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Let G/K be a noncompact, rank-one, Riemannian symmetric space, and
let GC be the universal complexification of G. We prove that a holomor-
phically separable, G-equivariant Riemann domain over GC/K C is neces-
sarily univalent, provided that G is not a covering of SL(2, R). As a con-
sequence, one obtains a univalence result for holomorphically separable,
G×K -equivariant Riemann domains over GC. Here G×K acts on GC by
left and right translations. The proof of such results involves a detailed
study of the G-invariant complex geometry of the quotient GC/K C, includ-
ing a complete classification of all its Stein G-invariant subdomains.

1. Introduction

Let Y be a domain in a Stein manifold X . By a classical result of H. Rossi [1963],
the envelope of holomorphy of Y exists and can be realized as a Riemann domain
p̂ : Ŷ → X . In general it is a difficult problem to explicitly determine Ŷ and to
establish whether p̂ is injective, that is, whether the envelope of holomorphy Ŷ is
univalent. However, in the presence of a large group of symmetries, some results
are known. For instance, let the vector group G = (Rn,+) act on its universal
complexification GC

= (Cn,+) by left multiplication. Bochner’s tube theorem
characterizes the envelope of holomorphy of a G-invariant domain Y in GC as the
smallest, convex, G-invariant domain in GC containing Y . In particular it shows
that such envelope is univalent. An analogous statement holds true for G a compact
torus, that is, for envelopes of holomorphy of Reinhardt domains in (C∗)n .

Let G be a connected Lie group, and let Y be a complex G-manifold, that is,
a complex manifold endowed with a real-analytic action of G by holomorphic
transformations. A G-equivariant Riemann domain over GC is by definition a
G-equivariant local biholomorphism p : Y → GC. A motivation for determining
conditions under which p is injective in this more general context comes from
the theory of globalization of local actions. Namely, given a reduced complex
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space endowed with a holomorphic G-action, one can consider the induced local
GC-action. It turns out that the univalence of G-equivariant Riemann domains
over GC is a necessary condition for extending such a local action to a global one;
see [Palais 1957; Heinzner and Iannuzzi 1997; Casadio Tarabusi et al. 2000].

For a certain class of groups, including for example the product of a compact
and a simply connected nilpotent Lie group, univalence results were obtained for
arbitrary holomorphically separable, G-equivariant Riemann domains over GC by
Cœuré and Loeb [1986]. Note that since GC is Stein (see [Heinzner 1993]), holo-
morphic separability of Y is a necessary condition for p to be injective.

When G is a noncompact, real semisimple Lie group, univalence of holomorphi-
cally, separable G-equivariant Riemann domains over GC does not hold in general.
For G = SL(2,R), a Stein counterexample was pointed out to us by K. Oeljeklaus;
see Section 8. The image of this Riemann domain in GC is also invariant under
right K -translations, and its construction is based on the existence of nontrivial
coverings of the K -orbits in GC. Here K is a maximal compact subgroup in G.
Observe also that SL(2,C)/SL(2,R) is simply connected. Thus this example gives
a negative answer to the question of whether the simple-connectivity of the quotient
GC/G is a sufficient condition for univalence of G-equivariant Riemann domains
over GC; see [Cœuré and Loeb 1986].

Let G be a connected, noncompact, real simple Lie group, and let K be a max-
imal compact subgroup of G. The group G is not necessarily embedded in GC,
but it is assumed to have finite center. Consider the action of the product group
G × K on GC by left and right translations. One of the results of this paper is the
following theorem, Theorem 8.1.

Theorem. Let G/K be a noncompact, rank-one, Riemannian symmetric space. A
holomorphically separable, G×K -equivariant Riemann domain p : Y → GC is
univalent, provided that G is not a covering of SL(2,R).

Note that since Y embeds equivariantly into its envelope of holomorphy (see
Section 2), there is no loss of generality in assuming that Y is Stein. Then a
result of P. Heinzner [1991] implies that the categorical quotient Y // K is also
Stein. By performing categorical K -reduction on both Y and GC, one can associate
to p : Y → GC a Stein, G-equivariant Riemann domain q : Y //K → GC/K C.
A suitable characterization of the univalence of q (see Proposition 3.1) implies
that p is univalent if q is univalent. Then the above theorem is a consequence
of the following one, which is the main result of the paper; see Theorem 7.6 and
Remark 7.8.

Theorem. Let G/K be a noncompact, rank-one, Riemannian symmetric space. A
holomorphically separable, G-equivariant Riemann domain q : 6 → GC/K C is
univalent, provided that G is not a covering of SL(2,R).
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The proof of this theorem is carried out as follows. First we show that, with few
exceptions, the map q is injective on every G-orbit. For principal G-orbits this is
done by determining their topology. The result is then extended to the remaining
G-orbits by a general argument in Section 5. As a consequence there exists a
G-invariant domain in 6 on which q is injective.

Next we show that such domain can be enlarged to the whole6. This is done by
successively lifting to 6 local slices for principal G-orbits in GC/K C. Since such
slices are one-dimensional and q is injective on G-orbits, each lifting determines a
G-invariant domain in6 on which q is injective. The main difficulty is in ensuring
monodromy around singular G-orbits. For this we combine a detailed description
of the G-orbit structure of GC/K C with the complex-geometric properties of cer-
tain non-Stein, G-invariant domains in GC/K C.

By the above univalence result, all Stein, G-equivariant Riemann domains over
GC/K C can be regarded as Stein, invariant domains in GC/K C. We carry out their
classification in Theorem 6.1. These results also provide examples of Kobayashi
hyperbolic domains whose envelopes of holomorphy are not Kobayashi hyperbolic;
see Example 7.9.

For G/K of arbitrary rank, recent investigations due to several authors have
indicated an interplay between the complex geometry of distinguished Stein, G-
invariant domains in GC/K C and the harmonic analysis on the G-symmetric spaces
contained in GC/K C; see [Krötz and Stanton 2005; Fels et al. 2006] and refer-
ences therein. A better understanding of envelopes of holomorphy of G-invariant
domains in GC/K C might give new insights in this context. We hope the present
paper to be a first step for further investigations in higher rank.

The paper is organized as follows. In Section 2, we recall some basic notions
and results from geometric invariant theory. In Section 3, from a Stein G×K -
equivariant Riemann domain p : Y → GC we obtain a Stein, G-equivariant, Rie-
mann domain q : Y // K → GC/K C. We also show that p is univalent if q is
univalent. In Section 4, we give a detailed description of the G-orbit structure of
GC/K C when G/K is a noncompact, rank-one, Riemannian symmetric space. We
also describe an explicit model for the space GC/K C in the cases G = SO0(n, 1)
and G =SU(n, 1). In Section 5, we show that, with few exceptions, a G-equivariant
Riemann domain q : Y → GC/K C is univalent on every G-orbit. In Section 6, we
carry out a complete classification of Stein, G-invariant domains in GC/K C. When
G = SU(n, 1) some of these domains appear to be new. In Section 7, we prove the
univalence result for holomorphically separable, G-equivariant Riemann domains
over GC/K C. In Section 8, we obtain the result for holomorphically separable,
G×K -equivariant Riemann domains over GC. We also discuss some examples. In
the appendix, Section 9, we compute the Levi form of all nonclosed hypersurface
G-orbits in GC/K C. The results of this computation are used in Sections 6 and 7.
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2. Preliminaries

Let G be a connected, real Lie group. A complex Lie group GC together with a Lie
group homomorphism ι : G → GC is called a universal complexification of G if, for
every Lie group homomorphism ψ from G to a complex Lie group H , there exists
a holomorphic homomorphism ψC

: GC
→ H such that ψ = ψC

◦ ι. A universal
complexification of G always exists and is unique up to biholomorphisms; see
[Hochschild 1965].

Assume that G is a connected, real semisimple Lie group. Denote by g the
Lie algebra of G and by gC

:= g ⊕ ig its complexification. Then the universal
complexification of G is a complex semisimple Lie group GC with Lie algebra gC.
If G is a real form of a simply connected complex semisimple Lie group GC,
then its universal complexification is GC. Furthermore, if 0 is a central subgroup
of G, then the universal complexification of the quotient group G/0 is given by
GC/0. Note that every automorphism of G uniquely extends to a holomorphic
automorphism of its universal complexification GC.

Let K be a compact Lie group and X a Stein K -space, that is, a reduced Stein
space with a real-analytic action of K by holomorphic transformations. The cate-
gorical quotient X //K of X is defined by the equivalence relation in which x ∼ y
if and only if f (x) = f (y) for every K -invariant holomorphic function f on X .
We recall some basic properties of the categorical quotient; see [Heinzner 1991].

Theorem 2.1. Let K be a compact Lie group and X a Stein K -space. Then

(i) the categorical quotient X // K equipped with the algebra O(X)K of holo-
morphic K -invariant functions on X is a Stein space, and the projection
π : X → X //K is holomorphic; and

(ii) for every K -invariant holomorphic mapψ from X to a complex space Y , there
exists a unique holomorphic map ψ̂ : X //K → Y making the diagram

X π //

ψ

��

X //K

ψ̂||yy
yy

yy
yy

y

Y

commute.

If the K -action on X is the restriction of a K C-action, then the algebras of K -
invariant and of K C-invariant holomorphic functions on X coincide. In particular,
they induce the same equivalence relation on X and X // K ∼= X // K C. In this
case, if all K C-orbits are closed, then X //K C coincides with the usual orbit space
X/K C; see [Snow 1982, Theorem 3.8]. A K -action on a Stein space can always
be extended to a K C-action, as shown by the following theorem.
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Theorem 2.2 [Heinzner 1991]. Let K be a compact Lie group and X a Stein K -
space. Then there exist a Stein K C-space X∗ and a K -equivariant holomorphic
embedding ι : X ↪→ X∗ with the following properties:

(i) the map ι is open, and K C
· ι(X)= X∗;

(ii) for every K -equivariant holomorphic map ϕ from X into a complex K C-
space Z , there exists a unique K C-equivariant holomorphic map ϕ∗

: X∗
→ Z

making the diagram
X � � ι //

ϕ

��

X∗

ϕ∗

{{wwwwwwwww

Z
commute;

(iii) the inclusion X ↪→ X∗ induces an isomorphism between the categorical quo-
tients X //K and X∗//K C.

Observe that, since K C
·ι(X)= X∗, if X is nonsingular, then X∗ is also nonsingular.

Let X be a complex manifold, and let G be a Lie group. A Riemann domain
over X is a complex manifold Y together with a locally biholomorphic map p :

Y → X . If both X and Y are G-manifolds and the map p is G-equivariant, then
we refer to p : Y → X as a G-equivariant Riemann domain. If X is Stein and Y
is holomorphically separable, then Y embeds as an open domain in its envelope
of holomorphy Ŷ , and the map p extends to a local biholomorphism p̂ : Ŷ → X ;
see [Rossi 1963]. Moreover the G-action on Y extends to Ŷ , and the map p̂ is
G-equivariant, that is, p̂ : Ŷ → X is a Stein, G-equivariant Riemann domain.

A Riemann domain p : Y → X is called univalent if the map p is injective.
Assume X is Stein and Y is holomorphically separable. If p̂ is univalent, then p
is also univalent. Aiming at univalence results for holomorphically separable Rie-
mann domains over GC, it is therefore not restrictive to start with Riemann domains
that are Stein.

3. From Riemann domains over GC to Riemann domains over GC/K C

Let G be a connected, noncompact, real semisimple Lie group, let K ⊂ G be a
maximal compact subgroup, and let GC be the universal complexification of G.
Let G × K act on GC by left and right translations, that is,

(g, k) · z := gzk−1 for (g, k) ∈ G × K and z ∈ GC.

In this section, to every Stein, G×K -equivariant Riemann domain p : Y → GC we
associate a Stein, G-equivariant Riemann domain q :6→ GC/K C. We also show
that the univalence of q implies that of p.
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Let X be a Stein K C-manifold and let p : Y → X be a Stein, K -equivariant
Riemann domain. By Theorem 2.2, there exist a Stein K C-manifold Y ∗, a K -
equivariant holomorphic open embedding ι : Y ↪→ Y ∗, and a K C-equivariant holo-
morphic map p∗

: Y ∗
→ X such that the diagram

Y � � ι //

p
��

Y ∗

p∗

{{xxxxxxxxx

X

commutes. Since p is locally biholomorphic, p∗ is K C-equivariant, and Y ∗
=

K C
· Y , one has that p∗ is locally biholomorphic as well, that is, it defines a Stein

K C-equivariant Riemann domain. By Theorem 2.2, the spaces Y ∗//K C and Y //K
are biholomorphic. Therefore Theorem 2.1 implies there exists a holomorphic map
q : Y //K → X //K C making the diagram

Y ∗ //

p∗

��

Y ∗//K C ∼= Y //K

q
��

X // X //K C

commute. Here the horizontal arrows denote the categorical quotient maps.
Assume that all K C-orbits in X are closed and all K C-isotropies are connected.

We claim that all K C-orbits in Y ∗ are closed as well. Suppose by contradiction that
there exists a nonclosed orbit K C

· y in Y ∗. Let K C
· z be a lower dimensional orbit

in its closure; see [Snow 1982, Proposition 2.3]. Since p∗ is locally biholomorphic
and K C-equivariant, the orbit K C

· p∗(z) lies in the closure of K C
· p∗(y) and has

lower dimension. In particular such orbits are distinct. It follows that the orbit
K C

· p∗(y) is not closed, contradicting the assumption.
By the above claim, the categorical quotients X // K C and Y ∗ // K C coincide

with the orbit spaces X/K C and Y ∗/K C, respectively. If we also assume that the
K C-orbits have connected isotropy subgroups, such orbit spaces are nonsingular
and the map q : Y //K → X/K C defines a Stein Riemann domain. We refer to it as
the Riemann domain induced by p : Y → X . Next we prove a general univalence
result for Stein, K -equivariant Riemann domains.

Proposition 3.1. Let X be a Stein K C-manifold, all of whose K C-orbits are closed
and have connected isotropy subgroups. Let p : Y → X be a Stein, K -equivariant
Riemann domain, and let p∗

: Y ∗
→ X be its extension to the K C-globalization Y ∗

of Y .

(i) The induced Stein, Riemann domain q : Y //K → X/K C is univalent if and
only if p∗

: Y ∗
→ X is univalent.
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(ii) If q : Y //K → X/K C is univalent, then p : Y → X is univalent.

Proof. (i) If p∗ is injective, then it maps distinct K C-orbits in Y ∗ onto distinct
K C-orbits in X . As we already noticed, since all K C-orbits in X are closed, the
categorical quotients X//K C and Y ∗//K C coincide with the orbit spaces X/K C and
Y ∗/K C, respectively. It follows that the induced map Y ∗/K C

→ X/K C is injective.
Moreover, by Theorem 2.2, the space Y //K can be identified with Y ∗//K C. As a
result the induced Riemann domain q : Y //K → X/K C is univalent.

Conversely, assume that q : Y //K → X/K C is univalent, that is, that the map
Y ∗/K C

→ X/K C is injective. By assumption, the K C-isotropy subgroups in X are
connected; thus p∗ is injective on every K C-orbit in Y ∗. It follows that p∗

:Y ∗
→ X

is globally injective. This proves (i); statement (ii) is a direct consequence. �

Remark 3.2. In general, under the assumptions of the above proposition, the uni-
valence of p : Y → X does not imply that of q : Y //K → X/K C. For instance,
let C∗ act on C × C∗ and on X := C∗

× C∗ by multiplication on the second factor.
Define p∗

: C × C∗
→ X by (z, w) 7→ (ez, w) and consider

Y := {(z, w) ∈ C × C∗
: Im z < |w|< 2π + Im z}.

Then Y is a Stein S1-invariant subdomain of Y ∗
= C × C∗ and the map p := p∗

|Y

is injective. Nevertheless the induced map q : Y //S1 ∼= C → X/C∗ ∼= C∗, given by
z 7→ ez , is not injective.

Consider now the case when X is the group GC endowed with the G×K -action
by left and right translations. Let p : Y → GC be a Stein, G×K -equivariant
Riemann domain. Note that the actions of G and K commute on GC. Thus they
also commute on Y , because p is equivariant and locally injective. Since the K -
action on GC is the restriction of a K C-action all of whose orbits are closed, the
spaces GC//K and GC/K C are biholomorphic.

By the universality property of the categorical quotient (see Theorem 2.1), the
G-actions on Y and on GC induce G-actions on Y //K and on GC/K C, respec-
tively. Moreover the induced Stein, Riemann domain q : Y //K → GC/K C is G-
equivariant. By applying Proposition 3.1 to this situation, we obtain the following.

Corollary 3.3. Let p : Y → GC be a Stein, G×K -equivariant Riemann domain
over GC, and let q : Y//K → GC/K C be the induced Stein, G-equivariant Riemann
domain over GC/K C. If q is univalent, then p is univalent.

4. G-orbit structure of GC/K C

Let G be a connected, noncompact, real simple Lie group, let K ⊂ G be a maximal
compact subgroup, and let GC be the universal complexification of G. Assume that
G is embedded in GC. The quotient G/K is a Riemannian symmetric space of the
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noncompact type. In this section we obtain a complete description of the G-orbit
structure of GC/K C in the case when G/K has rank one.

We recall some basic facts holding for G/K of arbitrary rank. Denote by σ
the antiholomorphic involution of GC relative to G and by τ : GC

→ GC the
holomorphic extension of the Cartan involution θ of G with respect to K . Note
that the fixed point set of τ in GC contains the complexification K C of K . The
commuting composition σ ◦τ = τ ◦σ is a Cartan involution of GC. Denote by U the
corresponding compact real form. The U -orbit of the base point eK C in GC/K C

is diffeomorphic to the compact dual symmetric space U/K , and is embedded in
GC/K C transversally to G/K .

Remark 4.1. (i) For every triple (G, K ,GC) as above, the manifold GC/K C is
simply connected. To see this, denote by G̃C and Ũ ⊂ G̃C the universal coverings
of GC and U , respectively. Let Ĝ be the real form of G̃C relative to the lifting of
σ to G̃C. The group Ĝ is connected (see [Steinberg 1968]) and is a finite covering
of G. Hence G = Ĝ/0, where 0 is a finite central subgroup of Ĝ. Similarly K =

K̂/0, where K̂ is a maximal compact subgroup of Ĝ. One has GC ∼= G̃C/0 (see
Section 2) and consequently U = Ũ/0. As a consequence there are isomorphisms

U/K ∼= Ũ/0/K̂/0 ∼= Ũ/K̂ .

Since K̂ is connected, the quotient Ũ/K̂ is simply connected. Moreover U/K is
a topological retract of GC/K C. Hence the claim follows.

(ii) From different triples (G, K ,GC) as above associated with the same Riemann-
ian symmetric space, one obtains the same complexification GC/K C. Indeed the
map G̃C/K̂ C

→ GC/K C, given by gK̂ C
7→ g0K C, defines a biholomorphism.

