixed, then glpV q can be identified with
the n ˆ n complex matrices glpn,Cq with Lie bracket rX,Y s “ XY ´ Y X , where XY is the usual
matrix product in glpn,Cq. Let’s check the Jacobi identity: for all X,Y, Z P g one has

rX, rY,Zss ` rZ, rX,Y ss ` rY, rZ,Xss

“ XpY X´ZY q´pY X´ZY qX`ZpXY ´Y Xq´pXY ´Y XqZ`Y pZX´XZq´pZX´XZqY “ . . . “ 0.

The Lie algebra glpn,Cq is not simple. It is the direct sum of two non-trivial ideals: the center,
given by the scalar matrices Zpgq “ tλId, λ P Cu, and the simple ideal slpn,Cq consisting of the
n ˆ n complex matrices with zero trace.

Let us verify that slpn,Cq is an ideal of glpn,Cq:
let X P glpn,Cq and Y P slpn,Cq. The trace of the bracket of X and Y is given by

trrX,Y s “ trpXY ´ Y Xq “ trpXY q ´ trpY Xq “ 0.

Hence rX,Y s P slpn,Cq, as claimed.

Exercise 26. Show that
(a) a 1-dimensional Lie algebra is necessarily abelian, that is rX,Y s “ 0, for all X,Y P g;
(b) there are no 2-dimensional simple Lie algebras.

Exercise 27. Show that the space sopn,Cq of complex skew symmetric matrices is a Lie subalgebra
of slpn,Cq.

Exercise 28. Show that the space sppn,Cq of complex 2n ˆ 2n matrices satisfying tXJ ` JX “ O,

where J “

˜

O ´In

In O

¸

, is a Lie algebra subalgebra of slp2n,Cq (here In denotes the identity matrix

of order n).
17



A Lie algebra homomorphism ϕ : pg1, r , s1q Ñ pg2, r , s2q is a linear map satisfying the condition
ϕprX,Y s1q “ rϕpXq, ϕpY qs2. A representation of a Lie algebra g is a Lie algebra homomorphism

ρ : g Ñ glpV q

from g to the endomorphisms of some vector space V . An important representation of a Lie
algebra is the adjoint representation,

ad : g Ñ glpgq, X ÞÑ adX ,

where adX denotes the linear endomorphism of g

adXpY q :“ rX,Y s, @Y P g.

Exercise 29. (a) Prove that the map adZ : g Ñ g is a linear endomorphism of g; moreover the map
adZ is a derivation of g, namely

adZprX,Y sq “ radZpXq, Y s ` rX, adZpY qs, @X,Y, Z P g.

(b) Prove that the map g Ñ glpgq, defined by X ÞÑ adX , is a Lie algebra homomorphism.
(c) Prove that the adjoint representation of a semisimple Lie algebra is faithful, that is has zero
kernel.

Via the adjoint representation, to every complex Lie algebra there is associated an intrinsic com-
plex symmetric bilinear form, the Killing form, defined by

B : g ˆ g Ñ C, BpX,Y q :“ trpadXadY q.

The Killing form satisfies

(4¨1) BprZ,Xs, Y q “ ´BpX, rZ, Y sq, @X,Y, Z P g.

(see Excercise 30). The non-degeneracy of the Killing form characterizes semisimple Lie algebras:
A Lie algebra g is semisimple if and only if its Killing form is non-degenerate (cf. [Hu], Thm. 5.1, p. 22).

Exercise 30. Verify that the Killing form satisfies equation (4¨1).

Exercise 31. Let g “ g1 ‘ g2 be a Lie algebra decomposition into a direct sum of ideals. Prove that:
(a) rX1, X2s “ 0, for all X1 P g1 ‘ t0u and X2 P t0u ‘ g2.
(b) the Killing form of g satisfies BpX1, X2q “ 0, for all X1 P g1 ‘ t0u and X2 P t0u ‘ g2.
(c) if h Ă g is an ideal, then the Killing form of h coincides with the restriction of the Killing form
of g to h.

