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The sphere packing problem.

• Arrange solid spheres Bn
r of equal radii r in n-dimensional

Euclidean space Rn.

• Find the densest packing: the one which maximizes the volume
occupied by the spheres.



In the real line

The highest density of a sphere packing in R is

∆1 = 1.

The real line R can be completely covered by non-overlapping
intervals of the same size.



In the plane

The highest density of a sphere packing in R2 is

∆2 =
π√
12

= 0.906899 . . . .

It is achieved by the hexagonal packing:



The spheres have centers on the points of hexagonal lattice

A2 = spanZ{(1,−1, 0), (0, 1,−1)}

and radii r =
√

2/2, half the minimum distance between points of
the lattice.

Its density is given by

Vol(B2√
2/2

)/Vol(F) =
π

2
√

3
∼ 0, 906899 . . . .



The square packing in the plane:

the spheres have centers on the integral lattice and radius r = 1/2;
its density is given by

Vol(B2
1/2)/Vol(F) =

π

4
∼ 0, 785398 . . .



The hexagonal packing was proved to be the densest one among
lattice packings by Joseph-Louis Lagrange (1736-1813)



and among arbitrary packings by Axel Thue in 1890.

An irregular packing....



In the 3-dimensional space

Around 1591, explorer Sir Walter Raleigh (left)

asked the English mathematician and astronomer Thomas Harriot
(right) to study the best way to stack cannon balls on the decks of
his ships.



Thomas Harriot was in correspondence with Johannes Kepler.

In 1611, in his paper On the six-cornered snowflake, Kepler
formulated the following conjecture:

The highest density of a sphere packing in R3 is

∆3 =
π

3
√

2
= 0.740480489 . . . .

It is achieved by infinitely many packings.



In 1831, Carl Friedrich Gauss

proved the Kepler conjecture for lattice packings.



Among lattice packings, the highest density is achieved by the
face-centered cubic.



The spheres have centers on the points of the A3 lattice

A3 = spanZ{(1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1)}

and radius r =
√

2/2.

Its density is indeed maximal

Vol(B3√
2/2

)/Vol(F) =
π

2
√

3
∼ 0, 7404 . . . .



• The cubic packing

the spheres have centers on the integral lattice and radius r = 1/2;
its density is given by

Vol(B3
1/2)/Vol(F) =

π

6
∼ 0, 5235 . . .



The maximal density is also achieved by infinitely many non-lattice
packings, obtained by stacking optimal 2-dimensional layers.



For completing the proof of the Kepler conjecture, one must
consider also irregular packings. In 1953, Lázló Fejes Tóth reduced
the treatment of irregular packings to a finite (big) number of
cases.

In 2005, Thomas Hales (Univ. of Michigan)

proved the Kepler conjecture by a computer aided proof.



The sphere packing problem in Rn

How to measure the density of a sphere packing P?

P =
⋃
x

Bn
r (x)

The local density of the packing is

∆P(R) :=
Vol(P ∩ Bn

R(0))

Vol(Bn
R(0))

, R > 0

The density of the packing is

∆P = lim sup
R→∞

∆P(R).



• For a lattice Λ packing

∆Λ = Vol(Bn
r )/Vol(F), r = d/2,

where F=fundamental domain of the lattice, and d=minimum
distance between elements of the lattice.



We want to estimate
∆n = sup

P
∆P

Until 2016, the problem was solved only up to dimension 3:

∆1 = 1

∆2 = 0, 9068 . . .

∆3 = 0, 7404 . . .

In each case, the highest density is achieved by a lattice packing.



• Rough lower bound ∆n ≥ 2−n

• Most density upper bounds are “far” from best known densities.

n highest dens. known lattice Cohn-Elkies’ u.b.

1 1 Z 1

2 0,906899. . . A2 0,906899. . .

3 0,740480. . . A3 0,77974. . .

4 0,6168. . . D4 0,64774. . .

5 0,4652. . . D5 0,5249. . .

6 0,3729. . . E6 0,4176. . .

7 0,2952. . . E7 0,3274. . .

8 0,253669507. . . E8 0,253669508. . .

9 0,1457. . . Λ9 0,1945. . .

10 0,099. . . − 0,1479. . .



• Sphere packings in Rn become less and less dense as n→∞.

The volume of a ball of radius r in Rn tends to zero for n→∞.

Vol(Bn
r ) =

πn/2

(n/2)!
rn, (n/2)! = Γ(n/2 + 1).



In 2016, Maryna Viazovska

solved the sphere packing problem in R8

R8 : ∆8 =
π4

384
∼ 0, 25367, E8-lattice packing

and in R24, with H. Cohn, A, Kumar, S. D. Miller, D. Radchenko,

R24 : ∆24 =
π12

12!
∼ 0, 001929, Leech-lattice packing.



The starting point of Viazovska’s proof is the following theorem:

Theorem. (H. Cohn, N. Elkies, 2001) Let f : Rn → R be a
Schwartz function and r ∈ R>0 such that

I f (0) = f̂ (0) > 0,

I f̂ (y) ≥ 0, for all y ∈ Rn,

I f (x) ≤ 0, for |x | ≥ r .