Moreover the center of G acts trivially on GC/K C. As a consequence, different
triples (G, K ,GC) yield the same G-orbit structure of GC/K C and G-equivariantly
diffeomorphic orbits.

Closed G-orbits of maximal dimension form an open dense subset of GC/K C

and come in a finite number of orbit types. We refer to them as principal G-orbits.
They have real codimension equal to the rank of G/K . Singular orbits are closed
G-orbits that are not principal.

The G-orbit structure of GC/K C is closely related to the G×K C-orbit structure
of GC. Then, slices for the closed G-orbits in GC/K C can be obtained by apply-
ing Matsuki’s results [1997, Section 4] on double coset decompositions of groups
arising from two involutions.

Let k ⊕ p be the Cartan decomposition of g with respect to K , and let a be a
maximal abelian subspace of p. Following Matsuki, we denote by A := exp iaK C

the image of the compact torus exp ia in GC/K C. The set A is a slice for all
closed G-orbits intersecting the compact dual symmetric space U/K in GC/K C.
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It is called the fundamental Cartan subset. The remaining slices for closed G-
orbits in GC/K C are of the form C := exp ic · z, where c is an abelian semisimple
subalgebra of g of the same dimension as a and z ∈ A is a base point sitting on a
singular closed G-orbit. Such sets C are called standard Cartan subsets.

By [Geatti 2006], every standard Cartan subset C admits a base point z with the
following properties:

• there exists a subgroup G ′
⊆ G (possibly G ′ is equal to G) such that the

isotropy subgroup of z in G ′ coincides with the isotropy subgroup Gz of z
in G;

• the quotient G ′/Gz is a pseudo-Riemannian symmetric space of the same rank
as G/K ;

• the slice representation of Gz at z is equivalent to the isotropy representation
of G ′/Gz .

More precisely, let g′
= gz ⊕ q′ be the decomposition of the Lie algebra of G ′

corresponding to the symmetric space G ′/Gz (when G ′
= G, g = gz ⊕q). Denote

by T (G · z)z the tangent space of the orbit G · z at z and by Nz a complementary
subspace of T (G · z)z in T (GC/K C)z . Then Nz ∼= q′ and the slice representation
at z is equivalent to the Adjoint representation of Gz on q′. Moreover, both a and
c are maximal abelian subalgebras in q′.

Consider the twisted bundle G ×Gz q′ defined as the orbit space of G ×q′ under
the action of Gz given by h·(g, X) := (gh−1,Adh X). The group G acts on G×Gz q

′

by ĝ · [g, X ] := [ĝg, X ]. By Luna’s slice theorem [1975, Proposition 1.2], there
exists an open AdGz-invariant neighborhood V of 0 in q′ such that the map

(4-1) G ×Gz V → GC/K C, [g, X ] 7→ g exp i X · z

is a G-equivariant diffeomorphism onto an open G-invariant neighborhood of z
in GC/K C. Nonclosed G-orbits in G ×Gz V correspond to nonclosed AdGz-orbits
in V . The standard Cartan subset C in GC/K C is the image of the set {e} × c via
the above map.

Let us now assume that G/K has rank one. Then the G-orbit space of GC/K C

can be completely determined. Let 1a be the restricted root system of g with
respect to a, and let

g = Zg(a)
⊕
α∈1a

gα, with Zg(a)= Zk(a)⊕ a,

be the corresponding root decomposition. Here Zg(a) and Zk(a) denote the cen-
tralizers of a in g and k, respectively. Let 0 be the lattice in a given by the kernel of
the map a → U/K defined by X 7→ exp(i X)K . Since the symmetric space U/K
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is simply connected (see Remark 4.1), the lattice 0 is given by

0 =

⊕
α∈1a

Ziπhα,

where hα ∈ a is uniquely determined by α(hα) = 2; see [Helgason 1978, Theo-
rem 8.5, page 322]. Denote by WK (a) the Weyl group of a, and let the semidirect
product WK (a)n 0 act on a by (k, γ ) · A := Adk A + γ . Denote by a0 a funda-
mental domain for this action, and define A0 := exp ia0K C. Then every closed
G-orbit through the fundamental Cartan subset A intersects A0 in a single point;
see [Matsuki 1997, Theorem 3].

Let z ∈ A0 be a base point for a standard Cartan subset C. By [Geatti 2006] and
by the local linearization (4-1), the G-orbit structure of GC/K C in a neighborhood
of z is modeled on the orbit structure of the tangent space of a rank-one, pseudo-
Riemannian symmetric space under the isotropy representation. It can be described
as follows.

Remark 4.2. Let G/H a rank-one, pseudo-Riemannian symmetric space. Assume
that the group H is connected. Let g = h ⊕ q be the corresponding Lie algebra
decomposition and q∩ k⊕ q∩ p the Cartan decomposition of q. The isotropy rep-
resentation of G/H is equivalent to the Adjoint representation of H on q. Denote
by B both the Killing form of g and its restriction to q \ {0}. The signature of B
on q is given by (s+, s−), with

s+
:= dim(q ∩ p) and s−

:= dim(q ∩ k).

For r ∈ R, denote by Br the level hypersurface {B = r} in q \ {0}. In diagonalized
form one has Br = {x2

1 +· · ·+ x2
s+ − y2

1 −· · ·− y2
s− = r}. Since G/K has rank one,

every AdH -orbit in q\{0} is a hypersurface. Thus, by the connectedness of H and
the AdH -invariance of B, such an orbit coincides with a connected component of
some Br . We distinguish four cases.

(a) Assume s+
= s−

= 1. For every r 6= 0, the level set Br consists of two
connected components. They intersect either a = q∩p or c = q∩k in opposite
points, depending on whether r > 0 or r < 0. The nilcone B0 consists of four
nonclosed AdH -orbits.

(b) Assume s+ > 1 and s−
= 1. For r > 0, the level set Br consists of a single

component intersecting q ∩ p in a sphere. Thus, for every nonzero vector
A ∈ q ∩ p and every t > 0, the points t A and −t A belong to the same AdH -
orbit. If r < 0 the level set Br consists of two connected components, which
intersect c=q∩k in opposite points. The nilcone B0 consists of two nonclosed
AdH -orbits.
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(c) Assume s+
= 1 and s−>1. If r > 0, the level set Br consists of two connected

components, which intersect a = q ∩ p in opposite points. If r < 0, the level
set Br intersects q ∩ k in a sphere. Thus for every nonzero vector C ∈ q ∩ k

and every s > 0, the points sC and −sC belong to the same AdH -orbit. The
nilcone B0 consists of two nonclosed AdH -orbits.

(d) Assume s+ > 1 and s− > 1. For every r 6= 0 the level set Br consists of a
single connected component. It intersects either q ∩ p or q ∩ k in a sphere,
depending on whether r > 0 or r < 0. Thus for every nonzero vector A ∈ q∩p

and every t > 0, the points t A and −t A belong to the same AdH -orbit. A
similar statement holds true for points sC and −sC , with C a nonzero vector
in q∩ k and s > 0. The nilcone B0 consists of a unique nonclosed AdH -orbit.

In order to give further details, we recall the classification of rank-one, Rie-
mannian symmetric spaces of the noncompact type. For each space M , we list its
real dimension, its standard presentation G/K , and the dimensions of the restricted
roots spaces of g; see [Wolf 1984, page 294] and [Helgason 1978, page 532].

M dim M G/K dim gα dim g2α

H n(R) n SO0(n, 1)/SO(n), n ≥ 2 n − 1 0
H n(C) 2n SU(n, 1)/U(n), n ≥ 2 2(n − 1) 1
H n(H) 4n Sp(n, 1)/Sp(n)× Sp(1), n ≥ 2 4(n − 1) 3
H 2(Cay) 16 F∗

4 /Spin(9) 8 7

Table 4.0

Remark. The two-dimensional symmetric space SO0(2, 1)/SO(2) can alternately
be identified with SU(1, 1)/U(1) or SL(2,R)/SO(2), and the symmetric space
SO0(3, 1)/SO(3) can be identified with SL(2,C)/SU(2).

4.1. The reduced case. Assume that the restricted root system of g is reduced,
that is, it consists of two roots {±α}. This is the case of the spaces H n(R) in
Table 4.0. A fundamental domain for the action of WK (a)n 0 on a is given by
a0 = {A ∈ a : 0 ≤ α(A) ≤ π}, and there are three singular orbits intersecting
A0 := exp ia0K C. Their base points are given by z j = g j K C for j = 1, 2, 3. Here
g j = exp i A j and the elements A j ∈ a0 satisfy the conditions

(4-2) α(A1)= 0, α(A2)= π/2, α(A3)= π,

respectively. The G-orbits through z1 and z3 are diffeomorphic to the symmetric
space G/K and are embedded in GC/K C as totally real submanifolds of maximal
dimension. Moreover, the G-orbit through z2 is a rank-one, pseudo-Riemannian
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symmetric space G/H with involution τz2 = Adg2 ◦ τ ◦ Adg−1
2

. The space G/H is
embedded in GC/K C as a closed, totally real submanifold of maximal dimension;
see [Geatti 2002, Lemma 2.11 and Remark 2.13]. A standard Cartan subset starting
at z2 is given by C = exp ic · z2, where c = R(X + θ(X)) and X is a nonzero
vector in gα. In the next lemma we determine the G-orbit structure of GC/K C in
a neighborhood of z2. Fix a generator C of c.

Lemma 4.3. Assume that the restricted root system of g is reduced. Let z2 ∈ A0 be
the base point of the Cartan subset C.

(i) If dim G/K > 2, then the orbit G · z2 is simply connected. In particular, the
isotropy subgroup H of z2 in G is connected.

(ii) For every s > 0, the points exp(isC) · z2 and exp(−isC) · z2 lie on the same
G-orbit in GC/K C if and only if dim gα > 1.

(iii) If dim gα > 1, there are two nonclosed G-orbits in GC/K C containing G · z2

in their closure. If dim gα = 1, such orbits are four.

Proof. (i) Using the hyperquadric model (see Example 4.4), one can verify that
the orbit of z2 is diffeomorphic to SO0(n, 1)/SO0(n−1, 1). In particular, it is
topologically equivalent to a sphere of dimension n − 1 and is simply connected
for n> 2. In that case, the isotropy subgroup H is connected, since G is connected
by assumption. When n = 2, the orbit G/H is not simply connected. The isotropy
subgroup of z2 is either connected (when G = SO0(2, 1)) or its quotient by the
ineffectivity subgroup is connected (when G is a nontrivial covering of SO0(2, 1)).

As a result, (ii) and (iii) follow from Remark 4.2, provided that dim(q ∩ p)= 1
and dim(q ∩ k) = dim gα. To show this, define g[α] := gα ⊕ g−α. Then g[α] is a
θ -stable subspace of g of dimension equal to 2 dim gα. Let g[α] = g[α]k ⊕ g[α]p

be its Cartan decomposition. The components g[α]k and g[α]p are generated by
vectors of the form

X + θ(X) and X − θ(X),

respectively, where X ranges through the elements of a basis of gα. In particular,
dim g[α]k = dim g[α]p = dim gα. Consider the decomposition g= Zk(a)⊕a⊕g[α],
and note that τz2 = Adg2 ◦ τ ◦ Adg−1

2
= Adg2

2
◦ θ . Since Adexp i A2 = exp(ad(i A2)),

one has τz2 = Id on Zk(a) and τz2 = − Id on a. Since α(A2) = π/2, one has
τz2 = −θ on g[α]. It follows that q := Fix(−τz2, g) = a ⊕ g[α]k. In particular,
dim(q ∩ p)= dim a = 1 and dim(q ∩ k)= dim g[α]k = dim gα, as wished. �

From the above discussion and Table 4.0, it follows that in the reduced case
the G-orbit space of GC/K C can be described by the following diagrams. For
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G/K = SO0(2, 1)/SO(2), the diagram is

(4-3)

∣∣
`2(I2)

w1 •

∣∣∣ • w2

•

z1 `1(I1)
•

z2 `3(I3)
•

z3

w4 •

∣∣∣ • w3

`4(I4)∣∣
For G/K = SO0(n, 1)/SO(n) with n > 2, the diagram is

(4-4)

∣∣
`2(I2)

w1 •

∣∣ • w2

•

z1 `1(I1)
•

z2 `3(I3)
•

z3

Set I1 = I3 = (0, 1). For j = 1, 3, the maps ` j : I j → GC/K C, defined by

(4-5) `1(t) := exp(−i t A2) · z2 and `3(t) := exp(i t A2) · z2,

parametrize the principal G-orbits through A0. One has

A0 = z1 ∪ `1(I1)∪ z2 ∪ `3(I3)∪ z3.

Set I2 = I4 = (0,∞). For j = 2, 4, the maps ` j : I j → GC/K C, defined by

(4-6) `2(s) := exp(isC) · z2 and `4(s) := exp(−isC) · z2,

parametrize the principal closed G-orbits through the standard Cartan subset C and
C = `2(I2)∪ z2 ∪ `4(I4). The points w1, w2, w3, and w4 represent the nonclosed
G-orbits containing the singular orbit G · z2 in their closure.

Example 4.4. The complex hyperquadric. Let G = SO0(n, 1), with n ≥ 2, and
let GC

= SO(n, 1,C) be its universal complexification. By definition GC is the
subgroup of SL(n + 1,C) leaving invariant the quadratic form of signature (n, 1).
The space GC/K C can be identified with the GC-orbit through (0, . . . , 1) that
coincides with the n-dimensional complex hyperquadric

MC
= {(ξ1, . . . , ξn+1) ∈ Cn+1

: ξ 2
1 + · · · + ξ 2

n − ξ 2
n+1 = −1}.
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Fix the elements

A2 =


0 . . . 0 0
...

...
...

0 . . . 0 π/2
0 . . . π/2 0

 and C =


0 . . . 0 0 0
...

...
...

...

0 . . . 0 −2 0
0 . . . 2 0 0
0 . . . 0 0 0


in g as generators of a and c, respectively. Then points on the singular orbits in
MC satisfying conditions (4-2) are given by

z1 = (0, . . . , 0, 1), z2 = (0, . . . , 0, i, 0), z3 = (0, . . . , 0,−1).

The G-orbit of z2 is diffeomorphic to the pseudo-Riemannian symmetric space
G/H ∼= SO0(n, 1)/SO0(n − 1, 1). For t ∈ (0, 1), the slices `1 and `3 are given by

`1(t)= (0, . . . , 0, i sin(π(1 − t)/2), cos(π(1 − t)/2)),

`3(t)= (0, . . . , 0, i sin(π(1 + t)/2), cos(π(1 + t)/2)).

For s > 0, the slices `2 and `4 are given by

`2(s)= (0, . . . , 0, sinh 2s, i cosh 2s, 0),

`4(s)= (0, . . . , 0,− sinh 2s, i cosh 2s, 0).

The slice representation at z2 is equivalent to the linear action of SO0(n−1, 1)
on Rn . When n = 2, we can choose representatives of the four nonclosed hyper-
surface G-orbits containing G · z2 in their closure to be

w1 = (−1, i,−1), w2 = (1, i,−1), w3 = (1, i, 1), w4 = (−1, i, 1).

When n > 2, the slice representation identifies `2 and `4 and representatives of
the two nonclosed hypersurface G-orbits containing G · z2 in their closure are for
example

w1 = (−1, 0, . . . , 0, i,−1) and w2 = (1, 0, . . . , 0, i,−1).

4.2. The nonreduced case. Assume that the restricted root system of g is nonre-
duced, that is, it consists of four roots {±α, ±2α}. This is the case of H n(C),
H n(H) and H 2(Cay) in Table 4.0. Then a0 = {A ∈ a : 0 ≤ α(A) ≤ π/2} is a
fundamental domain for the action of WK (a)n0 in a, and there are three singular
orbits intersecting A0. Their base points are given by z j = g j K C for j = 1, 2, 3.
Here g j = exp i A j and the elements A j ∈ a0 satisfy the conditions

(4-7) α(A1)= 0, α(A2)= π/4, α(A3)= π/2,
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respectively. The G-orbit through z1 is diffeomorphic to the symmetric space G/K ,
and the one through z3 is diffeomorphic to a rank-one, pseudo-Riemannian sym-
metric space G/H . Both orbits are embedded in GC/K C as totally real subman-
ifolds of maximal dimension; see [Geatti 2002, Lemma 2.11 and Remark 2.13].
The orbit of z2 is a homogeneous space G/H ′, with H ′

:= Gz2 and dim G/H ′ >

dim G/K ; see [Geatti 2002, Lemma 2.14 and Remark 2.15]. Set G ′
:= ZG(g4

2),
where ZG(g4

2) denotes the centralizer of g4
2 in G. Then H ′ is contained in G ′

and G ′/H ′ is a rank-one, pseudo-Riemannian symmetric space with involution
τz2 = Adg2 ◦τ ◦ Adg−1

2
. Moreover, the slice representation at z2 is equivalent to the

isotropy representation of G ′/H ′; see [Geatti 2006]. The standard Cartan subset
starting at z2 is given by C′

=exp ic′
·z2, where c′

=R(X+θ(X)) and X is a nonzero
vector in g2α. If Zk(a)⊕ a⊕ g±α

⊕ g±2α is the restricted root decomposition of g,
then the Lie algebra of G ′ is given by

(4-8) g′
= Zk(a)⊕ a ⊕ g±2α.

Moreover, if h′
⊕ q′ is the τz2-decomposition of g′, then c′ is a maximal abelian

subalgebra in q′. Fix a generator C ′ of c′.

Lemma 4.5. Assume that the restricted root system of g is nonreduced. Let z2 ∈ A0

be the base point of the Cartan subset C′.

(i) The isotropy subgroup H ′ of z2 in G is connected.

(ii) For every t > 0, the points exp(i tC ′) · z2 and exp(−i tC ′) · z2 sit on the same
G-orbit if and only if dim g2α > 1.

(iii) If dim g2α > 1, there are two nonclosed G-orbits in GC/K C containing G · z2

in their closure. If dim g2α
= 1, such orbits are four.

Proof. (i) The group H ′ is connected if and only if H ′
∩ K is connected. Note that

G ′
= ZG(g4

2) is θ -stable, since so is G and θ(g4
2)= g−4

2 . Therefore H ′
∩ K is the

common fixed point subgroup of the two involutions τz2 and θ of G ′. As a result,
H ′

∩ K = Z K (g2
2). Now regard z2 as a point on the compact dual symmetric space

U/K endowed with the K -action by left translations. Denote by Kz2 the isotropy
subgroup of z2 in K . On the one hand, Kz2 = Z K (g2

2). On the other hand, since
the isotropy subalgebra kz2 is given by k ∩ Adz2(k), one sees that kz2 has minimal
dimension and coincides with Zk(a) if and only if α(A2) 6= mπ for m ∈ Z. By
(4-7), it follows that Kz2 is principal and consequently is equal to Z K (a). Finally
Z K (a) is connected for all rank-one, Riemannian symmetric spaces of dimension
greater than two; see [Knapp 1996] or Lemma 5.1 for a direct proof. In conclusion,
H ′

∩ K = Z K (g2
2)= Kz2 = Z K (a), which implies (i).