In the remaining part of this section we discuss the main tools for the construction of the root
system of a complex semisimple Lie algebra: Cartan subalgebras of a semisimple Lie algebra and
the classification of all finite dimensional irreducible complex representations of slp2,Cq.
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A Cartan subalgebra h of a complex semisimple Lie algebra g is a maximal abelian subalgebra
consisting of semisimple elements, namely elements for which the map adX : g Ñ g is diagonaliz-
able (in a complex semisimple Lie algebra the notion of a Cartan subalgebra coincides with that of
a maximal toral subalgebra [Hu], Sect.8.1 and Sect.15.3). All Cartan subalgebras of g are conjugate
under inner automorphisms of g. Therefore they all have the same dimension, which is by def-
inition the rank of g (for a proof of these statements about Cartan subalgebras, we refer to [Hu],
Sections 16.2–16.4).

As a consequence of the abstract Jordan decomposition in a Lie algebra (cf. [Hu], Sect. 5.4, p.
24) and its preservation under Lie algebra homomorphisms (cf. [Hu], Sect. 6.4, p. 29), the image of
a Cartan subalgebra under any representation g Ñ glpV q is a commuting family of diagonalizable
endomorphisms of V .

Example 32. ‚ Let g “ slpn,Cq (cf. Example 25). A Cartan subalgebra of g is given by the diagonal
matrices.

‚ Let g “ sop2n ` 1,Cq (resp. g “ sop2n,Cq). A Cartan subalgebra of g is given by

h “

¨

˚

˚

˝

B1 . . . O
...

. . .
...

O . . . ´Bn

˛

‹

‹

‚

, presp. h “

¨

˚

˚

˚

˚

˚

˝

B1 . . . O 0
...

. . .
...

...

O . . . ´Bn
...

0 . . . . . . 0

˛

‹

‹

‹

‹

‹

‚

q, where Bi “

˜

0 θi

´θi 0

¸

,

for i “ 1, . . . , n.

‚ Let g “ sppn,Cq. A Cartan subalgebra of g is given by h “

˜

D O

O ´D

¸

, where D is an n ˆ n

diagonal matrix.

The Lie algebra slp2,Cq.

The Lie algebra g “ slp2,Cq “ t

˜

a b

c ´a

¸

, a, b, c P Cu is the lowest dimensional complex simple

Lie algebra. Let us check that the set of diagonal matrices h “ t

˜

h 0

0 ´h

¸

, h P Cu is a Cartan

subalgebra of g.
- It is easy to verify that h is an abelian subalgebra of g and that rH,Xs “ HX ´ XH “ 0, for all
H P h, implies X P h. Hence it is a maximal abelian subalgebra of g.
- To see that adH : g Ñ g is diagonalizable for all H P h, we show that g decomposes into the direct

sum of adH -eigenspaces. For H “

˜

h 0

0 ´h

¸

, one has

adHp

˜

a 0

0 ´a

¸

q “

˜

h 0

0 ´h

¸ ˜

a 0

0 ´a

¸

´

˜

a 0

0 ´a

¸ ˜

h 0

0 ´h

¸

” 0,
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adHp

˜

0 b

0 0

¸

q “

˜

h 0

0 ´h

¸ ˜

0 b

0 0

¸

´

˜

0 b

0 0

¸ ˜

h 0

0 ´h

¸

“ 2h

˜

0 b

0 0

¸

;

adHp

˜

0 0

c 0

¸

q “

˜

h 0

0 ´h

¸ ˜

0 0

c 0

¸

´

˜

0 0

c 0

¸ ˜

h 0

0 ´h

¸

“ ´2h

˜

0 0

c 0

¸

.

