Exercises Lattices and sphere packings 1

- 1. Let $L \subset \mathbf{Z}^2$ be the lattice generated by $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$.
 - (a) Determine the covolume of L. Determine a basis for the dual lattice L^* .
 - (b) Determine $covol(L^*)$.

2. Let
$$L \subset \mathbf{R}^3$$
 be the set $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{Z}^3 : 2x + 3y + 5z \equiv 0 \pmod{7} \right\}.$

- (a) Show that L is a lattice.
- (b) Determine its covolume.

3. Let V be the vector space $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 : x_1 + x_2 + x_3 = 0$ equipped with the scalar

product coming from \mathbf{R}^3 .

- (a) Show that $L = \mathbf{Z}^3 \cap V$ is a lattice in V.
- (b) Compute the Gram matrix of L. Is L integral? Even?
- (c) Compute the covolume of L. Is L unimodular?

4. Let
$$n \ge 2$$
 and put $L = \{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbf{Z}^n : x_1 + \ldots + x_n \equiv 0 \pmod{2} \}.$

- (a) Show that L is a lattice in \mathbb{R}^n .
- (b) Compute its covolume.
- (c) Show that for all $\mathbf{v}, \mathbf{w} \in L$ we have $\|\mathbf{v} \mathbf{w}\|^2 \ge 2$.
- (d) Show that the balls of radius $\sqrt{2}/2$ and with center in L are a sphere packing in \mathbb{R}^n . Compute the density.
- 5. Let n be a natural number. Show that $n! > n^n e^{-n}$.
- 6. Let $\mathbf{Z}[\sqrt{3}] := \{x = a + b\sqrt{3} \mid a, b \in \mathbf{Z}\}$. Put $x' = a b\sqrt{3}$. Let

$$L = \{ \begin{pmatrix} x \\ x' \end{pmatrix} \in \mathbf{R}^2 : x \in \mathbf{Z}[\sqrt{3}] \}.$$

- (a) Prove that $\mathbf{Z}[\sqrt{3}]$ is a ring.
- (b) Show that L is a lattice in \mathbb{R}^2 . Draw a picture.
- (c) Compute its covolume.