Parts (ii) and (iii) follow by applying Remark 4.2 to the symmetric space G ′/H ′,
provided that dim q′

∩ p = 1 and dim q′
∩ k = dim g2α. In order to show this,
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define g[2α] := g2α
⊕ g−2α. Then g[2α] is θ -stable subspace of g of dimension

equal to 2 dim g2α. Let g[2α] = g[2α]k ⊕g[2α]p be its Cartan decomposition. The
components g[2α]k and g[2α]p are generated by vectors of the form X +θ(X) and
X − θ(X), respectively, where X ranges through the elements of a basis of g2α. In
particular dim g[2α]k = dim g[2α]p = dim g2α. One sees that

τz2 = Id on Zk(a), τz2 = − Id on a, τz2 = −θ on g[2α].

Consequently q′
:= Fix(−τz2, g

′) = a ⊕ g[2α]k, and dim(q′
∩ p) = dim a = 1.

Similarly, dim(q′
∩ k)= dim g[2α]k = dim g2α, as wished. �

By [Geatti 2002, Lemma 2.11 and Remark 2.13], the G-orbit of z3 is a rank-one,
pseudo-Riemannian symmetric space G/H with involution τz3 = Adg3 ◦τ ◦Adg−1

3
.

The space G/H is embedded in GC/K C as a closed, totally real submanifold
of maximal dimension. The standard Cartan subset that starts at z3 is given by
C = exp ic · z3, where c=R(X +θ(X)) and X is a nonzero vector in gα. If g=h⊕q

is the τz3-decomposition of g, then c is a maximal abelian subalgebra in q. Fix a
generator C of c.

Lemma 4.6. Assume that the restricted root system of g is nonreduced. Let z3 ∈ A0

be the base point of the Cartan subset C.

(i) The orbit G · z3 is simply connected. In particular the isotropy subgroup H of
z3 in G is connected.

(ii) For every t > 0, the points exp(i tC) · z3 and exp(−i tC) · z3 sit on the same
G-orbit in GC/K C.

(iii) There is precisely one nonclosed G-orbit in GC/K C containing G · z3 in its
closure.

Proof. (i) Since by assumption G is connected, we prove that H is connected by
showing that the orbit G · z3 is simply connected. To do this, Remark 4.1 says it
suffices to choose G as in the standard presentation in Table 4.0. Let G = SU(n, 1).
By direct computations (see Example 4.7) one finds G ·z3 ∼= SU(n, 1)/U(n−1, 1).
This quotient is topologically equivalent to the complex projective space CPn−1.
In particular, it is simply connected.

Consider then G =Sp(n, 1) or G = F∗

4 . In both cases the group G is simply con-
nected. Since H is the fixed point subgroup of an involution of G, it is connected
[Steinberg 1968]. It follows that the quotient is simply connected.

Parts (ii) and (iii) follow from Remark 4.2, provided that dim(q ∩ p) = 1 + g2α

and dim(q ∩ k) = dim gα. In order to show this, define g[α] := gα ⊕ g−α and
g[2α] := g2α

⊕ g−2α. Then both g[α] and g[2α] are θ -stable subspaces of g of
dimension equal to dim gα and 2 dim g2α, respectively. Let g[α]k, g[α]p, g[2α]k,
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and g[2α]p be the components of the respective Cartan decompositions. The same
arguments as in the proof of Lemmas 4.3 and 4.5 show that

dim g[α]k = dim g[α]p = dim gα and dim g[2α]k = dim g[2α]p = dim g2α.

Moreover, one sees that

τz3 = Id on Zk(a), τz3 = − Id on a, τz3 = −θ on g[α], τz3 = θ on g[2α].

Since
g = Zk(a)⊕ a ⊕ g[α] ⊕ g[2α],

it follows that q := Fix(−τz3, g)= a⊕ g[α]k ⊕ g[2α]p. In particular, dim(q∩ p)=

1 + dim g2α and dim(q ∩ k)= dim gα, as claimed. �

As a consequence of the above lemmas and Table 4.0, in the nonreduced case
the G-orbit space of GC/K C can be represented by the following diagrams. For
G/K = SU(n, 1)/U(n) with n ≥ 2, the diagram is

(4-9)

∣∣ ∣∣
`2(I2) `5(I5)

w1 •

∣∣∣ • w2 w5 •

∣∣∣
•

z1 `1(I1)
•

z2 `3(I3)
•

z3

w4 •

∣∣∣ • w3

`4(I4)∣∣
If G/K = Sp(n, 1)/Sp(n)× Sp(1) for n ≥ 2, or if G/K = F∗

4 /Spin(9), then the
diagram is

(4-10)

∣∣ ∣∣
`2(I2) `5(I5)

w1 •

∣∣∣ • w2 w5 •

∣∣∣
•

z1 `1(I1)
•

z2 `3(I3)
•

z3

Set I1 = I3 = (0, 1). For j = 1, 3, define ` j : I j → GC/K C by

(4-11) `1(t)= exp(−i t A2) · z2 and `3(t)= exp(i t A2) · z2.

The slices `1 and `3 parametrize the principal G-orbits through A0 and

A0 = z1 ∪ `1(I1)∪ z2 ∪ `3(I3)∪ z3.
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Set I2 = I4 = (0,∞). For j = 2, 4, define ` j : I j → GC/K C by

(4-12) `2(s)= exp(sC ′) · z2 and `4(s)= exp(−sC ′) · z2.

The slices `2 and `4 parametrize the principal G-orbits through the Cartan subset
C′ with base point z2 and C′

= `2(I2)∪ z2 ∪ `4(I4). Finally, set I5 = (0,∞), and
define `5 : I5 → GC/K C by

(4-13) `5(s)= exp(sC) · z3.

The slice `5 parametrizes the principal G-orbits through the standard Cartan sub-
set C with base point z3. The points w1, . . . , w4 represent the nonclosed orbits
containing G · z2 in their closure. The point w5 represents the nonclosed orbit
containing G · z3 in its closure.

Example 4.7. A model in the nonreduced case. Let G = SU(n, 1), with n ≥ 2,
be the subgroup of SL(n + 1,C) leaving invariant the hermitian form 〈z, w〉n,1 =

z1w1 + . . .+ znwn − zn+1wn+1 in Cn+1. Denote by σ the conjugation of GC
=

SL(n+1,C) relative to G, namely σ(g)= In,1
t g−1 In,1. Denote by Pn the complex

projective space endowed with the opposite complex structure, that is, the one
for which the map Pn

→ Pn, [z] 7→ [z̄] is holomorphic. The group GC acts
holomorphically on Pn

× Pn by g · ([z], [w]) := ([g · z], [σ(g) ·w]).
Under this action, Pn

× Pn consists of two orbits: a closed one given by

{([z], [w]) ∈ Pn
× Pn

: 〈z, w〉n,1 = 0}

and an open one given by its complement. The quotient GC/K C can be identified
with the open orbit

MC
:= GC

· ([0 : · · · : 0 : 1], [0 : · · · : 0 : 1])= Pn
× Pn

\ {〈z, w〉n,1 = 0}.

Fix the elements

A2 =


0 . . . 0 0
...

...
...

0 . . . 0 π/4
0 . . . π/4 0

 , C ′
=


0 . . . 0 0
...

...
...

0 . . . i 0
0 . . . 0 −i

 , C =


0 . . . 0 0 0
...

...
...
...

0 . . . 0 −1 0
0 . . . 1 0 0
0 . . . 0 0 0


in g as generators of a, c′ and c, respectively. Then points on the singular orbits
in MC satisfying conditions (4-7) are given by

z1 = ([0 : . . . : 0 : 1], [0 : . . . : 0 : 1]),

z2 = ([0 : . . . : 0 : i : 1], [0 : . . . : 0 : −i : 1]),

z3 = ([0 : . . . : 0 : 1 : 0], [0 : . . . : 0 : 1 : 0]).
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The G-orbit of z2 is diffeomorphic to the homogeneous space G/H ′, where H ′ ∼=

U(n − 1)× SO(1, 1). The group G ′ is isomorphic to U(n − 1)× SU(1, 1), and
the quotient G ′/H ′ is diffeomorphic to the two-dimensional rank-one, pseudo-
Riemannian symmetric space SU(1, 1)/SO(1, 1). The G-orbit of z3 is diffeomor-
phic to the pseudo-Riemannian symmetric space SU(n, 1)/SU(n−1, 1). The slices
`1 and `3 are given by

`1(t)= ([0 : . . . : i sin π
4 (1−t) : cos π4 (1−t)], [0 : . . . :−i sin π

4 (1−t) : cos π4 (1−t)]),

`3(t)= ([0 : . . . : i sin π
4 (1+t) : cos π4 (1+t)], [0 : . . . :−i sin π

4 (1+t) : cos π4 (1+t)]),

where t ∈ (0, 1). The slices `2, `4 and `5 are given by

`2(s)= ([0 : . . . : ie−s
: es

], [0 : . . . : −ies
: e−s

]),

`4(s)= ([0 : . . . : ies
: e−s

], [0 : . . . : −ie−s
: es

]),

`5(s)= ([0 : . . . : sinh s : i cosh s : 0], [0 : . . . : sinh s : −i cosh s : 0]),

with s > 0. The slice representation at z2 is equivalent to the standard action of
SO(1, 1) on R2. So there are four nonclosed G-orbits containing G · z2 in their
closure. We can choose representatives of such orbits to be

w1 = ([0 : . . . : 0 : 1], [0 : . . . : −i : 1]), w2 = ([0 : . . . : i : 1], [0 : . . . : 1 : 0]),

w3 = ([0 : . . . : 1 : 0], [0 : . . . : −i : 1]), w4 = ([0 : . . . : i : 1], [0 : . . . : 0 : 1]).

A representative for the unique nonclosed orbit containing G · z3 in its closure is
given by w5 = ([0 : . . . : 1 : −i : 1], [0 : . . . : 1 : i : 1]).

Remark 4.8. When G = SU(1, 1), the restricted root system of g is reduced. The
quotient GC/K C can be identified with P1

× P1
\ {〈z, w〉1,1 = 0}, and the G-

orbit space can be described as above, except for the fact that the slice `5 and
the point w5 must be omitted. Moreover the G-orbit through z3 is diffeomor-
phic to the symmetric space G/K . Note that SU(1, 1)C/U(1)C is biholomorphic
to SO0(2, 1)C/SO(2)C. Thus it can also be identified with the two-dimensional
hyperquadric described in Example 4.4.

5. Univalence on G-orbits in GC/K C

Let G be a connected, noncompact, real simple Lie group, let K ⊂ G be a maximal
compact subgroup, and let GC be the universal complexification of G. Assume that
G is embedded in GC. Consider a G-equivariant Riemann domain

q :6 → GC/K C.

The main goal of this section is to prove that q is injective on G-orbits if G/K
is a rank-one, Riemannian symmetric space of dimension greater than three. We
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first prove the result for principal G-orbits, and later we extend it to all G-orbits
by a general argument. In most cases, the injectivity of q on principal G-orbits
follows from their simple connectedness. The cases dim G/K = 2, 3 are discussed
separately.

Recall that by Remark 4.1(ii), different triples (G, K ,GC) associated with the
same Riemannian symmetric space G/K yield G-equivariantly diffeomorphic or-
bits in GC/K C. Let A0, C′ and C be the standard Cartan subsets in GC/K C. Let
H be the isotropy subgroup of the base point of C, and let H ′ be the isotropy
subgroup of the base point of C′; see Lemmas 4.3, 4.5 and 4.6. By [Geatti 2002,
Propositions 3.4 and 3.15], the principal orbits intersecting A0, C and C′ have
isotropy type Z K (a), Z H (c) and Z H ′(c′), respectively.

Lemma 5.1. Principal G-orbits of isotropy type Z K (a) are simply connected if
and only if dim G/K > 2.

Proof. An orbit G/Z K (a) is topologically equivalent to K/Z K (a). Consider the
isotropy representation of K on p. The nonzero K -orbits in p are diffeomorphic
to K/Z K (a). Since G/K has rank one, they are also diffeomorphic to spheres of
dimension dim(G/K )− 1. Hence the statement follows. �

Remark 5.2. When G = SO0(2, 1), the isotropy subgroup Z K (a) is trivial. There-
fore principal orbits of type G/Z K (a) are diffeomorphic to SO0(2, 1) and topolog-
ically equivalent to SO(2). In particular, they are not simply connected.

Lemma 5.3. Principal G-orbits of isotropy type Z H (c) are simply connected, ex-
cept when G is one of the groups SO0(2, 1), SO0(3, 1) or SU(2, 1).

Proof. An orbit G/Z H (c) is topologically equivalent to K/Z K∩H (c). We prove
the lemma by discussing each case separately. Let G = SO0(n, 1). Using the
hyperquadric model given in Example 4.4, one checks that

H ∼= SO0(n−1, 1), Z H (c)∼= SO0(n−2, 1), K/Z H∩K (c)∼= SO(n)/SO(n−2).

In particular, K/Z K∩H (c) is diffeomorphic to a Stiefel manifold, which is simply
connected for n > 3.

Consider next the case G = SU(n, 1), with n ≥ 3. Direct computations on the
model in Example 4.7 show that

H ∼= U(n − 1, 1),

Z K∩H (c)∼= U(n − 2)× U(1),

K/Z K∩H (c)∼= U(n)/(U(n − 2)× U(1)).

Since, for n ≥ 3, the embedding U(n − 2) → U(n) induces an epimorphism of
fundamental groups, so does the embedding U(n − 2) × U(1) → U(n). As a
consequence, K/Z K∩H (c) is simply connected.
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Finally, consider G = Sp(n, 1) or G = F∗

4 . Note that in both cases K is simply
connected. Therefore K/Z K∩H (c) is simply connected provided that Z K∩H (c) is
connected. In order to show that this, consider the compact, rank-one, symmetric
space K/K ∩ H and the corresponding isotropy representation of K ∩ H on k∩q.
The nonzero K ∩ H -orbits in k ∩ q are of type K ∩ H/Z K∩H (c) and are diffeo-
morphic to spheres of dimension dim(k ∩ q)− 1. Since dim(k ∩ q) = dim gα > 2
(see Table 4.0), they are simply connected. By Lemma 4.3 or Lemma 4.6, the
group H and likewise its maximal compact subgroup K ∩ H are connected. Then
the exact homotopy sequence of the quotient K ∩ H/Z K∩H (c), implies that the
group Z K∩H (c) is connected, as wished. �

Remark 5.4. When G =SO0(2, 1), direct computations using the model described
in Example 4.4 show that the isotropy subgroup Z H (c) is trivial. Therefore prin-
cipal orbits of type G/Z H (c) are diffeomorphic to SO0(2, 1) and topologically
equivalent to SO(2). In particular, they are not simply connected.

Similarly, when G = SO0(3, 1) the isotropy subgroup Z H (c) is isomorphic to
SO0(1, 1), which is connected. Therefore principal orbits of type

G/Z H (c)∼= SO0(3, 1)/SO0(1, 1)

are topologically equivalent to SO(3) and are not simply connected.
When G = SU(2, 1), direct computations using the model described in Example

4.7 show that the isotropy subgroup Z K∩H (c) is isomorphic to S(U(1)× U(1)),
which is connected. Principal orbits of type G/Z H (c) are topologically equivalent
to K/Z K∩H (c)∼= U(2)/U(1)∼= SO(3). Hence they are not simply connected.

Note that in all the above cases, despite the fact that the orbits are not simply
connected, the corresponding isotropy subgroups are connected.

Lemma 5.5. All principal G-orbits of type Z H ′(c′) are simply connected.

Proof. An orbit of type G/Z H ′(c′) is topologically equivalent to K/Z H ′∩K (c
′). We

prove the latter quotient is simply connected by discussing each case separately.
Consider first G =SU(n, 1). Direct computations using the model constructed in

Example 4.7 show that Z H ′∩K (c
′)∼= U(n −1). Hence the quotient K/Z H ′∩K (c

′)∼=

U(n)/U(n − 1) is diffeomorphic to the sphere S2n−1. In particular, it is simply
connected for all n ≥ 2.

Next let G = Sp(n, 1) or G = F∗

4 . Both G and K are simply connected. So the
quotient K/Z H ′∩K (c

′) is simply connected provided that Z H ′∩K (c
′) is connected.

In order to show this, denote by K ′ the maximal compact subgroup of G ′; see
Section 4.2. Since H ′ is contained in G ′, the groups H ′

∩ K and H ′
∩ K ′ coincide

and are both connected by Lemma 4.5. Consider the compact, rank-one, symmetric
space K ′/(K ′

∩ H ′) ⊂ G ′/H ′. The nonzero orbits of the isotropy representation
of K ′

∩ H ′ on k′
∩ q′ are of type K ′

∩ H ′/Z K ′∩H ′(c′) and are diffeomorphic to
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spheres of dimension equal to dim g2α
− 1. Since dim g2α > 2 (see Table 4.0),

they are simply connected. Since H ′
∩ K ′ is connected, it follows from the exact

homotopy sequence of the quotient K ′
∩ H ′/Z K ′∩H ′(c′) that the groups Z K ′∩H ′(c′)

and Z K∩H ′(c′) are also connected. It follows that the quotients K/Z H ′∩K (c
′) and

G/Z H ′∩K (c
′) are simply connected, as desired. �

Lemma 5.6. Let q : 6 → Z be a G-equivariant Riemann domain. Assume that
every z in Z admits an arbitrary small neighborhood V and a sequence {zn}

converging to z with the property that both the isotropy subgroups Gzn and the
intersections G · zn ∩ V are connected. Then q is injective on every G-orbit of 6.

Proof. Assume by contradiction that the map q is not injective on the G-orbit
through some ζ in6. Then there exists h ∈G with h·ζ 6=ζ such that q(h·ζ )=q(ζ ).
Since q is locally injective, one can choose an open neighborhood V of z := q(ζ )
in Z as in the assumption, and open neighborhoods Wζ and Wh·ζ of ζ and h ·ζ in6,
such that Wζ∩Wh·ζ =∅ and the restrictions q|Wζ : Wζ → V and q|Wh·ζ : Wh·ζ → V
are bijective. Then there exists a sequence {zn} in Z , converging to z, with the
property that both the isotropy subgroups Gzn and the intersections G · zn ∩ V are
connected.

Consider the sequence {ζn := (q|Wζ )
−1(zn)} in Wζ . Since {ζn} converges to ζ

for n large enough, the points h · ζn lie in Wh·ζ . Therefore their images q(h · ζn)=

h · q(ζn) = h · zn lie in V . Since both Gzn and G · zn ∩ V are connected, the
set �n := {g ∈ G : g · zn ∈ V } is connected. Note that both e and h belong to
�n . Hence there exists a continuous path γ : [0, 1] → �n with γ (0) = e and
γ (1) = h. By the G-equivariance of q , both paths t 7→ (q|Wζ )

−1(γ (t) · zn) and
t 7→ γ (t) · ζn in 6 are liftings of t 7→ γ (t) · zn , with initial point ζn . On the other
hand, (q|Wζ )

−1(γ (1) · zn) ∈ Wζ while γ (1) · ζn ∈ Wh·ζ , giving a contradiction. �

As a consequence of these lemmas, we obtain the main result of this section.