The above computation shows that

g “

˜

a 0

0 ´a

¸

loooomoooon

g0

‘

˜

0 b

0 0

¸

looomooon

gα

‘

˜

0 0

c 0

¸

looomooon

g´α

is an adH -eigenspace decomposition of g for every H P h: the subalgebra h coincides with the

0-eigenspace, namely it coincides with its own centralizer; the subspace

˜

0 b

0 0

¸

, b P C, is the

eigenspace of eigenvalue αpHq “ 2h and the subspace

˜

0 0

c 0

¸

, c P C, is the eigenspace of eigen-

value αpHq “ ´2h. In other words, the eigenspace decomposition of g is the same for every H P h,
but the eigenvalues are functions of H , namely ˘α : h Ñ C, where

αp

˜

h 0

0 ´h

¸

q “ 2h.

Remark 33. The Lie algebra slp2,Cq admits a basis A,X, Y satisfying

(4¨2) A “ rX,Y s, rA,Xs “ 2X, rA, Y s “ ´2Y ;

for example

A “

˜

1 0

0 ´1

¸

, X “

˜

0 1

0 0

¸

, Y “

˜

0 0

1 0

¸

.

A 3-dimensional Lie algebra which admits a basis satisfying relations (4¨2) is necessarily isomor-
phic to slp2,Cq.

Irreducible finite dimensional representations of slp2,Cq.
Recall that a representation of a Lie algebra g is a Lie algebra homomorphism ρ : g Ñ glpV q to the
endomorphisms of some vector space V . It is called irreducible if V does not decompose into the
direct sum of non-trivial stable subspaces. Two representations ρ1 : g Ñ glpV1q and ρ2 : g Ñ glpV2q

are said to be equivalent if there exists a linear isomorphism ϕ : V1 Ñ V2 which commutes with
the actions of g on V1 and V2, namely ϕpρ1pXqvq “ ρ2pXqϕpvq, for all X P g and v P V1. Finite
dimensional irreducible representations of slp2,Cq are classified (cf. [Se], Ch. IV).

Theorem 34. For every n ě 0 there is a unique (up to equivalence) irreducible representation Vn of
slp2,Cq, of dimension n ` 1.
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Construction of Vn:
consider a n ` 1-dimensional complex vector space Vn “ SpanCte0, e1, . . . , enu, with basis
e0, e1, . . . , en. We define a representation ρn : slp2,Cq Ñ glpVnq by assigning it on the matrices
A,X, Y :

(4¨3) ρpAq ¨ ei :“ pn ´ 2iqei, ρnpXq ¨ ei :“ pn ´ i ` 1qei´1, ρnpXq ¨ vi :“ pi ` 1qei`1

(by convention e´1 “ en`1 “ 0). To see that it is a representation, we need to check that the above
rules are compatible with the Lie brackets, namely

(i) ρnprX,Y sq ¨ ei “ ρnpXq ¨ pρnpY q ¨ eiq ´ ρnpY q ¨ pρnpXq ¨ eiq “ ρnpAq ¨ ei;
(ii) ρnprA,Xsq ¨ ei “ ρnpAq ¨ pρnpXq ¨ eiq ´ ρnpXq ¨ pρnpAq ¨ eiq “ 2ρnpXq ¨ ei;
(iii) ρnprA, Y sq ¨ ei “ ρnpAq ¨ pρnpY q ¨ eiq ´ ρnpY q ¨ pρnpAq ¨ eiq “ ´2ρnpY q ¨ ei,
for all i “ 0, . . . , n.

Let’s prove that (i) is satisfied: we have

ρnpXq ¨ pρnpY q ¨ eiq ´ ρnpY q ¨ pρnpXq ¨ eiq “ pi ` 1qρnpXq ¨ ei`1 ´ pn ´ i ` 1qρnpY q ¨ ei´1

“ pi ` 1qpn ´ iqei ´ pn ´ i ` 1qiei “ pn ´ 2iqei “ ρnpAq ¨ ei,

as required. We leave (ii) and (iii) as an excercise.

Exercise 35. Show that for n “ 0, the 1-dimensional representation of ρ0 : slp2,Cq Ñ glpCq is the
trivial representation, that is ρ0pMq “ 0, for all M P slp2,Cq.

