- 1. Compute the Hermite constant in dimension 1 and 2.
- 2. Let L be an integral lattice in \mathbb{R}^n . For a sublattice $\Lambda \subset L$, define

 $\Lambda^{\perp} = \{ x \in L : \langle x, y \rangle = 0 \text{ for all } y \in \Lambda \}.$

- (a) Let $\mathbf{v} \in L$ be a vector of length 1. Put $\Lambda = \mathbf{Z}\mathbf{v}$. Show that $L = \Lambda \oplus \Lambda^{\perp}$.
- (b) Let $\Lambda \subset L$ be a unimodular sublattice. Show that $L = \Lambda \oplus \Lambda^{\perp}$.
- 3. Let L be a unimodular integral lattice of dimension $n \leq 4$.
 - (a) Prove that the ball of radius $\sqrt{2}$ centered in the origin of \mathbb{R}^n contains a non-zero vector $\mathbf{v} \in L$.
 - (b) Prove that L contains a vector length 1.
 - (c) Prove that L is isomorphic to \mathbf{Z}^n .
- 4. Let L be an integral lattice generated by vectors of length 1. Prove it is isomorphic to \mathbb{Z}^n .
- 5. Let $\ell \subset \mathbf{C}$ be a line with slope between -1 and +1. Show $\int_{\ell} e^{-\pi z^2} dz = 1$.
- 6. For $m, n \ge 1$ put $\sigma_m(n) = \sum_{d|n} d^m$. For even $k \ge 2$ let E_k denote the Eisenstein series of weight k.
 - (a) Show that $E_4 = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n$ and $E_8 = 1 + 480 \sum_{n \ge 1} \sigma_7(n) q^n$.
 - (b) Show that $E_4^2 = E_8$.
 - (c) Show that $\sigma_7(n) \sigma_3(n) = 120 \sum_{0 \le m \le n} \sigma_3(m) \sigma_3(n-m)$ for all $n \ge 1$.