Proposition 5.7. Let G be a connected, noncompact, real simple Lie group such
that the Riemannian symmetric space G/K has rank one. Assume that G is embed-
ded in its universal complexification GC and is different from the groups SL(2,R)

and Spin(3, 1). Let q : 6 → GC/K C be a G-equivariant Riemann domain. Then
q is injective on every G-orbit.

Proof. We begin by proving the following claim.
Claim. The isotropy subgroups of all principal G-orbits are connected.
Proof of the claim. Since G is connected, the isotropy subgroups of simply

connected orbits are necessarily connected. Hence by Lemmas 5.1–5.5 we only
need to discuss the isotropy types Z K (a) when G has Lie algebra so0(2, 1) and the
isotropy types Z H (c) when G has Lie algebra so0(2, 1), so0(3, 1) and su(2, 1).
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Let g = so(2, 1). When G = SO0(2, 1) the isotropy subgroups of all principal
G-orbits are connected, by Remarks 5.2 and 5.4. Observe that SO0(2, 1) is cen-
terless and that SL(2,R) is a double covering of SO0(2, 1). Since the universal
complexification of SL(2,R) is SL(2,C), which is simply connected, no covering
of SO0(2, 1) other than SL(2,R) admits an embedding into its universal complex-
ification. Hence the claim follows for every group G 6= SL(2,R) that has Lie
algebra so(2, 1) and embeds in its universal complexification.

Let g = so(3, 1). When G = SO0(3, 1) the isotropy subgroup Z H (c) is con-
nected, by Remark 5.4. Note that SO0(3, 1) is centerless and Spin(3, 1) is the
only nontrivial covering of SO0(3, 1) that embeds in its universal complexifica-
tion. Hence the claim follows for every group G 6= Spin(3, 1) that has Lie algebra
so(3, 1) and embeds in its universal complexification.

Finally, let g = su(2, 1). When G = SU(2, 1), the isotropy subgroup Z H (c) is
connected, by Remark 5.4. Thus the same holds true for every connected real Lie
group covered by SU(2, 1). Since no covering group of SU(2, 1) admits an em-
bedding in its universal complexification, the claim holds true for every G that has
Lie algebra su(2, 1) and embeds in its universal complexification. This concludes
the proof of the claim.

In order to complete the proof of the proposition, recall that the union of prin-
cipal G-orbits forms an open dense subset of GC/K C. Hence, by the above claim
every point in GC/K C can be approximated by points with connected isotropy
subgroups. Due to this fact and the description of the slice representation at closed
G-orbits (see Remark 4.2 and the diagrams in Section 4), all assumptions of Lemma
5.6 are met and the statement follows. �

Remark 5.8. When G =SL(2,R), the isotropy subgroups of all principal G-orbits
in GC/K C consist of the central elements {±I2}. As we shall see in Example 7.7,
in this case there exist Stein, G-equivariant Riemann domains that are not injective
on G-orbits. Similarly, one can construct G-equivariant Riemann domains that are
not injective on G-orbits in the case G = Spin(3, 1). However, by Theorem 7.6
such Riemann domains cannot be Stein.

6. G-invariant Stein domains in GC/K C

Let G/K be a noncompact, rank-one, Riemannian symmetric space. In this section
we exhibit a complete classification of Stein G-invariant domains in GC/K C. The
main ingredient is the computation of the Levi form of hypersurface G-orbits in
GC/K C, which is carried out in [Geatti 2002] and in the appendix, Section 9. Most
of the Stein domains in our list are known. However, for G = SU(n, 1) we present
some examples which appear to be new. By working out an explicit model of
GC/K C, we show that they are all biholomorphic to Bn

× Cn .
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The classification result is stated for the standard presentations of G/K given in
Table 4.0. This is no loss of generality, since by Remark 4.1 the G-orbit structure
of GC/K C as well as the CR-structure and topology of G-orbits do not depend on
the presentation of the symmetric space G/K .

Retain the notation used in diagrams (4-3), (4-4), (4-9), and (4-10). Consider
the G-invariant domains in GC/K C defined, for 0 ≤ a < 1 and 0 ≤ b <∞, by

(6-1)
D1(a)= G · (z1 ∪ `1((a, 1))), D2(a)= G · (z3 ∪ `3((a, 1))),

S1(b)= G · `2((b,∞)), S2(b)= G · `4((b,∞)),

Theorem 6.1. Let G/K be a noncompact, rank-one, Riemannian symmetric space.
All Stein G-invariant domains in GC/K C are given by the following table.

G = SO0(2, 1) SO0(n, 1) SU(n, 1) Sp(n, 1), n ≥ 2
Domain n ≥ 3 n ≥ 2 F∗

4

D1(a), 0 ≤ a< 1 Stein Stein Stein Stein
D2(a), 0 ≤ a< 1 Stein Stein no no
S1(b), 0 ≤ b<∞ Stein no no no
S2(b), 0 ≤ b<∞ Stein no no no
D1(0)∪ G ·w1 ∪ S1(0) Stein no Stein no
D1(0)∪ G ·w4 ∪ S2(0) Stein no Stein no
D2(0)∪ G ·w2 ∪ S1(0) Stein no no no
D2(0)∪ G ·w3 ∪ S2(0) Stein no no no

Table 6.0

Remark. The domains D1(0) and D2(0) are known as Akhiezer–Gindikin do-
mains. They were introduced in [Akhiezer and Gindikin 1990] for G/K of arbi-
trary rank. In the two-dimensional case, the domains S1(0) and S2(0) are related to
the causal structure of the symmetric space G/H = SO0(2, 1)/SO(1, 1). Domains
of this type were studied in [Neeb 1999].

Proof. We first show that all the domains listed in the above table are Stein. The
Akhiezer–Gindikin domain D1(0) is Stein by [Burns et al. 2003]. For 0<a<1, the
domains D1(a) are G-invariant subdomains of D1(0) containing the minimal orbit
G · z1 ∼= G/K . Their Steinness follows for example from the nonlinear convexity
theorem in [Gindikin and Krötz 2002].

When G = SO0(n, 1), with n ≥ 2, the domain D2(0) and its subdomains D2(a)
for 0< a < 1 are Stein since they are biholomorphic to D1(0) and D1(a), respec-
tively. One such biholomorphism is given for example by the map

GC/K C
→ GC/K C, gK C

7→ g3gK C,
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where g3 = exp i A3, with α(A3) = π/2; see (4-2). Note that g3 ∈ SO(n, 1) \

{SO0(n, 1)}; therefore g3G = Gg3. As a result, the above map exchanges the
singular orbits G · z1 and G · z3 and maps G · `1(a) onto G · `3(a), for 0< a < 1.

When G = SO0(2, 1), the domains S1(0) and S2(0) and their subdomains S1(b)
and S2(b) for 0< b <∞ were shown to be Stein in [Neeb 1999].

The last four domains in the list contain in their interior one of the nonclosed
orbits G · wi for some i = 1, . . . , 4. Their boundary consists of two nonclosed
G-orbits and the singular orbit in their closure. All of them are Stein if G =

SO0(2, 1)∼=SU(1, 1)/{±I2}. Only D1(0)∪G ·w1∪S1(0) and D1(0)∪G ·w4∪S2(0)
are Stein when G = SU(n, 1) with n > 1. These facts are proved in Example 6.3
by constructing explicit models of such domains.

To complete the classification, it remains to show that no G-invariant domains
in GC/K C are Stein other than the ones listed in Table 6.0. When G = SO0(2, 1)∼=
SU(1, 1)/{± Id} and G = SU(n, 1) with n ≥ 2, this is proved in Example 6.3.

In all other cases, namely SO0(n, 1) with n > 1, Sp(n, 1), and F∗

4 , this follows
from the description of the G-orbit space of GC/K C given in diagrams (4-4), (4-9),
(4-10) and from the computation of the Levi form of the hypersurface G-orbits in
GC/K C. Indeed, by [Geatti 2002, Propositions 5.6 and 5.21], all principal orbits
have indefinite Levi form, except for the ones intersecting the slice `1 (the domain
D1(a) is Stein) and, only when the restricted root system of g is reduced, the slice `3

(the domain D2(a) is Stein for G = SO0(n, 1)). Moreover, by Remarks 9.10 and
9.18, the Levi form of the nonclosed hypersurface orbits G · w2 and G · w5 is
indefinite. Since the boundary of a Stein domain cannot have indefinite Levi form,
the theorem follows. �

Let us illustrate the result of Theorem 6.1 on the model of GC/K C described in
Example 4.4. The Stein, G-invariant domains are studied by means of an appro-
priate G-invariant function on GC/K C.

Example 6.2. Let G = SO0(n, 1). By Example 4.4, the quotient GC/K C can be
identified with MC

:= {ξ ∈ Cn+1
: ξ 2

1 + · · · + ξ 2
n − ξ 2

n+1 = −1}. Assume n > 2.
Consider the G-invariant function f : MC

→ R defined by

f (ξ1, . . . , ξn+1) := |ξ1|
2
+ · · · + |ξn|

2
− |ξn+1|

2
− 1.

For every 0 < a < 1, the G-invariant domains D1(a) and D2(a) coincide with the
two connected components of the set {ξ ∈ MC

: f (ξ) < r} for some −2 < r < 0.
Every such domain is bounded by a single G-orbit on which the Levi form of f is
positive definite. Hence it is Stein.

The G-invariant domains D1(0) and D2(0) coincide with the two connected
components of the set {ξ ∈ MC

: f (ξ) < 0}. They are bounded by the nonsmooth
hypersurfaces ∂D1(0) = G · (z2 ∪w1) and ∂D2(0) = G · (z2 ∪w2), respectively.
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At all smooth points of ∂D1(0) and ∂D2(0), the Levi form of f has n − 2 positive
eigenvalues and one zero eigenvalue. This is consistent with the fact that D1(0) and
D2(0) are Stein. The Levi form of f is indefinite on all remaining hypersurface
G-orbits. Thus there are no other Stein G-invariant domains in MC. �

Next we determine all Stein, G-invariant domains in GC/K C in the case G =

SU(n, 1) by using the model of GC/K C described in Example 4.7 and Remark 4.8.
This settles the missing cases in the proof of Theorem 6.1.

Example 6.3. Let G = SU(n, 1)with n ≥ 1. By Example 4.7, the quotient GC/K C

can be identified with MC
:= Pn

× Pn
\ {〈z, w〉n,1 = 0}. Consider the G-invariant

function f : MC
→ R defined by

(6-2) f ([z], [w])= −
〈z, z〉n,1〈w,w〉n,1

|〈z, w〉n,1|2
.

Consider first the case G = SU(1, 1).
By computing the Levi form of f on the G-orbits in the level set { f = r} with

r < 0, one shows that the domains D1(a) and D2(a) are Stein for all 0 < a < 1.
Similarly one shows that S1(b) and S2(b) are Stein for every b > 0. One can also
verify that the Levi form of f on all nonclosed hypersurface orbits G·w1, . . . ,G·w4

is identically zero. This is consistent with the fact that the domains D1(0), D2(0),
S1(0) and S2(0) are Stein. We claim that the domains

W1,1 := D1(0)∪ G ·w1 ∪ S1(0), W1,2 := D1(0)∪ G ·w4 ∪ S2(0),

W2,1 := D2(0)∪ G ·w2 ∪ S1(0), W2,2 := D1(0)∪ G ·w3 ∪ S2(0)

are Stein as well. By evaluating the hermitian forms 〈z, z〉n,1 and 〈w,w〉n,1 on the
slices described in Example 4.7 and Remark 4.8, one sees that such domains can
be characterized as follows:

W1,1 = {〈z, w〉1,1 6= 0 and 〈z, z〉1,1 < 0},

W1,2 = {〈z, w〉1,1 6= 0 and 〈w,w〉1,1 < 0},

W2,1 = {〈z, w〉1,1 6= 0 and 〈w,w〉1,1 > 0},

W2,2 = {〈z, w〉1,1 6= 0 and 〈z, z〉1,1 > 0}.

As a consequence, the maps defined by

1× C → W1,1, (u, v) 7→ ([u : 1], [v̄ : 1 + ūv̄]),

C ×1→ W1,2, (u, v) 7→ ([u : 1 + uv], [v̄ : 1]),

1× C → W2,1, (u, v) 7→ ([1 + uv : u], [1 : v̄]),

C ×1→ W1,2, (u, v) 7→ [1 : u], [1 + ūv̄ : v̄])
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are biholomorphisms. Here1 denotes the unit disk in C. In particular the domains
W1,1, . . . ,W2,2 are Stein, as claimed.

Other G-domains in MC that are possibly Stein can only be obtained as arbitrary
unions of domains Wk,l for k, l = 1, 2. We claim that such unions are not Stein.
For instance, let us show that W1,1 ∪ W2,1 is not Stein. Consider the Stein local
chart

φ : C2
→ P1

× P1, (u, v) 7→ ([u : 1], [1 : v̄]).

Since the preimage

φ−1(W1,1 ∪ W2,1)= {(u, v) ∈ C2
: u 6= v and either |u|< 1 or |v|< 1}

is not Stein, the domain W1,1 ∪ W2,1 is not Stein either. An analogous argument
applies to the remaining cases.

Now consider the case G = SU(n, 1) with n ≥ 1.
Using the G-invariant function f , one can prove that the domains D1(a) are

Stein for a > 0. One can also verify that D1(0) coincides with a connected com-
ponent of the set {z ∈ MC

| f (z) < 0} and that on the smooth part of its boundary
∂D1(0)= G ·(w1 ∪ z2 ∪w4), the Levi form of f has nonnegative eigenvalues. This
is consistent with the fact that D1(0) is Stein.

Moreover, the Levi form of f is indefinite on the principal G-orbits through the
slices `2, `3, `4, and `5 and on the nonclosed hypersurface orbit G ·w5. On the
other hand, the Levi form of f is definite on the nonclosed hypersurface orbits
G ·w2 and G ·w3. As a result, the only other G-invariant domains in MC that are
possibly Stein are

W1,1 := D1(0)∪ G ·w1 ∪ S1(0), W1,2 := D1(0)∪ G ·w4 ∪ S2(0), W1,1 ∪ W1,2.

First we show that W1,1 and W1,2 are indeed Stein. By evaluating 〈z, z〉n,1 and
〈w,w〉n,1 on the slices described in Example 4.7, one sees that such domains can
be characterized as follows:

W1,1 = {([z], [w]) ∈ Pn
× Pn

: 〈z, w〉n,1 6= 0 and 〈z, z〉n,1 < 0},

W1,2 = {([z], [w]) ∈ Pn
× Pn

: 〈z, w〉n,1 6= 0 and 〈w,w〉n,1 < 0}.

As a consequence the maps

Bn
× Cn

→ W1,1, (u, v) 7→ ([u : 1], [v : 1 + ū1v̄1 + · · · + ūn v̄n]),

Cn
× Bn

→ W1,2, (u, v) 7→ ([u : 1 + u1v1 + · · · + unvn], [v̄ : 1])

are biholomorphisms. Here Bn denotes the unit ball in Cn . In particular W1,1 and
W1,2 are Stein, as claimed.
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Next we show the domain � := W1,1 ∪ W1,2 with ∂� = G · (w2 ∪ z2 ∪w3) is
not Stein. Assume by contradiction that � is Stein. Let c′ be the abelian subal-
gebra generating the Cartan subset C′ (see Example 4.7). Let T = exp c′ be the
corresponding compact torus in G. Consider the T -action on � and the induced
local holomorphic T C-action. By the globalization theorem in [Heinzner 1991,
Section 6.6], the domain � embeds in its T C-globalization �∗ as a T -invariant,
orbit-convex subset. By definition, this means that the intersection of � with an
exp ic-orbit in �∗ is connected.

Every T C-orbit through the slice `1 is contained in �. Indeed in MC one can
verify that

exp(isC ′) · `1(t)=
(
[0 : . . . : esi sin π

4 (1 − t) : e−s cos π4 (1 − t)],

[0 : . . . : −e−si sin π
4 (1 − t) : es cos π4 (1 − t)]

)
.

Thus for fixed 0< t < 1, the function R → R defined by s 7→ f (exp(isC ′) · `1(t))
is given by

(e2s sin2 π
4 (1 − t)− e−2s cos2 π

4 (1 − t))(e−2s sin2 π
4 (1 − t)− e2s cos2 π

4 (1 − t))

and vanishes exactly twice, namely on G·w1 and on G·w4. Therefore exp(ic′)·`1(t)
never crosses the boundary of � and consequently the complex orbit T C

· `1(t) is
entirely contained in �, as claimed. Moreover, for every fixed s > 0, one has

lim
n→∞

exp(isC ′) · `1(1/n)= `2(s) ∈�,

lim
n→∞

exp(−isC ′) · `1(1/n)= `4(s) ∈�.

Then the orbit-convexity of � in �∗ implies that the sequence {`1(1/n)}n has
a limit point in �. On the other hand, in GC/K C one has limn `1(1/n) = z2,
which is not in �. This yields a contradiction and proves that � is not Stein. The
classification of all Stein G-invariant domains in MC is now complete.

We conclude this section with a remark which is a consequence of Theorem 6.1
and is often used in the sequel.

Remark 6.4. Let D be a domain in GC/K C with smooth boundary ∂D. It is well
known that if D is not pseudoconvex at z ∈ ∂D, then no holomorphic function on
D diverges in the vicinity of z. Let ` : I → GC/K C be a slice for principal G-orbits
in GC/K C. By the classification of Stein, G-invariant domains in GC/K C given
in Theorem 6.1, the following facts hold.

(i) Assume that the Levi form of the orbits parametrized by ` is definite. Let
(c, d) ⊂ I be an interval with 0 ≤ c < d and d ∈ I . Then no holomorphic
function on the invariant domain G · `((c, d)) diverges in the vicinity of the
boundary orbit G ·`(d) (for instance, if I = (0, 1) and l = l1, then the domain
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D1(d) is strictly pseudoconvex at every point of the boundary orbit G ·`1(d).
Thus the domain G ·`1((c, d)) is not pseudoconvex at any point of G ·`1(d)).

(ii) Assume that the Levi form of the orbits parametrized by ` is indefinite. Let
(c, d) ⊂ I be an interval with c ∈ I . Then no holomorphic function on the
invariant domain G · `((c, d)) diverges in the vicinity of the boundary orbit
G · `(c). Similarly, if d ∈ I , then no holomorphic function diverges in the
vicinity of G · `(d).