Example 36. ‚ For n “ 1, fix the basis v0, v1 of V1. By (4¨3), the elements

X “

˜

0 1

0 0

¸

, A “

˜

1 0

0 ´1

¸

, Y “

˜

0 0

1 0

¸

act on V1 via the matrices

ρ1pXq “

˜

0 1

0 0

¸

, ρ1pAq “

˜

1 0

0 ´1

¸

, ρ1pY q “

˜

0 0

1 0

¸

.

So rules (4¨3) determine the natural matrix multiplication on C2.

‚ For n “ 2, fix the basis v0, v1, v2 of V2. By (4¨3), the elements

X “

˜

0 1

0 0

¸

, A “

˜

1 0

0 ´1

¸

, Y “

˜

0 0

1 0

¸

act on V2 via the matrices

ρ2pXq “

¨

˚

˝

0 2 0

0 0 1

0 0 0

˛

‹

‚

, ρ2pAq “

¨

˚

˝

2 0 0

0 0 0

0 0 ´2

˛

‹

‚

, ρ2pY q “

¨

˚

˝

0 0 0

1 0 0

0 2 0

˛

‹

‚

,
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respectively. If write a generic element of slp2,Cq as M “ bX ` aA ` cY , for a, b, c P C, then it acts
on V2 – C3 by the matrix

ρ2pMq “

¨

˚

˝

2a 2b 0

c 0 b

0 2c ´2a

˛

‹

‚

, a, b, c P C.

Remark 37. By Theorem 34, there is a unique (up to equivalence) 3-dimensional irreducible repre-
sentation of slp2,Cq. So ρ2 is equivalent to the adjoint representation of slp2,Cq on itself. Fix the
basis X,A, Y of slp2,Cq. Then the representative matrices of adX , adA, adY in this basis are given
by

¨

˚

˝

0 ´2 0

0 0 1

0 0 0

˛

‹

‚

,

¨

˚

˝

2 0 0

0 0 0

0 0 ´2

˛

‹

‚

,

¨

˚

˝

0 0 0

´1 0 0

0 2 0

˛

‹

‚

,

respectively and the representative matrix of adM , for M “ bX ` aA ` cY , is given by
¨

˚

˝

2a ´2b 0

´c 0 b

0 2c ´2a

˛

‹

‚

, a, b, c P C.

Example 38. In order to give a concrete realization of the irreducble slp2,Cq representations Vn for
all n ě 1, we take a different realization of slp2,Cq. Consider the differential operators

x “ u
B

Bv
a “ u

B

Bu
´ v

B

Bv
y “ v

B

Bu
, for u, v P C.

One can check that they satisfy

rx,ys “ up
B

Bv
vq

B

Bu
´ vp

B

Bu
uq

B

Bv
“ a, ra,xs “ 2x, ra,ys “ ´2y.

So they generate a 3-dimensional Lie algebra isomorphic to slp2,Cq.

For n ě 1, denote by Vn the pn ` 1q-dimensional complex vector space generated by the complex
homogeneous monomials of degree n in the two variables tu, vu

Vn “ Spantun, un´1uv, . . . , un´ivi, . . . , vnu, i “ 0, . . . , n.

Then we obtain the relations

x ¨ un´ivi “ iun´i`1vi´1

a ¨ un´ivi “ pn ´ 2iqun´ivi

y ¨ un´ivi “ pn ´ iqun´i´1vi`1.

Now let’s examine the eigenspace decomposition of Vn under the action of the Cartan subalgebra
h “ Ca:
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‚ the eigenspaces, which in this context are called weight spaces, are all 1-dimensional;
‚ they are generated by the monomials un´ivi, for i “ 0, . . . , n;
‚ the corresponding eigenvalues λ P h˚, which in this context are called weights, are given by

λpzaq “ pn ´ 2iqz, z P C,

respectively. So the weights are parametrized by the complete strip of integers between ´n and n,
with successive differences 2:

´n ´ n ` 2 . . . ´ 2 0 2 . . . n ´ 2 n for n ` 1 “ dimVn odd

´n ´ n ` 2 . . . ´ 1 1 . . . n ´ 2 n for n ` 1 “ dimVn even.