Then
∆n ≤ Vol(Bn

r/2).



For n = 1, the function

f (x) = (1− |x |)χ[−1,1](x),

with Fourier transform f̂ (y) =
(

sin(πy)
πy

)2
proves that ∆1 = 1.

• f (0) = f̂ (0) = 1 > 0;

• f (x) ≤ 0, for all |x | ≥ 1;

• f̂ (y) ≥ 0, for all y ∈ R.

Its higher dimensional analogue produces the trivial bound ∆n ≤ 1.



Another function which proves ∆1 = 1:

f (x) =
1

1− x2

(
sin(πx)

πx

)2

f̂ (y) = (1− |y |) +
sin(2π|y |)

2π
, |y | < 1,

f̂ (y) = 0, |y | ≥ 1.



• Several upper bounds for sphere packing densities have been
improved by Cohn-Elkies by constructing appropriate functions
satisfying their theorem for some r .

• In dimension 8 and 24, the Cohn-Elkies bounds are very close to
the density of the E8 lattice and the Leech lattice, respectively.

• Finding a function with optimal r is a major problem.



How does Cohn-Elkies’s theorem imply a bound on ∆n?

• Densest packings can be approximated by “periodic packings”
(spheres are centered on the union of finitely many translates of a
lattice).

• For “periodic packings”, the theorem follows from the Poisson
summation formula.

• We sketch the proof for lattice packings.

If Λ is a lattice in Rn and Λ∗ = {x ∈ Rn | 〈x , λ〉 ∈ Z, ∀λ ∈ Λ},
then ∑

x∈Λ

f (x) =
1

Vol(F)

∑
y∈Λ∗

f̂ (y).



If Λ is a lattice with minimum distance r

f (0) +
∑

x∈Λ\{0}

f (x)

︸ ︷︷ ︸
≤0

=
1

Vol(F)
(f̂ (0) +

∑
x∈Λ∗\{0}

f̂ (x)

︸ ︷︷ ︸
≥0

)

⇒ f (0) ≥ 1

Vol(F)
f̂ (0).

⇒ Vol(F) ≥ f̂ (0)

f (0)
= 1

∆Λ = Vol(Bn
r/2)/Vol(F) ≤ Vol(Bn

r/2).



The lattice E8 is generated over Z by the vectors

1
2 (e1 + e8)− 1

2 (e2 + e3 + e4 + e5 + e6 + e7), e1 + e2,
e2 − e1, e3 − e2, e4 − e3, e5 − e4, e6 − e5, e7 − e6,

where ei denotes the i th vector of the canonical basis of R8.

• It is unimodular: Vol(F) = 1.

• It is selfdual: E8
∼= E ∗8 .

• It has minimum distance d =
√

2.

• The density of the associated sphere packing is

∆E8 = Vol
(
B8√

2/2

)
=

π4

384
.



If there exists a Schwartz function f as in the Cohn-Elkies
theorem, with r =

√
2, then

∆8 ≤ Vol
(
B8√

2/2

)
= ∆E8 .

⇒ ∆8 = ∆E8 =
π4

384
.

Remark.
• f may be taken radial;
• assumptions of the Cohn-Elkies theorem + unimodularity of E8

+ Poisson summation formula imply

f (x) = f̂ (x) = 0, ∀x ∈ E8 \ {0}.



• Does one such function f exists?

Viazovska constructed f by using modular forms:

f (x) = sin2(
π|x |2

2
)

∫ +∞

0
(t2ϕ(

i

t
) + ψ(it))e−πt|x |

2
dt, |x | >

√
2,

where

ϕ =
4π(E2E4 − E6)2

5(E 2
6 − E 3

4 )

and ψ is a rational function in the Θ-series of the lattice Z.



For k > 2 even, Ek denotes the Eisenstein series:
for q = e2πiz , z ∈ H+ and σk(n) =

∑
d |n d

k ,

E2(z) = 1− 24
∑
n≥1

σ1(n)qn

E4(z) = 1 + 240
∑
n≥1

σ3(n)qn

E6(z) = 1− 504
∑
n≥1

σ5(n)qn

and
Θ(z) =

∑
x∈Z

eπi |x |
2z .

The Fourier transform of f is

f̂ (y) = sin2(
π|y |2

2
)

∫ +∞

0
(t2ϕ(

i

t
)− ψ(it))e−πt|y |

2
dt.



The radial functions f and f̂ .

(pictures from H. Cohn, Notices AMS, 2017 )



• The arguments used for the 8-dimensional case were generalized
to solve the 24-dimensional case.

• The E8-lattice and the Leech lattice sphere packings are the only
periodic packings with maximal density in R8 and R24, respectively.



Final remarks

• The sphere packing problem in Rn is open for n 6= 1, 2, 3, 8, 24.

• Possibly the next case to be solved:
the lattice packing D4 is the candidate for densest packing in R4 ,
where

D4 = spanZ{e1 − e2, e2 − e3, e3 − e4, e3 + e4}.
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