7. Univalence over GC/K C

Let G be a connected, noncompact, real simple Lie group, let K ⊂ G be a maximal
compact subgroup, and let GC be the universal complexification of G. Assume
that the center 0 of G is finite and that G is not a covering of SL(2,R). In this
section, we show that a holomorphically separable, G-equivariant Riemann domain
q : 6 → GC/K C is necessarily univalent if the rank of G/K is equal to one; see
Theorem 7.6 and Remark 7.8.

In most cases the map q is injective on every G-orbit; see Section 5. So we are
reduced to prove the injectivity of q over the global slices for the G-action defined
by diagrams (4-3), (4-4), (4-9), and (4-10). Recall that the slices parametrizing
principal G-orbits are diffeomorphic to open intervals of R and that a local diffeo-
morphism of a one-dimensional smooth manifold into the real line R is necessarily
injective. As a consequence, q is injective on every connected component of 6
over a domain in GC/K C consisting of principal orbits.

However, in order to ensure monodromy around the singular orbit G ·z2 (see the
diagrams in Section 4), it is necessary to combine the uniqueness property of path
liftings for Riemann domains with the complex geometry of the G-invariant do-
mains in GC/K C. Before proving the main result of this section, some preliminary
lemmas are needed.

Let ` : I → GC/K C be one of the slices for principal G-orbits defined in (4-5),
(4-6), (4-11), (4-12) and (4-13). Define

(7-1) Î :=

{
(0, 1] if I = (0, 1),
I if I = R>0.

Recall that I = (0, 1) only when ` = `1 or ` = `3. In those cases extend ` to
Î = (0, 1] by defining

`1(1) := eK C and `3(1) := exp(i A3)K C.

We refer to ` : Î → GC/K C as an extended slice. Note that the images of the
extended slices `1 and `3 include the points z1 and z3, respectively.
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Let q :6→GC/K C be a G-equivariant Riemann domain, and let ` : Î →GC/K C

be an extended slice. A local lifting of ` is a smooth path ˜̀ : J → 6 defined on
a nonempty interval J open in Î , and satisfying the condition q ◦ ˜̀ = ` on J . A
local lifting ˜̀ : J → 6 is maximal if it cannot be extended to a larger interval J ′

with J  J ′
⊂ Î .

Lemma 7.1. Assume that G is embedded in its universal complexification GC and
is different from SL(2,R) and Spin(3, 1). Let q : 6 → GC/K C be a Stein, G-
equivariant Riemann domain, and let ˜̀ : J → 6 be a maximal local lifting of an
extended slice ` : Î → GC/K C.

(i) if the Levi form of the principal orbits parametrized by ` is definite, then the
invariant domain G · `(J ) in GC/K C is Stein; see Theorem 6.1.

(ii) If the Levi form of the principal orbits parametrized by ` is indefinite, then J
coincides with Î .

Proof. (i) Consider first the case Î = R>0 ( see diagram (4-3), Example 6.3 and
Remark 4.8 ). By Theorem 6.1, we need to show that J = (b,+∞) for some
b ≥ 0. Assume by contradiction that J = (b, d) with 0 ≤ b < d < ∞. Since
the lifting ˜̀(J ) is a one-dimensional real-analytic submanifold of 6, the local
diffeomorphism q| ˜̀(J ) is injective. By Proposition 5.7, the map q is injective
on every G-orbit. Therefore the restriction q|G · ˜̀(J ) : G · ˜̀(J ) → G · `(J ) is a
biholomorphism.

By the maximality of ˜̀, when n grows, the sequence { ˜̀(d −1/n)}n leaves every
given compact subset in 6. Since 6 is Stein, there exists a holomorphic function
f ∈ O(6) such that limn→∞| f ( ˜̀(d − 1/n))| = ∞.

On the other hand, the push-forward of f by q|G · ˜̀(J ) defines a holomorphic
function in O(G · `(J )) that diverges in the vicinity of the boundary orbit G · `(d).
This contradicts Remark 6.4(ii), implying that J is of the form (b,∞), as claimed.

Consider now the case Î = (0, 1]. This only occurs for ` = `1 or, when the
restricted root system of g is reduced, for `= `3; see the diagrams in Section 4 and
[Geatti 2002, Proposition 5.6]. By Theorem 6.1, we need to show that J = (a, 1]

for some a ≥ 0. Assume by contradiction that J = (a, d) with 0 ≤ a < d ≤ 1. The
argument used in the previous case shows that J = (a, 1) and that there exists a
holomorphic function f ∈ O(6) such that limn→∞| f ( ˜̀(1−1/n))|=∞. Moreover,
the push-forward of f by q|G · ˜̀(J ) defines a holomorphic function f̄ ∈O(G ·`(J )),
which diverges in the vicinity of the boundary orbit G · `(1). On the other hand,
such an orbit is a totally real submanifold of G · `((a, 1]). Thus f̄ extends to a
holomorphic function on G · `((a, 1]). This yields a contradiction, implying that
J = (a, 1], as desired.

(ii) Assume first that Î = R>0. Then Remark 6.4(ii) and an argument analogous to
the proof of (i) show that J = Î . Consider then the case Î = (0, 1]. This only occurs
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when the restricted root system of g is nonreduced and ` = `3; see the diagrams
in Section 4 and [Geatti 2002, Proposition 5.6]. An argument like the proof of (i)
shows that if a lifting ˜̀3 : J →6 is maximal, then either J = (0, 1] or J = (0, 1).

To prove that J = (0, 1], suppose by contradiction that J = (0, 1). Consider a
sequence {zn} in G ·`3(J ) that converges to a point on the boundary orbit G ·w5, say
w5. Since the Levi form of G ·w5 is indefinite (see Remark 9.10), no holomorphic
function on G · `3(J ) diverges on {zn}. Note that the restriction

q|G · ˜̀3(J ) : G · ˜̀3(J )→ G · `3(J )

is a biholomorphism. Hence no holomorphic function of G · ˜̀3(J ) diverges on
the sequence {ζn} in 6 defined by ζn := (q|G · ˜̀3(J ))−1(zn). By the Steinness of
6, there exists a subsequence of {ζn} converging to a point η5 in 6. Since q is
continuous, one has q(η5)= w5.

By the G-equivariance of q, the description of the slice representation at z3 given
in Remark 4.2, and Proposition 5.7, there exists a G-invariant neighborhood V of η5

in 6 on which q is injective. Its image q(V ) intersects the slice `5 in `5((0, ε)) for
some ε > 0. By statement (i) of this lemma, the local lifting s 7→ (q|V )−1(`5(s)),
with s ∈ (0, ε), extends to a lifting ˜̀5 : Î5 → 6 of `5. Note that q maps the
G-invariant domain W := G · ( ˜̀3(J )∪ η5 ∪ ˜̀5( Î5)) in 6 biholomorphically onto
the domain q(W ) = G · (`3(J ) ∪ w5 ∪ `5( Î5)) in GC/K C. Since G · `3(1) is a
totally real submanifold of q(W )∪ G · `3(1) (see [Geatti 2002, Lemma 2.11 and
Remark 2.13]), every holomorphic function on q(W ) extends to a holomorphic
function on q(W )∪ G · `3(1). As a consequence, no holomorphic function on W
can diverge on the sequence { ˜̀3(1 − 1/n)}n in 6.

On the other hand, by the maximality of ˜̀3, the sequence { ˜̀(1 − 1/n)}n leaves
every given compact subset in 6 as n grows. Since 6 is Stein, there exists a
holomorphic function f ∈ O(6) such that limn→∞ | f ( ˜̀3(b − 1/n))| = ∞. This
yields a contradiction, implying that J necessarily coincides with (0, 1]. �

Let `1 and `3 be the slices parametrizing the principal orbits through the funda-
mental Cartan subset A. Denote by C = exp ic · z2 the standard Cartan subspace
with base point z2, and define C∗

:= C \ {z2}. Recall that in the reduced case,
c = R(X + θ(X)) for some nonzero vector X ∈ gα, and z2 = exp(i A2)K C with
α(A2)= π/2. In the nonreduced case, c = R(X + θ(X)) for some nonzero vector
X ∈g2α, and z2 =exp(i A2)K C with α(A2)=π/4. In both cases, exp c is a compact,
one-dimensional, real torus in G, which we denote by T . Both T and its universal
complexification T C ∼= C∗ act on GC/K C by left translations.

In the next proposition, we single out two distinguished G-invariant domains �
and �′ in GC/K C containing all T C-orbits through the slices `1(I1) and `3(I3),
respectively.
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Lemma 7.2. Let G/K be a noncompact, rank-one, Riemannian symmetric space.
Consider the domain in GC/K C defined by

� := G · (`1(I1)∪w1 ∪w4 ∪ C∗).

Then for every point z ∈ `1(I1), the complex orbit T C
· z is contained in �.

Similarly, define

�′
:= G · (`3(I3)∪w2 ∪w3 ∪ C∗).

Then for every point z ∈ `3(I3), the complex orbit T C
· z is contained in �′.

Proof. We first assume that G = SO0(2, 1) and prove the statement by using the
model MC of GC/K C constructed in Example 4.4. Let C be the generator of c

chosen there. Then, for s ∈ R and t ∈ (0, 1), one has

exp(isC) · `1(t)=
(
sinh(2s) sin π

2 (1 − t), i cosh(2s) sin π
2 (1 − t), cos π2 (1 − t)

)
.

Since z2 = (0, i, 0) and the entries of the matrix group G are real, from the above
expression one easily verifies that exp ic · `1(I1)∩ G · z2 = ∅. Consider then the
G-invariant function f (z)=|z1|

2
+|z2|

2
−|z3|

2
−1 defined on MC. The function f

vanishes on the real hypersurface G ·(z2
⋃4

j=1w j ), is negative on the sets G ·` j (I j )

for j = 1, 3, and is positive on the sets G ·` j (I j ) for j = 2, 4. Moreover, for every
fixed t0 ∈ (0, 1), one sees that

f (exp(isC) · `1(t0))= (sinh2 2s + cosh2 2s) sin2 π
2 (1 − t0)− cos2 π

2 (1 − t0)− 1

is strictly increasing as |s|→∞. Thus it vanishes exactly twice. As a consequence,
the path exp(isC) · `1(t0) crosses the hypersurface f −1(0)\ {G · z2} exactly twice,
namely on the orbits G ·w1 and G ·w2. It follows that exp(isC) · `1(t0) ∈ �, for
every s ∈ R. Thus the T C-orbit through `1(t0) is entirely contained in �, as stated.
An analogous argument proves the statement for the higher dimensional hyper-
quadrics. By Remark 4.1(ii), this settles the case when g has a reduced restricted
root system.

Consider now the case when the restricted root system of g is nonreduced. We
prove the statement by reducing to the two-dimensional case. Set ĝ := so(2, 1) and
fix a basis in ĝ of the form {X̂ , θ(X̂), Â = [θ(X̂), X̂ ]}, where X̂ is a root vector
in ĝα and α( Â) = π/2. Define Ĉ = X̂ + θ(X̂). Choose a root vector X ∈ g2α and
normalize the triple {X, θ(X), A = [θ(X), X ]} in g so that α(A) = π/4. Such a
triple generates a three-dimensional θ -stable subalgebra of g isomorphic to ĝ. In
particular, there exists an injective Lie algebra homomorphism ϕ∗ : ĝ → g mapping
X̂ , Â, and θ(X̂) into X , A, and θ(X), respectively. Clearly ϕ∗ maps Ĉ = X̂ +θ(X̂)
into C = X + θ(X) as well. Let K̂ = SO(2) be the maximal compact subgroup of
Ĝ :=SO0(2, 1), and let k̂ be its Lie algebra. Note that k̂ and k are generated by Ĉ and
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C , respectively. One can check that the C-linear extension ĝC
→ gC of ϕ∗ induces

a Lie group morphism ϕ : ĜC
→ GC mapping K̂ C to K C. As a consequence, one

obtains a holomorphic map (denoted by the same symbol) ϕ : ĜC/K̂ C
→ GC/K C.

Let �̂ be the domain

�̂= Ĝ · ( ˆ̀1(I1)∪ ŵ1 ∪ ˆ̀2(I2)∪ ŵ4 ∪ ˆ̀4(I4))

in ĜC/K̂ C, for which the statement has been proved above. We claim that ϕ(�̂)⊂
�. The map ϕ is “equivariant” with respect to the action of Ĝ, that is ϕ(g · x) =

ϕ(g) · ϕ(x) for every g ∈ Ĝ and x ∈ ĜC/K̂ C. By the definition of ϕ∗, one has
ϕ(exp(i t Â))= exp(i t A) and ϕ(exp(i tĈ))= exp(i tC). It follows that

ϕ( ˆ̀1(I1))= `1(I1), ϕ(ẑ2)= z2, ϕ(Ĉ)= C.

We finish proving the claim by showing that ϕ(ŵ1) ∈ G ·w1 and ϕ(ŵ4) ∈ G ·w4

(possibly the orbit G ·w4 and G ·w1 coincide). By (4-1), there is a commutative
diagram

Ĝ ×Ĝ ẑ2
V̂2

ϕ̃ //

��

G ×Gz2
V2

��
ĜC/K̂ C

ϕ // GC/K C.

The vertical arrows correspond to the equivariant embeddings given in (4-1), and
the map ϕ̃ is defined by [ĝ, X̂ ] → [ϕ(ĝ), ϕ∗(X̂)]. Since ϕ∗ is an injective homo-
morphism, ϕ(ŵ1) does not lie on the singular orbit G · z2. Indeed in the twisted
bundle G ×Gz2

V2 such an orbit corresponds to the set {[g, 0] : g ∈ G}. On the other
hand, ϕ(ŵ1) ∈ G · `1(I1)∩ G · `2(I2). Therefore the image ϕ(ŵ1) necessarily lies
on the orbit G ·w1. Similarly one proves that ϕ(ŵ4) ∈ G ·w4. In conclusion, �̂ is
mapped by ϕ into �, as claimed.

Note that exp cC
·`1(I1)= ϕ(exp ĉC

· ˆ̀1(I1)), and recall that in the 2-dimensional
case we already showed that exp ĉC

· ˆ̀1(I1) ⊂ �̂. Then, by the above claim, one
has T C

· `1(z) ⊂ � for every z ∈ `1(I1), as required. The statement regarding the
domain �′ follows from similar arguments. �

Lemma 7.3. Assume that G is embedded in its universal complexification GC and
is different from the groups SL(2,R) and Spin(3, 1). Let q : 6 → GC/K C be a
Stein, G-equivariant Riemann domain.

(i) Let ˜̀1 : I1 →6 be a lifting of the slice `1. Assume that the closure of G · ˜̀1(I1)

in 6 contains points η1 and η4 mapped by q into the nonclosed orbits G ·w1

and G ·w4, respectively (possibly the orbits G ·w1 and G ·w4 coincide). Then
the singular orbit G · z2 is contained in q(6).
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(ii) Let ˜̀3 : I3 →6 be a lifting of the slice `3. Assume that the closure of G · ˜̀3(I3)

in 6 contains points η2 and η3 mapped by q into the nonclosed orbits G ·w2

and G ·w3, respectively (possibly the orbits G ·w2 and G ·w3 coincide). Then
the singular orbit G · z2 is contained in q(6).

Proof. (i) We begin by showing that 6 contains an open G-invariant set that is
biholomorphic to the domain �= G · (`1(I1)∪w1 ∪w4 ∪ C∗) of Lemma 7.2. By
the G-equivariance of q , by the description of the slice representation at z2 given
in Remark 4.2, and by Proposition 5.7, there exists a G-invariant neighborhood
V of η1 in 6 on which q is injective. Its image q(V ) intersects the slice `2 in
`2((0, ε)) for some ε > 0. By Lemma 7.1(i), the map s 7→ (q|V )−1(`2(s)), with
s ∈ (0, ε), extends to a lifting ˜̀2 : I2 →6 of `2. A similar argument yields a lifting
˜̀4 : I4 →6 of `4. Since q is injective on the set ˜̀1(I1)∪η1 ∪ ˜̀2(I2)∪η4 ∪ ˜̀4(I4),
as well as on every G-orbit (see Proposition 5.7), it is injective on the G-invariant
subdomain of 6 given by

W := G · ( ˜̀1(I1)∪ η1 ∪ ˜̀2(I2)∪ η4 ∪ ˜̀4(I4)).

Note that q(W )=�. In particular W is biholomorphic to �, as claimed.
Let C = exp ic ·z2 be the standard Cartan subset in GC/K C starting at z2. Recall

that T := exp c is a compact torus in G. By Heinzner’s globalization theorem
[1991, Section 6.6], the space 6 can be embedded in its T C-globalization 6∗ as
a T -invariant, orbit-convex domain. By definition, this means that the intersection
of 6 with an exp ic-orbit in 6∗ is necessarily connected.

Consider now the induced local T C-orbit of a point ζ ∈ ˜̀1(I1) in 6. Since q|W
is biholomorphic and G-equivariant by Lemma 7.2, such an orbit is in fact global.
Let C be a generator of the abelian subalgebra c. For every fixed s > 0, one has

lim
n→∞

exp(isC) · ˜̀1(1/n)= ˜̀2(s) ∈ W,

lim
n→∞

exp(−isC) · ˜̀1(1/n)= ˜̀4(s) ∈ W.

By the orbit-convexity of 6 in its T C-globalization, the sequence { ˜̀1(1/n)}n

converges to a point ζ2 ∈6. By the continuity of q , one has q(ζ2)= z2. Therefore
z2 ∈ q(6), as required.

Part (ii) is proved by showing that 6 contains an open subset biholomorphic to
the domain �′ of Lemma 7.2 and arguing as in the previous case. �

Let G be a connected Lie group and G̃ → G = G̃/0 a covering of G. If X is a
G-manifold, it can be regarded as a G̃-manifold by letting 0 act trivially on it.

Lemma 7.4. Let G be a connected, real Lie group, and let G̃ → G = G̃/0 be a
finite covering of G. Let X be a complex G-manifold with the property that every



UNIVALENCE OF EQUIVARIANT RIEMANN DOMAINS OVER SYMMETRIC SPACES 309

Stein, G-equivariant Riemann domain over X is univalent. Let q : 6 → X be a
Stein, G̃-equivariant Riemann domain. Then

(i) the image q(6) is biholomorphic to the quotient6/0, and q :6→ q(6) can
be identified with the quotient map;

(ii) q is a G̃-equivariant covering.

In particular, q(6) is Stein.

Proof. (i) Since 0 is a finite subgroup of G̃, the quotient 6/0 can be regarded
as the categorical quotient of 6 with respect to 0. Then 6/0 is a Stein space,
and the quotient map π :6 →6/0 is holomorphic; see Theorem 2.1. Moreover,
since q is 0-invariant, there exists a G-equivariant holomorphic map q̂ :6/0→ X
making the diagram

6
π //

q
��

6/0

q̂||xx
xx

xx
xx

x

X

commute. Since q = q̂ ◦ π is locally biholomorphic, then π is also locally bi-
holomorphic. In particular, 6/0 is a manifold and q̂ : 6/0 → X is a Stein,
G-equivariant Riemann domain. By the assumption on X , the map q̂ is injective,
implying (i).