Remark 39. Since all the weight spaces of any irreducible slp2,Cq-representation are1-dimensional
and the weight 0 (resp. the weight 1) only appears in odd dimensional representations (resp. in
even dimensional representations), the number of irreducible components of a finite dimensional
slp2,Cq-representation is given by

dimV0 ` dimV1.

5. ROOT SYSTEM OF A SEMISIMPLE LIE ALGEBRA

Let g be an arbitrary semisimple Lie algebra and let h be a Cartan subalgebra of g. Consider the
family of endomorphisms adH : g Ñ g, where H varies in h: since they are all diagonalizable and
commute with each other, they are simultaneously diagonalizable. The eigenvalues α, which depend
on H , define elements of h˚, i.e. linear maps α : h Ñ C. In other words g admits a simultaneous
eigenspace decomposition

g “
à

αPh˚

gα

which is stable under adH , for all H P h. Only finitely many of the α-eigenspaces

gα “ tX P g | adHpXq “ αpHqX, H P hu

are non-zero. Let ∆ denote the non-zero α P h˚ for which gα ­“ t0u. The elements of ∆ are called
the roots of g and the eigenspaces gα the root spaces. We have

(5¨1) g “ Zgphq ‘
à

αP∆

gα,

where
Zgphq “ tX P g | AdXpHq “ rX,Hs “ 0u

denotes the centralizer of h in g, which is just the 0-eigenspace, and contains the Cartan subage-
bra h.
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‚ It is a non-trivial fact that a Cartan subalgebra h coincides with its own centralizer

Zgphq “ h

(cf. [Hu], Prop.8.2, p. 36). In particular, decomposition (5¨1) becomes

(5¨2) g “ h ‘
à

αP∆

gα.

We are going to prove the following claim:

Claim The R-linear span of the roots in ∆ is a real vector subspace of h˚, of real dimension equal to the
complex dimension of h˚. On such a subspace there is a positive definite bilinear form p , q and the elements
of ∆ form a root system therein.

Before we are able to show that the roots in ∆ satisfy the axioms of an abstract root system, we
need some preparation. The fact that the endomorphisms adH act on a semisimple Lie algebra,
and not just on a vector space, puts restrictions on their common eigenvalues and eigenspaces.

Lemma 40. ‚ paq SpanCtαuαP∆ “ h˚. (cf. (R1))

‚ pbq For all α, β P ∆, one has rgα, gβs Ă gα`β , with gα`β possibly zero.

‚ pcq The decomposition (5¨2) is ”almost” orthogonal with respect to the Killing form: for all α, β P ∆,
one has

Bpgα, gβq ” 0, if α ` β ­“ 0.

‚ pdq For every root α, also ´α is a root.

Proof. (a) This is a consequence of the fact that Zpgq “ t0u. Suppose that SpanCtαuαP∆ Ř h˚. Then
there exists H P h such that αpHq “ 0, for all α P ∆. This implies that rH,Xαs “ αpHqXα “ 0, for
all α P ∆. In other words, H commutes with every element of g. Then H P Zpgq, contradicting the
semisemplicity of g.

(b) This is a consequence of the Jacobi identity. Assume X P gα and Y P gβ . Then

rH, rX,Y ss “ rrH,Xs, Y s ` rX, rH,Y ss “ pαpHq ` βpHqqrX,Y s.

This means that rX,Y s lies in gα`β . In particular, if rX,Y s ­“ 0, then α ` β P ∆.

(c) This follows from the property (4¨1) of the Killing form. Assume X P gα and Y P gβ . Then for
all H P h one has

αpHqBpX,Y q “ ´BpX, rH,Y sq “ BprH,Xs, Y q “ ´βpHqBpX,Y q ô pαpHq`βpHqqBpX,Y q “ 0.

It follows that αpHq ` βpHq ­“ 0 implies BpX,Y q “ 0.

(d) This is a consequence nondegeneracy of the Killing form. If α P ∆ and ´α R ∆, then by (b)
there exists X ­“ 0 in gα such that BpX, gq ” 0. The nondegeneracy of the Killing form forces
X “ 0, yielding a contradiction. □
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An immediate consequence of (c) is that the restriction of the Killing form to h is non-degenerate
and provides an identification of h and its dual h˚: to every root α P ∆ there is associated a unique
vector tα P h such that

(5¨3) αpHq “ BpH, tαq, @H P h.

Moreover, a complex valued non-degenerate symmetric bilinear form can be defined on h˚ by pos-
ing

(5¨4) pα, βq :“ Bptα, tβq “ βptαq “ αptβq.

The next result says that for every root α in ∆, a root vector X P gα can be embedded in a sub-
algebra of g isomorphic to slp2,Cq. We denote it by sl2pαq. Such a subalgebra acts on g by the
restriction of the adjoint representation. In other words, g contains several copies of slp2,Cq and
several slp2,Cq-modules.

Lemma 41. Given X P gα, there exists Y P g´α such that tX, Y, A :“ rX,Y su generate a Lie subalgebra
of g isomorphic to slp2,Cq.

Proof. Fix X P gα. To prove the Lemma we need to show that there exists Y P g´α such that
X, Y, A :“ rX,Y s satisfy the conditions of Remark 4¨2. We do this in several steps.

(a) for all X P gα and Y P g´α, one has rX,Y s “ BpX,Y qtα Ă Ctα, where tα is the dual root
defined in (5¨3):

by Lemma 40 (a), we already know that

rgα, g´αs Ă g0 “ h.

By (4¨1) and (5¨3), one has

BpH, rX,Y sq “ BprH,Xs, Y q “ αpHqBpX,Y q “ BpH, tαqBpX,Y q “ BpH, tαBpX,Y qq,

for every H P h. Then (a) follows by the non-degeneracy of the Killing form on h.

(b) for every X P gα, there exists Z P g´α such that rX,Zs ­“ 0:
suppose by contradiction that BpX,Zq “ 0, for all Z P g´α. Then by Lemma 40(c) it follows

that BpX, gq ” 0, contradicting the non-degeneracy of the Killing form. Hence (b) holds.

(c) One has αptαq “ Bptα, tαq ­“ 0; equivalently pα, αq ­“ 0:
if αptαq “ 0, then rtα, Xs “ rtα, Y s “ 0 and X,Y, tα generate a 3-dimensional solvable sub-

algebra s of g. The operator adtα is a nilpotent endomorphism of s and a therefore a nilpotent
endomorphism of g (see [Hu], Sect. 3.2). But this, together with the semisimplicity of adtα as an
endomorphism of g, implies tα “ 0, a contradiction.
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As a consequence of (a), (b) and (c), one can normalize the triple tX,Y,A “ rX,Y su so that it
satisfies conditions (4¨2) and generates a subalgebra isomorphic to slp2,Cq:
X is given;
A “ 2tα

Bptα,tαq
;

for Y take 2tα
BpX,Y qBptα,tαq

Z, where Z is the vector from (b). □

In the next proposition we prove a “complex version” of axioms pR1q ´ pR4q for ∆, viewed as a
subset of the complex vector space h˚, with the non-degenerate bilinear form p , q defined in (5¨4).
We do it by identifying appropriate sl2pαq-modules inside g and applying to them the results on
the weight system of slp2,Cq-representations.

Proposition 42. The roots in ∆, viewed in the complex vector space h˚ with the non-degenerate bilinear
form p , q defined in (5¨4), satisfy axioms pR1q ´ pR4q

Proof. ‚ pR1q: by definition, ∆ does not contain 0. The spanning property was proved in Lemma
40(a).