(ii) Without loss of generality, one may assume that 0 acts effectively on 6.
Then the statement follows by showing that 0 acts freely on 6. Assume by con-
tradiction that this is not the case. Then there exists γ ∈ 0 whose fixed point set
Fix(γ ) := {ζ ∈ 6 : γ · ζ = ζ } is not empty. Since Fix(γ ) is a proper analytic
subset of 6, it has no interior point. In particular there exist a ζ ∈ Fix(γ ) and a
sequence {ζn}n in the complement of Fix(γ ) in 6 such that ζn → ζ . Note that by
the continuity of γ , one has γ · ζn → γ · ζ = ζ .

Let U be an open neighborhood of ζ on which π is injective. Then, for n large
enough, both ζn and γ · ζn lie in U . Since 0 acts trivially on 6/0, it follows
that π(ζn) = γ · π(ζn) = π(γ · ζn). On the other hand since ζn 6∈ Fix(γ ), one has
γ · ζn 6= ζn . This gives the desired contradiction. �

Recall the following consequence of the uniqueness of path-liftings on Riemann
domains, which will be often used in the proof of the main theorem of this section.

Lemma 7.5. Let q : 6 → Z be a Riemann domain, and let W be a domain of 6
such that the restriction q|W : W → Z is bijective. Then W =6.

Next comes the main result of this section.
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Theorem 7.6. Let G/K be a noncompact, rank-one, Riemannian symmetric space.
Assume that G is a connected, simple, real Lie group that is embedded in its uni-
versal complexification GC and is different from SL(2,R). Then a holomorphically
separable, G-equivariant Riemann domain q :6 → GC/K C is univalent.

Proof. Recall that 6 admits a G-equivariant holomorphic embedding into its en-
velope of holomorphy. Thus we may assume that 6 is Stein; see Section 2. We
prove the theorem in the case when the G-orbit diagram of GC/K C is of type
(4-9), namely, for g = su(n, 1). In all remaining cases but G = Spin(3, 1), which
is discussed separately, the statement follows from the same arguments with fewer
steps.

So we first assume that G is different from Spin(3, 1) and divide the proof in
three subcases, depending on the image of 6 in GC/K C. Finally we discuss the
case G = Spin(3, 1).

Case (i): The image q(6) contains the singular orbit G · z2. We begin by proving
that there exists a G-invariant domain V ⊂6 with the properties that q is injective
on V and

q(V )= G ·

(
`1(1)

4⋃
j=1

(
` j (I j )∪w j

)
∪ z2

)
.

The extended slices ` j : Î j → GC/K C are defined in (7-1). Let ζ2 be an element
in q−1(z2), and let U be an open neighborhood of ζ2 in 6 on which the restriction
q|U is injective. Since the map q is open, the image q(U ) intersects the slices
for principal orbits starting at z2 in the sets ` j ((0, ε)) for j = 1, . . . , 4 and some
ε > 0. The image q(U ) also intersects all nonclosed G-orbits containing G · z2 in
their closures. By Lemma 7.1, each extended slice ` j admits a lifting ˜̀ j : Î j →6

such that ˜̀ j (t) = (q|U )−1` j (t) for t ∈ (0, ε). For j = 1, . . . , 4, choose points
η j ∈ (q|U )−1(G ·w j ). Consider then the open G-invariant set in 6 given by

V := G ·

(
˜̀1(1)

4⋃
j=1

(
˜̀ j (I j )∪ η j

)
∪ ζ2

)
.

Since q is injective on each lifted slice ˜̀ j and on all G-orbits (see Proposition 5.7),
it is injective on V as well. Hence V is the open G-invariant domain in 6 with the
required properties.

Consider a sequence {zn} in G ·`3(J ) that converges to a point on the boundary
orbit G ·w5. Recall that the Levi form of G ·w5 is indefinite; see Remark 9.10.
Then, by arguing as in the proof of Lemma 7.1(ii), the domain V can be enlarged to
an invariant domain W in6 with the properties that the restriction q|W is injective
and q(W )= GC/K C. By Lemma 7.5, one has W =6, and the theorem follows.
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Case (ii): The image q(6) does not contain the orbit G · z2, but contains a non-
closed G-orbit. Assume for example that w1 ∈ q(6), and let η1 ∈ q−1(w1). By
the G-equivariance of q , by the description of the slice representation at z2 given
in Remark 4.2, and by Proposition 5.7, there exists a G-invariant neighborhood V
of η1 in 6 on which q is injective. Its image q(V ) intersects the slices `1 and `2

in the sets `1((0, ε)) and `2((0, ε)) for some ε > 0. Arguing as in the previous
case, one can construct a G-invariant domain V ⊂ 6 with the properties that q is
injective on V and q(V )= G · (`1( Î1)∪w1 ∪ `2( Î2)).

If V = 6 (this is possible by Theorem 6.1), then the map q is injective, as
desired. If V 6= 6, then there exists a point η in the closure of V in 6 that is
mapped by q into one of the nonclosed orbits G ·w2 or G ·w4. Assume that q(η)
lies in G ·w4. Then by Lemma 7.3(i), the image q(6) necessarily contains G · z2,
contradicting the current assumption.

If q(η) ∈ G ·w2, then by iterating the procedure of lifting slices and orbits we
can enlarge V to an invariant domain W in 6 on which q is injective and such that

q(W )= G · (`1( Î1)∪w1 ∪ `2( Î2)∪w2 ∪ `3( Î3)).

In particular, W is biholomorphic to q(W ), which is not Stein by Theorem 6.1.
Hence W is a proper subset of6, and there exists a point η in the closure of W in6
whose image q(η) lies either in G·w3 or in G·w4. In both cases, Lemma 7.3 implies
that q(6) contains G · z2, contradicting the current assumption. In conclusion, if
q(6) does not contain the singular orbit G · z2 but contains the nonclosed orbit
G ·w1, then q is injective. For the other nonclosed G-orbits, the theorem can be
proved by arguing in a similar way.

Case (iii): The image q(6) contains no nonclosed G-orbits. This assumption
implies that the image q(6) contains none of the singular orbits lying in the closure
of a nonclosed G-orbit. More precisely, q(6) contains neither G · z2 nor G · z3.
Note that the hypersurfaces G ·(z2

⋃4
j=1w j ) and G ·(z3 ∪w5) disconnect GC/K C.

Therefore there exists a slice `= ` j for some j =1, . . . , 5 such that q(6)=G ·`(J )
for some interval J ⊂ Î that is open in Î . Define M := q−1(`(J )). One has that
6 = G · M . Moreover, since q is injective on G-orbits (see Proposition 5.7) and
every orbit in q(6) intersects `(J ) in a single point, every G-orbit in 6 intersects
M in a single point as well. As a consequence, the surjective map 5 : 6 7→ M
given by ζ 7→ G · ζ ∩ M is well defined.

Claim. The map 5 is continuous.
Proof of the claim. Let N be an open set in M . We prove the claim by showing

that for every m ∈ N and ζ ∈5−1(m), there exists an open neighborhood of ζ in
6 which is contained in 5−1(N ). By construction, ζ = g · m for some g ∈ G. Let
V be an open neighborhood of m in 6 on which q is injective. Choose an open
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interval J ′
⊂ J such that q(m) ∈ `(J ′) ⊂ q(V ). Note that q(m) either sits on a

principal G-orbit or on the singular orbit G · z1 ∼= G/K . Let ˜̀(J ′) be the lifting of
`(J ′) via the restriction q|V . By shrinking J ′ if necessary, one can find an open
neighborhood U of the identity in G such that U · `(J ′) is open and contained
in q(V ). This fact is clear if q(m) lies on a principal G-orbit; see diagram (4-9).
If q(m) lies on the singular orbit G · z1, it follows from the equivariant embedding
(4-1) at z1 and the compactness of the isotropy subgroup Gz1

∼= K .
As a result, U · ˜̀(J ′)= (q|V )−1(U · `(J ′)) is an open neighborhood of m in 6,

and gU · ˜̀(J ′) is an open neighborhood of ζ contained in5−1(N ). Hence5−1(N )
is open in 6, as wished (one can show that M ∼=6/G and that 5 can be identified
with the quotient map).

By the above claim, M is connected and is a one-dimensional real-analytic
submanifold of 6. It follows that q is injective on M . Moreover M and q(M)
are slices for the G-action in 6 and q(6), respectively. Since q is injective on
G-orbits, it is injective on 6 implying the theorem.

Case (iv): The group G is Spin(3, 1). Assume by contradiction that q : 6 →

GC/K C is not univalent. Recall that the center of G acts trivially on GC/K C and
that by Cases (i)–(iii), the statement holds true for the group SO0(3, 1). Then
Lemma 7.4 applies to show that the restriction of q to every G-orbit is a double
covering and the image q(6) is Stein. On the other hand, by Theorem 6.1, all
Stein G-invariant domains in GC/K C contain a singular orbit diffeomorphic to
G/K . Since G/K is simply connected, this gives a contradiction. This proves the
theorem. �

When G = SL(2,R), noninjective, Stein G-equivariant Riemann domains over
GC/K C do exist. Next we construct one such Riemann domain explicitly. It turns
out that such an example is essentially the only possible one. Indeed by Lemma 7.4,
if q :6→ GC/K C is a Stein, G-equivariant Riemann domain that is not univalent,
then the center0={±I2} acts freely on6. Moreover, q is a G-equivariant covering
onto its image q(6) that turns out to be Stein. It follows that the restriction of q to
every G-orbit is a double covering. Thus the singular orbits G ·z1 and G ·z3, which
are simply connected, cannot lie in q(6). Then, by Theorem 6.1, the image q(6)
coincides with a domain Si (b) for some i = 1, 2 and b ≥ 0. For every Si (b) there
is exactly one G-equivariant double covering. In the example below, we carry out
its construction for q(6)= S1(0).

Example 7.7. Let G = SL(2,R). Consider the Stein domain S1(0) in GC/K C

defined in (6-1). Let

`2 : R>0
→ GC/K C and `2(s) := exp(isC)z2
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be the slice map defined in (4-6). The isotropy subgroup in G of every point `2(s)
coincides with {±I2}; see Remarks 5.4 and 4.1. It follows that S1(0) := G ·`2(R

>0)

is topologically equivalent to SO0(2, 1)× R>0. Define 6 := G × R>0. Since G is
a double covering of SO0(2, 1), the map

q :6 → S1(0), (g, s) 7→ g`2(s)

defines a double covering of S1(0). As a consequence, with the complex structure
pulled back from S1(0), the manifold 6 is Stein; see [Stein 1956]. Also the map q
is a holomorphic covering. In other words, q : 6 → S1(0) defines a nonunivalent
Stein, G-equivariant Riemann domain over GC/K C. �

Remark 7.8. By the results of Lemma 7.4, one can show that Theorem 7.6 also
holds for G not embedded in GC, provided that the center 0 of G is finite and G
is not a covering of SL(2,R) (see Case (iv) in the proof of Theorem 7.6). If G is
a covering of SL(2,R), a construction similar to the one in Example 7.7 yields a
nonunivalent, Stein G-equivariant Riemann domain over GC/K C. �

As an application of Theorem 7.6 and the classification of all Stein G-invariant
domains in GC/K C given in Section 6, we now exhibit a family of Kobayashi
hyperbolic G-invariant subdomains of SU(1, 1)C/U(1)C whose envelopes of holo-
morphy are not Kobayashi hyperbolic.

Example 7.9. Let G = SU(1, 1), and let W1,1 := D1(0)∪G ·w1∪S1(0) be the Stein
G-invariant domain defined in Example 6.3. Recall that W1,1 is biholomorphic to
1× C via the map

F :1× C → W1,1, (u, v) 7→ ([u : 1], [v̄ : 1 + ūv̄]).

Consider its invariant subdomains given by

Dc := D1(0)∪ G ·w1 ∪ G · `2(0, c) for 0< c <∞.

Denote by f̃ the pull-back via F of the G-invariant function f defined in (6-2).
Then

f̃ (u, v)= −(1 − |u|
2)(|1 + uv|2 − |v|2),

and Dc is biholomorphic to a sublevel set BR = { f̃ < R} in 1 × C for some
R > 0. Consider the holomorphic projection π : BR →1 onto the first factor. An
easy computation shows that, for u ∈ 1, the preimage π−1(u) is a disk in C of
center (Re u,− Im u)/(1−|u|

2) and radius (1+ R)/(1−|u|
2)2. It follows that for

every u ∈ 1 there exists a neighborhood U of u such that π−1(U ) is Kobayashi
hyperbolic. Then, by [Kobayashi 1998, Theorem 3.2.14], the domains Br and Dc

are Kobayashi hyperbolic as well.
Finally from Theorem 7.6 and Theorem 6.1, it follows that the envelope of

holomorphy of Dc is given by W1,1. In particular, it is not Kobayashi hyperbolic.
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8. Univalence over GC

Let G be a connected, noncompact, real simple Lie group, let K ⊂ G be a maximal
compact subgroup, and let GC be its universal complexification. In this section we
prove a univalence result for G×K -equivariant Riemann domains over GC when
the symmetric space G/K has rank one. We also discuss some examples.

Theorem 8.1. Let G/K be a noncompact, rank-one, Riemannian symmetric space.
Assume that G is a connected, simple, real Lie group that has finite center and is
not a covering of SL(2,R). Then a holomorphically separable, G×K -equivariant
Riemann domain p : Y → GC is univalent.

Proof. Recall that Y admits a G×K -equivariant holomorphic embedding into its
envelope of holomorphy. Thus we may assume that Y is Stein (see Section 2).
Consider the induced Stein, G-equivariant Riemann domain q : Y //K → GC/K C

constructed in Section 3. By Theorem 7.6 and Remark 7.8 the map q is injective.
Then, by Corollary 3.3 the Riemann domain p : Y → GC is univalent, as wished.

�

When G is either SL(2,R) or a nontrivial covering of SL(2,R), a construction
similar to the one in Example 7.7 yields examples of nonunivalent, Stein, G×K -
equivariant Riemann domains over GC.

Example 8.2. Let G = SL(2,R), and let S1(0) be the Stein, G-invariant domain
in GC/K C defined in (6-1). As we observed in Example 7.7, the domain S1(0)
is diffeomorphic to SO0(2, 1)× R>0. Define � := π−1(S1(0)), where π : GC

→

GC/K C is the canonical projection. Since π is holomorphic and both S1(0) and GC

are Stein, the domain � is Stein as well. Consider the slice `2 : R>0
→ GC/K C

(see (4-6)) and its lifting to GC defined by ˜̀2(s) := exp(isC) exp(i A2). Define
Y := G × R>0

× K C. Note that the map

p : Y →�, (g, s, k) 7→ g ˜̀2(s)k−1

is a double covering. With the complex structure pulled back from �, the mani-
fold Y is Stein; see [Stein 1956]. Also, the map p is holomorphic. Let G × K act
on Y by (l, h) ·(g, s, k) := (lg, s, hk) and on � by left and right translations. Then
p defines a nonunivalent, Stein, G×K -equivariant Riemann domain over GC.

Let G = K × N be the product of a compact Lie group and a simply connected
nilpotent Lie group. Then a holomorphically separable, G-equivariant Riemann
domain over GC is necessarily univalent; see [Cœuré and Loeb 1986; Iannuzzi
1999; Casadio Tarabusi et al. 2000]. The above example shows that an analogous
statement does not hold for a semisimple Lie group G. Next we exhibit a dif-
ferent counterexample for G = SO0(2, 1), a group that meets the assumptions of
Theorem 8.1. Such an example was pointed out to us by K. Oeljeklaus. We are not



UNIVALENCE OF EQUIVARIANT RIEMANN DOMAINS OVER SYMMETRIC SPACES 315

aware of similar constructions in higher dimension. That is, if the dimension of
G/K is greater than two, univalence of holomorphically separable, G-equivariant
Riemann domains over GC seems to be an open question.

Example 8.3. Let G = SO0(2, 1). Then GC
= SO(2, 1,C) and K C

= SO(2,C).
Let S1(0) be the G-invariant Stein domain in GC/K C defined in (6-1), and let
�= π−1(S1(0)), where π : GC

→ GC/K C is the canonical projection. As we
already observed in Example 8.2, the domain � is a Stein, G-invariant domain in
GC which is diffeomorphic to G×R>0

×K C. Denote by K̃ C the universal covering
of K C and by ψ : K̃ C

→ K C the covering homomorphism. Let Y := G×R>0
× K̃ C,

and let G act on Y by left translations. Consider the slice `2 : R>0
→ GC/K C (see

(4-6)) and its lifting to GC given by ˜̀2(s) := exp(isC) exp(i A2). Define a G-
equivariant covering of � by

p : Y →�, (g, s, k) 7→ g ˜̀2(s)ψ(k−1).

With the complex structure pulled back from �, the manifold Y is Stein; see
[Stein 1956]. Also the map p is holomorphic. In particular p : Y → � defines a
nonunivalent, Stein, G-equivariant Riemann domain over GC.

Remark. One can show that � is a holomorphically trivial C∗-bundle over S1(0).
Thus it is biholomorphic to S1(0)× C∗, and consequently Y is biholomorphic to
S1(0)× C. After identifying S1(0) with SOo(2, 1)× R>0, one sees that the map
SOo(2, 1)× R>0

→ GC given by (g, s) 7→ g ˜̀2(s) defines a global C∞-section of
the holomorphic C∗-bundle π |� :�→ S1(0). Hence such bundle is differentiably
trivial and, by the Oka principle, is also holomorphically trivial [Grauert 1958], as
claimed. For completeness, we explicitly construct a trivialization on the model of
GC/K C discussed in Example 4.7 and Remark 4.8.

Let G = SU(1, 1) and identify GC/K C with P1
× P1

\ {〈z, w〉1,1 = 0}. Note
that S1(0) corresponds to the subset {([1 : u], [v̄ : 1]) : u, v ∈ 1, u 6= v}; see
Example 6.3. Let D be the diagonal in 1×1. Then the injective holomorphic
map

1×1 \ D → P1
× P1

\ {〈z, w〉1,1 = 0}, (u, v) 7→ ([1 : u], [v̄ : 1])

identifies 1×1 \ D with S1(0). The map

1×1 \ D → GC, (u, v) 7→

(
1 1/(u − v)

v u/(u − v)

)
=: M(u, v)

defines a global holomorphic section of the C∗-bundle π |� :�→ S1(0), since one
has M(u, v) · ([0 : 1], [0 : 1])= ([1 : u], [v̄ : 1]). As a consequence the map

(1×1) \ D × C∗
→�, (u, v, λ)→ M(u, v) diag(λ−1, λ)
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defines a biholomorphism from S1(0)× C∗ onto �.