‚ pR2q: fix α P ∆ and X P gα. Denote by sl2pαq the associated subalgebra of g determined in
Lemma 41. By Lemma 40 (b), the subspace

(5¨5) h ‘
à

cPC˚

gcα “ kerα ‘ CA ‘ gα ‘ g´α
looooooooomooooooooon

sl2pαq

‘
à

cPC˚

c­“˘1

g˘cα.

is an sl2pαq-submodule inside g. It contains the trivial sl2pαq-module given by the hyperplane
kerα Ă h and sl2pαq itself, which is irreducible of dimension three. Since the dimension of the
0-weight space in

(5¨6) CA ‘ gα ‘ g´α ‘
à

cPC˚

c­“˘1

g˘cα

is equal to 1, by Remark 39 the subspace (5¨6) contains a unique odd dimensional irreducible
submodule, namely sl2pαq itself.
It follows that:

dim g˘α “ 1, for all α P ∆;

@ α P ∆ ñ 2α R ∆.

The latter statement in turn implies that α{2 cannot be a root either, because α is already a root.
By applying Remark 39 once more, one sees that the subspace (5¨6) contains no even dimensional
sl2pαq-submodule and the space (5¨5) is the direct sum of an pn ´ 1q-dimensional trivial sl2pαq-
module and one copy of sl2pαq. Summarizing,

(5¨7) gcα Ă g ñ c “ ˘1. ppR2qq
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‚ pR4q: Fix β, α P ∆ be two non-proportional roots and consider the subspace of g given by

(5¨8)
à

jPZ
gβ`jα,

where we understand that gβ`jα “ 0, if gβ`jα Ć g. By Lemma 40 (b), the subalgebra sl2pαq acts on
the space (5¨8), which we know to be a direct sum of 1-dimensional root spaces. By Theorem 34,
the space (5¨8) consists of all the root spaces

à

´rďjďq

gβ`jα,

for some r, q P Zě0, and the eigenvalues of adA on the above space

pβ ` jαqpAq “ βpAq ` jαpAq “ βpAq ` 2j

consist of all the integers of an interval r´M,M s, for M P Z, with successive differences 2. This
forces

(5¨9) βpAq “
2pβ, αq

pα, αq
P Z, @α, β P ∆. ppR4qq

‚ pR3q: More precisely,

βpAq ´ 2r “ ´pβpAq ` 2qq ñ βpAq “ r ´ q.

Since q ´ r is an integer between ´r and q, it follows that

sαpβq “ β ´
2pβ, αq

pα, αq
α “ β ´ βpAqα “ β ` pq ´ rqα P ∆. ppR3qq

□

The next lemma concludes the proof of Claim (*).

Lemma 43. From 2 pβ,αq

pα,αq
P Z, for all α, β P ∆, it follows that the roots of ∆ are contained in a real vector

subspace of h˚. Moreover

pα, βq P Q, and pα, αq ą 0, for all α, β P ∆.

Proof. Since ∆ generates h˚ over C, there exist roots α1, . . . , αn such that every α P ∆ can be written
as

α “
ÿ

j

cjαj , cj P C.

We first prove that

‚ cj P Q, for all j “ 1, . . . , n.
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Taking the inner product of α with α_
j “ 2

αj

pαj ,αjq
, for j “ 1, . . . , n, we obtain

pα, α_
1 q “ c1pα1, α

_
1 q ` . . . ` cnpαn, α

_
1 q

...
...

...

pα, α_
n q “ c1pα1, α

_
n q ` . . . ` cnpαn, α

_
n q

So the coefficients c1, . . . , cn are solutions of a linear system whose coefficient matrix is an invert-
ible matrix with integer entries. As a consequence they are rational numbers.

Next we prove that
‚ pα, βq P Q, for all α, β P ∆.
Recall that for every element of H P h the adjoint action adH respects the root decomposition (5¨2).
Hence the trace of adH is the sum of all roots evaluated at H . From the definition of p¨, ¨q we have
then

pα, βq “ Bptα, tβq “ tracepadtαadtβ q

“ trace

¨

˚

˚

˝

¨

˚

˚

˝

. . . 0 0

0 λptαq 0

0 0
. . .

˛

‹

‹

‚

¨

˚

˚

˝

. . . 0 0

0 λptβq 0

0 0
. . .

˛

‹

‹

‚

˛

‹

‹

‚

“
ÿ

λP∆

pλ, αqp, λ, βq.