9. Appendix: The Levi form of nonclosed hypersurface orbits

In this section we outline the computation of the Levi form of nonclosed hyper-
surface G-orbits in GC/K C. We used the results in Section 6 to complete the
classification of Stein G-invariant domains in GC/K C. Recall that every real
hypersurface S in a complex manifold inherits a CR-structure of hypersurface
type. Let J denote the complex structure of the ambient manifold. For every
x ∈ S, the tangent space to S at x decomposes as T Sx = TCSx ⊕ N Sx , where
TCSx = T Sx ∩ J (T Sx) is a complex subspace of T Sx , called the complex tangent
space, and N Sx is a one-dimensional real subspace. Denote by T S = TCS ⊕ N S
the tangent bundle of S. The subbundle (TCS)C ⊂ T SC of the complexified tangent
bundle T SC decomposes as H S⊕AS, where H S and AS denote its (1, 0) and (0, 1)
components, respectively. Let Z be a tangent vector in TCSx and Ẑ an arbitrary
extension of Z to a local section of TCS. Then the vector fields

1
2(Ẑ − i J Ẑ) and 1

2(Ẑ + i J Ẑ)

define local sections of the bundles H S and AS, respectively. The Levi form of S
at z is the hermitian form L x : TCSx × TCSx → (T Sx)

C/(TCSx)
C defined by

L x(Z ,W, ) :=
i
4
[Ẑ − i J Ẑ , Ŵ + i J Ŵ ]x mod (TCS)C.

In the hypersurface case, (T Sx)
C/(TCSx)

C is a one-dimensional complex vector
space. When Z varies in TCSx , the image of the quadratic form L x(Z , Z , ) is
contained in its real part, which can be identified with N Sx ∼= R. We say that the
Levi form of S is definite if {L x(Z , Z)} is a halfline in N Sx , that it is indefinite if
{L x(Z , Z)} coincides with N Sx , and that it is identically zero if {L x(Z , Z)} = {0};
for more details, see [Boggess 1991].

9.1. Nonclosed orbits with a totally real singular orbit in their closure. We first
consider nonclosed G-orbits that contain in their closure the orbit of a point z =

exp i AK C
∈ A0, satisfying the condition α(A) = π/2, with α a simple restricted

root; see (4-2) and (4-7). The singular orbit G · z is diffeomorphic to a rank-
one, pseudo-Riemannian symmetric space G/H , embedded in GC/K C as a totally
real submanifold of maximal dimension. Let (g = h⊕ q, τz) be the corresponding
symmetric algebra. Nonclosed G-orbits in GC/K C containing G ·z in their closure
are in one-to-one correspondence with the nilpotent AdH -orbits in q; see (4-1) and
Remark 4.2.

Let X be an element in q, and let x = exp i X · z be the corresponding point
in GC/K C. Denote by S the G-orbit of x . Denote by π : GC

→ GC/K C the
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canonical projection and by π∗ its differential. Then the tangent space to S at x is
generated by the vector fields induced on GC/K C by the one-parameter subgroups
in G, via the map

(9-1) ∗
: g → T (GC/K C)x , X 7→ X∗

:= (π∗)x

( d
dt

∣∣∣
t=0

exp t X
)
.

Observe that T (GC/K C)z ∼= qC and T (GC/K C)x ∼= Adx qC. Hence the vector X∗

is the Adx qC-component of X in the decomposition gC
= Adx hC

⊕ Adx qC.
To explicitly determine base points for such nonclosed orbits and their tangent

spaces, we decompose g by an appropriate restricted root system. Fix a maxi-
mal abelian subalgebra b ⊂ h ∩ p. Because g is of real rank one, dim b = 1 and
Zg(b)= b ⊕ Zk(b). Let 1b be the restricted root system of g with respect to b,
and let g = g0

⊕ g±λ
⊕ g±2λ and g0

= Zg(b) be the corresponding restricted root
decomposition. Every root space gλ is τz-stable. For everyµ∈1b∪{0}, we indicate
by g

µ

h and g
µ
q the intersections of gµ with h and q, respectively. In particular, we

have a combined decomposition

(9-2) g = h⊕q, where h = g0
h∩k ⊕g±λ

h ⊕g±2λ
h ⊕b and q = g0

q∩k ⊕g±λ
q ⊕g±2λ

q .

Here g0
h∩k and g0

q∩k denote the intersections of Zk(b) with h and q, respectively.
Note that, by the real rank one condition, g0

q∩k coincides with g0
q. If the restricted

roots system 1b is reduced, then g±2λ
= {0}.

Lemma 9.1. Let g be a simple real Lie algebra of real rank one with reduced
restricted root system (that is, g = so(n, 1)). Then the following facts hold:

(i) dim g±λ
q = 1.

(ii) [gλq, g
−λ
h ] = g0

q and [g−λ
q , gλh] = g0

q.

Proof. Observe that θgλq = g−λ
q . Hence gq[λ] := gλq ⊕ g−λ

q is a θ -stable subspace of
q and dim gq[λ] ∩ p = dim gλq. Since g0

q ⊂ k and dim p ∩ q = 1 (see the proof of
Lemma 4.3(ii), statement (i) holds. Statement (ii) can be verified directly. �

Lemma 9.2. Let g be a real simple Lie algebra of real rank one with nonreduced
restricted root system (that is, g = su(n, 1), sp(n, 1), or f∗4). Then the following
facts hold:

(i) The root spaces g±2λ are contained in h. Therefore g±2λ
q = {0}.

(ii) dim g±λ
q > 1.

(iii) Fix X0
λ∈gλq and denote by (gλq)0 a complement of RX0

λ in gλq; denote by (g−λ
q )0

a complement of RθX0
λ in g−λ

q . Then

[X0
λ, g

0
h∩k] = (gλq)0, [X0

λ, g
−λ
h ] = g0

q, [X0
λ, g

−2λ
h ] = (g−λ

q )0.
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Proof. Real rank one Lie algebras with a nonreduced restricted root system are
equal-rank. Hence the root system 1 of gC, with respect to a maximally split
Cartan subalgebra of g extending b, has a real root. Since dim g2λ is odd, the
restriction of such a root to b coincides with the restricted root 2λ; see [Helgason
1978, page 584]. Further, by [Geatti 2002, Remark 2.13], the subalgebra h is a
noncompact real form of Adz kC ∼= kC with respect to the conjugation στz| Adz kC.
Precisely, if g = su(n, 1), sp(n, 1), or f∗4, then h is given by u(n − 1, 1)⊕ u(1),
sp(n − 1, 1) ⊕ sp(1), or so(8, 1), respectively. Since h is equal-rank, the root
spaces g±2λ have nontrivial intersection with h. Statements (i) and (ii) then follow
by looking at the dimensions of the restricted root spaces of h and g; (see [Helgason
1978, page 532]). Statement (iii) can be verified directly. �

Reference points for nonclosed G-orbits. Let C = exp ic·z be the standard Cartan
subset in GC/K C with base point z. Recall that c = R(X + θ(X)), where X is a
nonzero vector in gα (here gα is a restricted root space with respect to the adjoint
action of a ⊂ p, as in Section 4). Normalize the triple {X, θ(X), A := [θ(X), X ]}

so that α(A)= 2. Define B := X −θ(X) and b := R(X −θ(X)). One easily verifies
that b is a maximal abelian subalgebra in h∩ p. If the restricted root system 1b is
reduced, then

(9-3) X0
λ =

1
2(A − (X + θX)) and X0

−λ =
1
2(A + (X + θX))

are generators of the one-dimensional spaces gλq and g−λ
q , respectively. They satisfy

the relations

[B, X0
λ] = 2X0

λ, [B, X0
−λ] = −2X0

−λ, [X0
λ, X0

−λ] = B, θX0
λ = −X0

−λ.

The vectors X0
λ, X0

−λ, −X0
λ and −X

−λ0 are a complete set of representatives of the
nilpotent AdH -orbits in q. The corresponding points in GC/K C,

x0 = exp i X0
λ ·z, x1 = exp i X0

−λ ·z, y0 = exp(−i X0
λ) ·z, y1 = exp(−i X0

−λ) ·z

lie on nonclosed G-orbits containing the singular orbit G ·z in their closures. In the
orbit diagram (4-3), the G-orbits of x0, x1, y0, y1 are represented by w3, w2, w1,
w4, respectively. If dim G/K > 2, the points x0 and x1 lie on the same G-orbit and
likewise the points y0 and y1; see diagram (4-4). When the restricted root system
1b is nonreduced, all points x = exp i Xλ · z with Xλ ∈ gλq and y = exp i X−λ · z
with X−λ ∈ g−λ

q lie on the same G-orbit. They are represented by w5 in the orbit
diagrams (4-9) and (4-10).

Remark 9.3. When the restricted root system 1b is reduced, the points x0 and x1

lie on the boundary of the Stein domain D2(0). The points y0 and y1 lie on the
boundary of the Stein domain D1(0); see (6-1).
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The tangent space to the G-orbit of x0. Denote by S the G-orbit of the point
x0 = exp i X0

λ · z with X0
λ ∈ gλq. In the next lemma, we determine the generators of

the tangent space to S at x0, namely, the vectors X∗
∈ T Sx0 for X ranging in the

root spaces gµ for µ ∈1b; see (9-2).

Lemma 9.4. We have the following table.

X gµ X∗, if X ∈ gµ

Y2λ g2λ
h 0

Yλ gλh 0
Xλ gλq Adx0 Xλ.
B b iλ(B)Adx0 X0

λ

W0 g0
h∩k −i Adx0[X0

λ,W0]

Z0 g0
q Adx0 Z0

Y−λ g−λ
h −i Adx0[X0

λ, Y−λ]

X−λ g−λ
q Adx0 X−λ −

1
2 Adx0[X0

λ, [X0
λ, X−λ]]

Y−2λ g−2λ
h −i Adx0[X0

λ, Y−2λ] +
i
6 Adx0[X0

λ, [X0
λ, [X0

λ, Y−2λ]]]

Proof. All rows are obtained by combining the formula Adexp i X Y = exp adi X Y
with the bracket relations among root vectors. We omit the computations, which
are long but straightforward. �

Fix θX0
λ ∈ g−λ

q , and denote by (g−λ
q )0 a complementary subspace to RθX0

λ in
g−λ

q . By Lemma 9.2(iii) and Lemma 9.4, the tangent space to S at x0 is given by
T Sx0 = TCSx0 ⊕ N Sx0, where

(9-4) TCSx0 =Adx0(g
0
q)

C
⊕Adx0(g

λ
q)

C
⊕Adx0(g

−λ
q )C0 and N Sx0 =R Adx0 θX0

λ.

Note that if 1b is reduced, one has (g−λ
q )0 = {0} by Lemma 9.1(i).

Remark 9.5. There exists a basis of g such that the above decomposition of T Sx0

is orthogonal with respect to the Killing form B of gC. If the restricted root system
1b is nonreduced, one can construct it starting from a basis of gC/sC consisting of
root vectors with respect to a maximally split Cartan subalgebra s of g extending b.
In the reduced case, this is immediate by Lemma 9.1(i).

The Levi form of the G-orbit of x0. The same arguments used in [Geatti 2002,
Section 4] yield the following formulas for the Levi form of S at x0. Let Z and W
be vectors in TCSx0 . Then

(9-5) L x0(Z ,W )=
1
2
[( · )−1 J W, Z ] −

i
2
[( · )−1W, Z ] mod (TCSx0)

C,
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where ( · )−1 J W and ( · )−1W are arbitrary elements in the preimages of J W and W
by the map defined in (9-1). In the next lemma we compute the Levi form of S
at x0. Fix F0

−λ := Adx0 θX0
λ as a generator of N Sx0 .

Lemma 9.6. (i) Let X−λ ∈ (g−λ
q )0. Set F−λ := Adx0 X−λ. Then

L x0(F−λ, F−λ)=−
1
6 Adx0[[X0

λ, X−λ], X−λ]= pF0
−λ mod (TCSx0)

C, where p ≥ 0.

(ii) Let Z0 ∈ g0
q. Write Z0 = [X0

λ, Y
−λ] for some Y−λ ∈ g−λ

h (see Lemma 9.2), and
set F0 := Adx0 Z0. Then

L x0(F0, F0)= −
1
2 Adx0[Y−λ, Z0] = nF0

−λ mod (TCSx0)
C, where n ≤ 0.

(iii) Let Xλ ∈ gλq, and set Fλ := Adx0 Xλ. Then L x0(Fλ, Fλ)= 0.

(iv) Let X−λ ∈ (g−λ
q )0 and Z0 ∈ g0

q. Set F−λ := Adx0 X−λ and F0 := Adx0 Z0. Then
L x0(F−λ, F0)= 0.

(v) Let X−λ ∈ (g−λ
q )0 and Xλ ∈ gλq. Set F−λ := Adx0 X−λ and Fλ := Adx0 Xλ.

Then L x0(F−λ, Fλ)= aF0
−λ, where a ∈ C.

(vi) Let Xλ ∈ gλq and Z0 ∈ g0
q. Set Fλ := Adx0 Xλ and F0 := Adx0 Z0. Then

L x0(F0, Fλ)= 0.

Proof. By way of example, we prove the first two statements. The remaining ones
follow similarly, and the details are omitted.

(i) Let F−λ = Adx0 X−λ. In order to compute the brackets (9-5), we invert the
relations in Lemma 9.4 and decompose the results in gC

= Adx0 hC
⊕ Adx0 qC.

Write X−λ = [X0
λ, Y−2λ] for some Y−2λ ∈ g2λ

h ; see Lemma 9.2. Then

( · )−1 J F−λ = −Y−2λ +
1
6 ad2

X0
λ

(Y−2λ)

= − Adx0 Y−2λ + i Adx0 adX0
λ
(Y−2λ)+

1
2 Adx0 ad2

X0
λ

(Y−2λ)

−
i
6 Adx0 ad3

X0
λ

(Y−2λ)+
3
8 Adx0 ad4

X0
λ

(Y−2λ)

and

( · )−1 F−λ = adX0
λ
(Y−2λ)+

1
2 ad3

X0
λ

(Y−2λ)

= Adx0 adX0
λ
(Y−2λ)− i Adx0 ad2

X0
λ

(Y−2λ)+
i
6 Adx0 ad4

X0
λ

(Y−2λ).

By formulas (9-5), we obtain

L x0(F−λ, F−λ)= −
1
6 Adx0[ad2

X0
λ

(Y−2λ), adX0
λ
(Y−2λ)]

= −
1
6 Adx0[[X0

λ, X−λ], X−λ] mod (TCSx0)
C.
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To complete the proof of the statement, set F0
λ := Adx0 X0

λ, and note that due to
Remark 9.5, the component pF0

−λ of the above brackets in N Sx0 is given by

B(L x0(F−λ, F−λ), F0
λ )= pB(F0

−λ, F0
λ ).

Since B(F0
−λ, F0

λ ) = B(X0
−λ, θX0

−λ) is negative, the real number p has the same
sign as

B([[X0
λ, X−λ], X−λ], X0

λ)= −B([X0
λ, X−λ], [X0

λ, X−λ]).

By Lemmas 9.1 and 9.2, the brackets [X0
λ, X−λ] lie in k, so

B([X0
λ, X−λ], [X0

λ, X−λ])

is nonpositive. It follows that p ≥ 0, as claimed.
(ii) Write Z0 = [X0

λ, Y−λ] for some Y−λ ∈ g−λ
h ; see Lemmas 9.1 and 9.2. By

computations similar to the above ones, we have

( · )−1 J F0 = −Y−λ = − Adx0 Y−λ + i Adx0 adX0
λ
(Y−λ)+

1
2 Adx0 ad2

X0
λ

(Y−λ),

( · )−1 F0 = Z0 = Adx0 Z0 − i Adx0 adX0
λ
(Z0)

and

L x0(F0, F0)= −
1
2 Adx0[Y−λ, [X0

λ, Y−λ]] = −
1
2 Adx0[Y−λ, Z0] mod TCSx0)

C.

To complete the proof of (ii), observe that n = B(L(F0, F0), F0
λ )/B(F0

−λ, F0
λ )

has the same sign as B([Y−λ, [X0
λ, Y−λ]], X0

λ) = B([X0
λ, Y−λ], [X0

λ, Y−λ]). Since
[X0

λ, Y−λ] lies in k, the above expression is nonpositive and n ≤ 0, as claimed. �

Proposition 9.7. Let S be the G-orbit of the point x0 = exp i X0
λ · z.

If the restricted root system 1b is reduced, then the Levi form of the orbit S is
definite provided that dim G/K > 2. It is identically zero if dim G/K = 2.

If the restricted root system 1b is nonreduced, then the Levi form of the orbit S
is indefinite.

Proof. If the restricted root system 1b is reduced, then only (ii), (iii), and (iv) of
Lemma 9.6 apply. By Lemma 9.6(ii), for every F0 ∈ Adx0(g

0
q)

C, the real numbers
B(L(F0, F0), F0

λ ) all have the same sign. In other words, the restriction of the Levi
form to Adx0(g

0
q)

C
⊂TCSx0 is either definite or identically zero. It is identically zero

when adX0
λ
: g−λ

h → g0
q is the zero-map. This happens if and only if g = sl(2,R)

and dim G/K = 2.
If the restricted root system 1b is nonreduced, then dim G/K > 2. In this case,

the restriction of the Levi form to Adx0(g
0
q)

C
⊂ TCSx0 is definite. Also, by Lemma

9.6(i) and Lemma 9.2(iii), the restriction of the Levi form to Adx0(g
0
q)

C
⊂ TCSx0 is

definite with opposite sign. As a result, the Levi form of S is indefinite. �
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The Levi form of the G-orbit y0. By the same methods, one can compute the
tangent space and the Levi form of the G-orbit S of the point y0 = exp(−i X0

λ) · z.
As we already remarked, the orbits G · x0 and G · y0 are distinct only when the
restricted root system of g is reduced. So we focus on this case. For the tangent
space to S at y0, one has T Sy0 = TCSy0 ⊕ N Sy0 , where

TCSy0 = Ady0(g
0
q)

C
⊕ Ady0(g

λ
q)

C and N Sy0 = R Ady0 θX0
λ.

Fix F0
−λ := Ady0 θX0

λ as a generator of N Sy0 . For the Levi form, one has the
following results.

Lemma 9.8. (i) Let Z0 ∈ g0
q. Write Z0 = [X0

λ, Y−λ], for some Y−λ ∈ g−λ
h (see

Lemma 9.2), and set F0 := Ady0 Z0. Then

L y0(F0, F0)=
1
2 Ady0[Y−λ, Z0] = s F0

−λ mod (TCSy0)
C, where s ≥ 0.

(ii) Let Xλ ∈ gλq, and set Fλ := Ady0 Xλ. Then L y0(Fλ, Fλ)= 0.

(iii) Let Z0 ∈ g0
q and Xλ ∈ gλq. Set F0 := Ady0 Z0 and Fλ := Ady0 Xλ. Then

L y0(F0, Fλ)= 0.

Proposition 9.9. Let S be the G-orbit of the point y0.
If the restricted root system 1b is reduced, then the Levi form of the orbit S is

definite provided that dim G/K > 2. It is identically zero if dim G/K = 2.