Taking α “ β and dividing the resulting expression by pα, αq2 (we know from step (c) in the proof
of Lemma 41 that pα, αq ­“ 0) we obtain

1

pα, αq
“

ÿ

λP∆

pλ, αq2

pα, αq2
“

1

4

ÿ

λP∆

pλ,
2α

pα, αq
q2.

Since each pλ, 2α
pα,αq

q2 is the square of an integer, it follows that pα, αq is a positive rational number.
It also follows that

pβ, αq P Z
pα, αq

2
is a rational number, all roots α, β P ∆. □

Example 44. As an example we work out the root system of the 10-dimensional complex Lie
algebra spp2,Cq

g “ spp2,Cq “ t

˜

A B

C D

¸

P Mp2, 2,Cq | tA “ ´D, tC “ C, tB “ B u “ t

˜

A B

C ´tA

¸

| tB “ B, tC “ Cu.

A Cartan subalgebra of g is given by

h “

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

a1 0 0 0

0 a2 0 0

0 0 ´a1 0

0 0 0 ´a2

˛

‹

‹

‹

‚

, a1, a2 P C

,

/

/

/

.

/

/

/

-

.
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Hence g is of rank 2. The family of operators tadHuHPh decomposes g as

g “ h ‘
à

αP∆`

g˘α,

where the root spaces are generated by the matrices

Zα1 “

¨

˚

˚

˚

˝

0 1 0 0

0 0 0 0

0 0 0 0

0 0 ´1 0

˛

‹

‹

‹

‚

, Z´α1 “

¨

˚

˚

˚

˝

0 0 0 0

´1 0 0 0

0 0 0 1

0 0 0 0

˛

‹

‹

‹

‚

, Zα2 “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

, Z´α2 “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 0

0 0 0 0

0 ´1 0 0

˛

‹

‹

‹

‚

,

Zα1`α2 “

¨

˚

˚

˚

˝

0 0 0 1

0 0 1 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

, Z´pα1`α2q “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 0

0 ´1 0 0

´1 0 0 0

˛

‹

‹

‹

‚

,

Z2α1`α2 “

¨

˚

˚

˚

˝

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

, Z´p2α1`α2q “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 0

´1 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

.

The corresponding roots are given by

∆ “ ˘tα1, α2, α1 ` α2, 2α1 ` α2u,

where
α1pHq “ a1 ´ a2, and α2pHq “ 2a2,

are simple roots and

pα1 ` α2qpHq “ a1 ` a2, p2α1 ` α2qpHq “ 2a1, H P h.

The Killing form of g is given by

BpX,Y q “ 6trpXY q, for X,Y P g.

Using B, identify h˚ and h as in (5¨3): the vectors tα P h, corresponding to the roots α P ∆, are
given by

tα1 “
1

12

¨

˚

˚

˚

˝

1 0 0 0

0 ´1 0 0

0 0 ´1 0

0 0 0 1

˛

‹

‹

‹

‚

, tα2 “
1

6

¨

˚

˚

˚

˝

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 ´1

˛

‹

‹

‹

‚

,

tα1`α2 “ tα1 ` tα1 “
1

12

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 ´1 0

0 0 0 ´1

˛

‹

‹

‹

‚

, t2α1`α2 “ 2tα1 ` tα1 “
1

6

¨

˚

˚

˚

˝

1 0 0 0

0 0 0 0

0 0 ´1 0

0 0 0 0

˛

‹

‹

‹

‚

.
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From the expression for the restriction of the Killing form to h “ SpanRttα1 , tα2u

Bpatα1 ` btα2 , atα1 ` btα2q

“ a2Bptα1 , tα1q ` b2Bptα2 , tα2q ` 2abBptα1 , tα2q

“
1

6
a2 `

1

3
b2 ´

1

6
2ab,

we can see that the vectors ttαuαP∆ generate a real vector subspace in h on which the Killing form
is positive definite. Moreover, on such space they form a root system of type C2: compare the first
two entries on the diagonal of the matrices tα with the description of the root system C2 give in
Section 2.
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