Remark 9.10. By Propositions 9.7 and 9.9, if the restricted root system 1b is
reduced, then the Levi form of the orbits represented byw1 andw2 in diagram (4-4)
is definite. This is consistent with the fact that these orbits lie in the boundary of the
Stein domains D1(0) and D2(0), respectively; see Theorem 6.1. If dim G/K = 2,
all orbits represented by w1, . . . , w4 in diagram (4-3) are Levi flat. We refer to
Example 6.3 for a classification of G-invariant Stein domains bounded by such
orbits. If the restricted root system1b is nonreduced, then the Levi form of the orbit
represented by w5 in diagrams (4-9) and (4-10) is indefinite. As a consequence,
this orbit cannot lie in the boundary of a Stein G-invariant domain in GC/K C.

9.2. Nonclosed orbits with a CR singular orbit in their closure. We consider now
nonclosed G-orbits containing in their closure the orbit of a point z = gK C

=

exp i AK C
∈ A0, satisfying the condition α(A) = π/4, with α a simple restricted

root; see (4-7). In this case the singular orbit G · z has dimension greater than
dim G/K . Recall from Section 4.2 that the isotropy subgroup H ′ of z in G is
contained in G ′

:= ZG(g4) and that G ′/H ′ is diffeomorphic to a rank-one, pseudo-
Riemannian symmetric space, totally real in GC/K C. Let (g′

= h′
⊕ q′, τz) be the

associated symmetric algebra. Nonclosed G-orbits in GC/K C containing G · z in
their closure are in one-to-one correspondence with the nilpotent AdH ′-orbits in q′;
see (4-1) and Remark 4.2.
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To explicitly determine reference points for such nonclosed orbits and their
tangent spaces, we decompose g and g′ by an appropriate restricted root system.
Let C′

= exp ic′
· z be the standard Cartan subset with base point z. Recall that

c′
= R(X +θ(X)), where X is a nonzero vector in g2α. In particular, c′ is contained

in g′; see (4-8). Define b′
= R(X −θ(X)). Then b′ is a maximal abelian subalgebra

in h′
∩ p and the restricted root decompositions of g with respect to b′ is given by

g = Zk(b
′)⊕ b′

⊕ g±2λ
⊕ g±λ.

In order to determine how the above root decomposition restricts to the subalge-
bra g′, observe that in general g′ is not simple, but is the direct sum of a copy of
so(m, 1)with m =dim g2α

+1 (even) and a compact subalgebra l entirely contained
in h′, that is,

g′
= l⊕ so(m, 1) and h′

= l⊕ so(m − 1, 1).

Observe also that all real rank one Lie algebras with a nonreduced restricted root
system are equal-rank. Hence the root system1 of gC with respect to a maximally
split Cartan subalgebra of g extending b′ contains a real root. Since g2λ is odd-
dimensional (see Table 4.0), the restriction of this real root to b′ coincides the
restricted root 2λ; see [Helgason 1978, page 584]. Since g′ has a reduced restricted
root system (see (4-8)) and because so(m, 1) with m even is equal-rank, we have
g′

∩ g2λ
6= {0}. It follows that the restricted root decomposition of g′ with respect

to b′ is given by

(9-6) g′
= Zk(b

′)⊕ b′
⊕ g±2λ.

Let

g′
= h′

⊕ q′, with h′
= g0

h′∩k ⊕ g±2λ
h′ ⊕ b′ and q′

= g0
q′ ⊕ g±2λ

q′ ,

be the combined decomposition of g′. Note that g′ has real rank one as well.
Therefore g0

q′ ⊂ k and an analogue of Lemma 9.1 holds for g′. Set g[λ] := gλ⊕g−λ

and g[α] := gα ⊕ g−α (here α is a restricted root in 1a, as in Section 4).

Lemma 9.11. The following facts hold:

(i) dim g±2λ
q′ = 1.

(ii) [g2λ
q′ , g

−2λ
h′ ] = g0

q′ and [g−2λ
q′ , g2λ

h′ ] = g0
q′ .

(iii) the decomposition g = g′
⊕ g[α] is adb′-stable. In particular g[α] = g[λ].

Proof. Statement (i) follows from the fact that dim q′
∩ p = 1 (see the proof of

Lemma 4.5(ii), while (ii) can be checked directly.
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To prove (iii), note that adb′ g′
⊂ g′. Moreover, adb′(gα ⊕ g−α) ⊂ (gα ⊕ g−α).

By (4-8) and (9-6) it follows that the decomposition g = g′
⊕ g[α] is adb′-stable

and g[α] = g[λ]. �

Reference points for nonclosed G-orbits. Reference points for nonclosed orbits
containing G · z in their closures can be obtained by applying the methods of the
previous section to the symmetric space G ′/H ′; see (9-3). In this case take X ∈g2α,
θX and A := [θX, X ], normalized so that 2α(A)= 2. Then

(9-7) X0
2λ =

1
2(A − (X + θX)) and X0

−2λ =
1
2(A + (X + θX))

are generators of g2λ
q′ and g−2λ

q′ , respectively, and the points

x0 = exp i X0
2λ · z, x1 = exp i X0

−2λ · z,

y0 = exp(−i X0
2λ) · z, y1 = exp(−i X0

−2λ) · z

lie on nonclosed G-orbits in GC/K C containing the singular orbit G · z in their
closures. If the orbit diagram is of type (4-9), there are four such orbits, represented
byw3,w2,w1 andw4, respectively. If the orbit diagram is of type (4-10), the points
x0 and x1 lie on the same G-orbit, represented byw2. Similarly, the points y0 and y1

lie on the same G-orbit represented by w1. The G-orbits of y0 and y1 lie on the
boundary of the Stein domain D1(0); see Theorem 6.1.

The tangent space to the G-orbit of x0. Denote by S the G-orbit of the point
x0 = exp i X0

2λ · z. To compute the tangent space T Sx0 , observe that at the point z

(9-8) T (G · z)z = q′
⊕ Vz, and T (GC/K C)z = Adz pC

= (q′)C ⊕ Vz,

where q′
= T (G ′

· z)z and Vz = Adz g[α]
C
p is a complex subspace of g[α]

C; see
[Geatti 2002, Proposition 3.2]. It follows that

(9-9) T Sx0 ⊂ Adx0(q
′)C ⊕ Adx0 Vz.

To determine generators for T Sx0 , fix a maximally split Cartan subalgebra s of g

extending b′ and entirely contained in h′ (one can check that in all cases under
consideration h′ has the same rank as g and such a Cartan subalgebra indeed exists).
Let

gC
= sC

⊕
β∈1

gβ

be the corresponding root decomposition of gC, and let {Zβ}β∈1 be a complex
basis of gC/sC consisting of root vectors Zβ ∈ gβ . Choose compatible orderings
of 1b′ and 1 (that is, a root β ∈1 is positive if its restriction to b′ is). Fix λ ∈1b′

(either a positive or a negative short restricted root), and denote by 1λ the set of
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roots in 1 that, when restricted to b′, are equal to λ. The set 1λ consists of pairs
of complex roots

β1, β̄1, . . . , βm, β̄m, where m =
1
2 dim gλ,

all with the same real part, equal to λ. For βi , β̄i ∈1λ, choose root vectors Zβi ∈gβi

and σ Zβi ∈ gβ̄i . Then the vectors defined as

X i
λ = Zβi + σ Zβi and Y i

λ = −i(Zβi − σ Zβi ) for i = 1, . . . ,m,

belong to g and form a basis of the restricted root space gλ.

Lemma 9.12. The following facts hold:

(i) For all i = 1, . . . ,m, one has τz Zβi = −Zβi and iτz X i
λ = Y i

λ.

(ii) For every i = 1, . . . ,m, the brackets [X i
λ, iτz X i

λ] lie in g2λ
q′ . For at least one

index i , such brackets are nonzero.

(iii) For all i, j = 1, . . . ,m with i 6= j , the brackets [X i
λ, iτz X j

λ] have no compo-
nents in g2λ

q′ .

Proof. (i) Since the Cartan subalgebra s lies in h′, it is pointwise fixed by τz . As a
consequence, all root spaces gβ with β∈1 are τz-stable. The inclusion Vz ⊂Adz pC

(see (9-8)) implies that τz Zβi = −Zβi for i = 1, . . . ,m. Since στz = −τzσ on
Vz ⊂ g[α]

C, one has iτz X i
λ = Y i

λ, as desired.
(ii) By the definitions of X i

λ and Y i
λ, one has

[X i
λ, iτz X i

λ] = [X i
λ, Y i

λ] = 2i[Zβi , σ Zβi ] ∈ g2λ.

By (i) and the fact that τzσ = −στz on g[λ]C
= g[α]

C, one also has

τz(2i[Zβi , σ Zβi ])= −2i[Zβi , σ Zβi ].

This implies that [X i
λ, iτz X i

λ] lies in g2λ
q′ , as claimed. To prove the second part

(ii), consider the set 12λ consisting of the roots in 1 that, when restricted to b′,
coincide with 2λ. Since 12λ contains a real root in 1 and such a root is not simple
(see Satake diagrams in [Helgason 1978, page 532]), there exist β, β̄ ∈ 1λ such
that β + β̄ = 2λ. This shows that at least one of the brackets [X i

λ, iτz X i
λ] has a

nonzero component in g2λ.
(iii) Let βi , β j be roots in 1λ, with β j 6= βi , β̄i . If either βi + β j or βi + β̄ j is

a root in 1, then it is a root in 12λ, with nonzero imaginary part. Since the root
spaces relative to the real root in 12λ are contained in (g2λ

q′ )
C and dim(g2λ

q′ )
C

= 1
(see Lemma 9.2), root spaces relative to the remaining roots in12λ are necessarily
contained in (g2λ

h′ )
C. Hence the statement follows. �
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For λ ∈1+

b′ , fix bases of gλ and g−λ of the form

(9-10) X1
λ, iτz X1

λ, . . . , Xm
λ , iτz Xm

λ and X1
−λ, iτz X1

−λ, . . . , Xm
−λ, iτz Xm

−λ,

respectively. For i, j = 1, . . . ,m, define

wi :=
1
2 Adx0(X

i
λ − τz X i

λ) and v j :=
1
2 Adx0(X

j
−λ − τz X j

−λ).

In the next lemma, we compute the images of the vectors in (9-10) under the map
∗
: g → T Sx0 defined in (9-1). We omit the straightforward proof.

Lemma 9.13. The images of the vectors in (9-10) under the map (9-1) are

(i) (X i
λ)

∗
= wi ;

(ii) (iτz X i
λ)

∗
= −iwi ;

(iii) (X j
−λ)

∗
= v j − iw′, where w′

= Adx0[X0
2λ, X j

−λ]; and

(iv) (iτz X j
−λ)

∗
= −iv j − iw′′, where w′′

= Adx0[X0
2λ, iτz X j

−λ].

Let W +
x0

be the complex subspace of Wx0 spanned by the vectors {w1, . . . , wm},
and let W −

x0
be the one spanned by {v1, . . . , vm}. By (9-9), the results of Section

9.1 applied to the symmetric space G ′/H ′ and Lemma 9.13, the tangent space to
S at x0 is given by T Sx0 = TCSx0 ⊕ N Sx0 , where

(9-11) TCSx0 = TC(G ′
· x0)x0 ⊕ W +

x0
⊕ W −

x0
and N Sx0 = R Adx0 θX0

2λ.

Fix F0
−2λ := Adx0 θX0

2λ as a generator of N Sx0 .

Lemma 9.14. The following facts hold.

(i) The decomposition of TCSx0 given in (9-11) is orthogonal with respect to the
Levi form.

(ii) Let W ∈ W +
x0

. Then L x0(W,W )= 0.

(iii) Let W ∈ W −
x0

. Then L x0(W,W )= bF0
−2λ, with b ≥ 0.

(iv) Let Z ∈ TC(G ′
· x0)x0 . Then L x0(Z , Z)= nF0

−2λ, with n ≤ 0.

Proof. (i) Let Z ∈TC(G ′
·x0)x0 and W ∈Wx0 . To show that L(Z ,W )≡ L(W, Z)≡0,

observe that both ( · )−1 J Z and ( · )−1 Z belong to g′
= h′

⊕ q′ and can be written

( · )−1 J Z = Adx0 X0 + Adx0 X2λ + Adx0 X−2λ,

( · )−1 Z = Adx0 Y0 + Adx0 Y2λ + Adx0 Y−2λ,

according to the adb′-root decomposition of g′ given in (9-6). Similarly, by (9-8),
the vector W ∈ W +

x0
⊕ W +

x0
= Adx0 Adz g[λ]C

p can be written as

W = Adx0 Adz Pλ + i Adx0 Adz Qλ,
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where

Adz Pλ = Uλ+ i V−λ−θUλ+ iθV−λ and Adz Qλ = U ′

λ+ iV ′

−λ−θU ′

λ+ iθV ′

−λ,

with Uλ,U
′

λ ∈ gλ and V
−λ, V ′

−λ ∈ g−λ. One can verify that none of the brackets in
(9-5) has a component in Adx0 g−2λ

q′ , and L x0(Z ,W )≡ 0, as required.
Let wi ∈ W +

x0
and v j ∈ W −

x0
. Then, modulo (TCSx0)

C, the Levi form is given by

2L x0(wi , v j )≡ −
1
2 Adx0[iτz X i

λ, (X
j
−λ − τz X j

−λ)] −
i
2 Adx0[X i

λ, (X
j
−λ − τz X j

−λ)].

In particular, L x0(wi , v j )= 0 for all i, j = 1, . . . ,m. This proves (i).
In the same way, one shows L(wi , w j )= 0 for all wi , w j ∈ W +

x0
, proving (ii).

(iii) Similar calculations and Lemma 9.12(iii) imply that L x0(vi , v j )= 0 for all
vi , v j ∈ W −

x0
with i 6= j . When i = j , one has

L x0(vi , vi )= Adx0[X i
−λ, iτz X i

−λ] = Adx0 i[Z−βi , σ Z−βi ] = bi F0
−2λ for bi ∈ R.

In order to prove that bi ≥ 0 observe that, by Lemma 9.11(iii), one can write
X i

−λ = X i
α + X i

−α for appropriate X i
α ∈ gα and X i

−α ∈ g−α. Since z = exp i AK C,
with A ∈ a and α(A)= π/4, one also has iτz X i

−λ = θX i
α − θX i

−α and

[X i
−λ, iτz X i

−λ] = ([X i
α, θX i

α] − [X i
−α, θX i

−α])− ([X i
α, θX i

−α] + [X i
−α, θX i

α]),

which lies in a⊕ Zk(a). By [Geatti 2002, Lemma 5.1(i)], the first two terms of the
above sum can be written as

[X i
α, θX i

α] = B(X i
α, θX i

α)Aα and [θX i
−α, θ(θX i

−α)] = B(X i
−α, θX i

−α)Aα,

where Aα is an element in a satisfying the condition α(Aα) > 0. By the nor-
malization of the reference points chosen in (9-7), one has θX0

2λ = −X0
2λ. Hence

L x0(vi , vi )=bi Adx0 θX0
2λ for some real number bi ≥0, as claimed. This concludes

the proof of (iii).
(iv) Recall that the symmetric space G ′/H ′ has a reduced restricted root system

and that the Lie algebra g′ is given by (9-6). Then the Levi form on TC(G ′
· x0)x0

can be computed by the methods of Section 9.1. By (9-4), one has

TC(G ′
· x0)x0 = Adx0(g

0
q′)

C
⊕ Adx0(g

2λ
q′ )

C and N (G ′
· x0)x0 = R Adx0 θX0

−2λ.

Let F0 ∈ Adx0(g
0
q′)

C and F2λ ∈ Adx0(g
2λ
q′ )

C. Then by Lemma 9.6 one has

L x0(F2λ, F2λ)= L x0(F0, F2λ)=0 and L x0(F0, F0)=nF0
−2λ where n ≤0. �

The next proposition is a direct consequence of Lemmas 9.12 and 9.14.

Proposition 9.15. Let S be the G-orbit of x0. The Levi form of S at x0 is indefinite
if g = sp(n, 1) or g = f∗4. It is definite if g = su(n, 1).
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Proof. By Lemma 9.12 and Lemma 9.14(iii) the Levi form L x0 is definite on W −
x0

.
If g = su(n, 1), then dim G ′/H ′

= 1, and the Levi form is identically zero on
TC(G ′

· x0)x0 . As a result, in this case the Levi form L x0 is definite.
If g = sp(n, 1) or g = f∗4, then dim G ′/H ′ > 2, and the Levi form L x0 on

TC(G ′
· x0)x0 is definite of sign opposite to that on W −

x0
; see Proposition 9.7 and

Lemma 9.14. As a result, L x0 is indefinite, as claimed. �

The Levi form of the G-orbit of y0. By the same methods, one can compute the
tangent space and the Levi form of the G-orbit S of the point y0 = exp i(−X0

2λ) · z.
The tangent space to S at y0 is given by T Sy0 = TCSy0 ⊕ N Sy0 , where

(9-12) TCSy0 = TC(G ′
· y0)y0 ⊕ W +

y0
⊕ W −

y0
and N Sy0 = R Ady0 θX0

2λ.

Fix F0
−2λ := Ady0 θX0

2λ as a generator of N Sy0 .

Lemma 9.16. The following facts hold.

(i) The decomposition of TCSy0 given in (9-12) is orthogonal with respect to the
Levi form.

(ii) Let W ∈ W +
y0

. Then L y0(W,W )≡ 0.

(iii) Let W ∈ W −
y0

. Then L y0(W,W )= bF0
−2λ, with b ≥ 0.

(iv) Let Z ∈ TC(G ′
· y0)y0 . Then L y0(Z , Z)= pF0

−2λ, with p ≥ 0.

Proof. The proof is like the proof of Lemma 9.14. One can check that the Levi
form is not identically zero on W −

y0
and has the same signature as on W −

x0
. Part (iv)

follows from Lemma 9.8. �

Proposition 9.17. Let S be the G-orbit of y0. The Levi form of S at y0 is definite.

Proof. The proposition follows from Lemma 9.16 and the fact that the Levi form
L y0 on W −

y0
is not identically zero. �

Remark 9.18. If the restricted root system 1b is nonreduced, then Proposition
9.17 says that the Levi form of the orbits represented by w1 and w4 in diagrams
(4-9) and (4-10) is definite. This is consistent with the fact that these orbits lie in
the boundary of the Stein domain D1(0); see Theorem 6.1. When g = su(n, 1),
by Proposition 9.15, the same is true for the Levi form of the orbits represented
by w2 and w3 in diagram (4-9). We refer to Example 6.3 for a classification of
the G-invariant Stein domains in GC/K C bounded by these orbits. Proposition
9.15 also says that the Levi form of the orbit represented by w2 in diagram (4-10)
is indefinite. Hence this orbit cannot lie in the boundary of a Stein G-invariant
domain in GC/K C.
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