Journal of Algebra 251, 619-685 (2002)
doi:10.1006/jabr.2001.9150

Invariant Domains in the Complexification
of a Noncompact Riemannian Symmetric Space

Laura Geatti

Dipartimento di Matematica, Universita di Roma 2,
Tor Vergata, 00133 Rome, Italy

Communicated by Peter Littelmann

Received September 22, 2000

Let G/K be a noncompact Riemannian symmetric space and let G¢/K® be
its complexification. Then G acts on G®/K® by left translations. We study the
invariant CR-structure of the closed G-orbits of maximal dimension and deter-
mine which ones can lie in the boundary of an invariant Stein domain. In
this way, we obtain information on the G-invariant Stein domains in G®/KC®.
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INTRODUCTION

Let G/K be an irreducible Riemannian symmetric space. Its complex-
ification G®/K® is a Stein manifold and left translations by elements of
G are holomorphic automorphisms of G®/K®. Invariant Stein domains in
G®/K® and invariant plurisubharmonic functions are natural objects to
investigate. In the case when the symmetric space G/K is compact, such
objects are well understood. Every G-invariant domain ) € G*/K€® inter-
sects a certain analytic set D in a lower dimensional domain (), biholo-
morphic to a Reinhardt domain in (C*)" (r = rank G/K). Invariant Stein
domains in G®/K® are precisely the ones for which this intersection is
connected and Stein (cf. [FH, La]). Moreover, there is a one-to-one cor-
respondence between invariant plurisubharmonic functions on ) and loga-
rithmically convex Weyl-invariant functions on €, (see [AL]).
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In this paper, we consider the case when G/K is a noncompact
Riemannian symmetric space. Under these assumptions, global results like
in the compact case are no longer true. Local slices only exist at closed
G-orbits and there are no nonconstant global G-invariant plurisubharmonic
functions on G*/K® (see [L]).

The G-action determines a finite number of invariant regions, whose
union is dense in G®/K® and which roughly correspond to the different
types of closed orbits of maximal dimension (generic orbits). We study the
invariant CR-structure that generic orbits inherit from the complex man-
ifold G®/K®. We compute the corresponding Levi form and Levi cone,
which governs the local extension of CR-functions to holomorphic func-
tions. In this way, we determine which generic orbits can be contained in
the boundary of an invariant Stein domain in G®/KC® or in a level set of
an invariant plurisubharmonic function. It turns out that regions associated
to different types of generic orbits have rather different complex analytic
properties: for example, only some of them contain invariant Stein subdo-
mains and admit nonconstant invariant plurisubharmonic functions.

One of them is the region X, which consists of all G-orbits intersect-
ing the compact dual symmetric space U - é = U/K, embedded in G*/K®
as the U-orbit of the base point e (here U denotes the compact real form
of G®) (see [AG]). In general, X, contains several copies of the symmetric
space G/K, and each of them comes with a distinguished invariant neigh-
borhood D C X, D is the largest connected invariant domain which admits
a retraction to G/K and carries a canonical G-invariant Kaehler structure
compatible with the Riemannian structure of G/K (see [GS1, GS2, LS,
Sz]). These domains, say Dy, ..., D,,, contain Stein-invariant subdomains
and carry nonconstant invariant plurisubharmonic functions. They are con-
jectured to be Stein [AG] and to be related to the parameter space of linear
cycles in flag domains [WZ].

When the group G is of Hermitian type and G*/K® contains com-
pactly causal symmetric spaces G/H as minimal orbits, then there are other
regions in G®/KC containing invariant Stein subdomains. Let p be a point
on one such orbit G/H and let W (resp. —W) be the maximal Ady-stable
regular elliptic cone in the tangent space T(G/H),. Then Sy, := GexpiW
and S_, := Gexpi(—W) are G-invariant domains in G®/K® containing
G/H in their boundary. The domains S, were showed to be Stein in
[Ne]. Moreover, their invariant plurisubharmonic functions and Stein sub-
domains were completely characterized.

In this paper, we show that, with few possible exceptions, all proper
G-invariant Stein domains in G®/K® are contained either in one of
the domains Dy, ..., D,, or in one of the domains S,y;, ..., S,y . The
same holds for domains admitting nonconstant invariant plurisubharmonic
functions.
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The possible exceptions are among the domains whose boundary entirely
consists of nongeneric orbits. The domains D, ..., D,, are of this type.
Unfortunately, the techniques of this paper do not apply to such domains
and their Steinness remains an open question.

One of the motivations for this study comes from representation theory.
A natural G-manifold like G®/K® may provide a setting for the geometric
realization of unitary representations of G. For example, the invariant Stein
domains contained in S, carry Hilbert spaces of holomorphic functions
where the group G acts in a unitary fashion. The representations of G
which are realized in this way are unitary highest weight representations
with spherical lowest K-type [Ne]. On the other hand, the results of this
paper show that being Stein is an uncommon property among G-invariant
domains in G®/K®. One may wonder whether G®/K® contains invariant
domains which are g-complete or the generic orbits themselves carry some
natural Hilbert space where the group G acts by a unitary representation.
In other words, these results are just a first step in the investigation of the
G-invariant objects in G¢/K®.

The paper is organized as follows. In Section 1, we recall some general
facts about CR-structures; in Section 2, we recall Matsuki’s results about
the double coset decomposition of a complex reductive group G under
the action by the fixed point sets of a pair of involutions. Matsuki’s results
yield a parametrization of the generic orbits in G*/K® in terms of Cartan
subsets, i.e., cross sections of the form C = expJc¢ - p, where ¢ is an r-
dimensional abelian subspace of g and p is a base point in G*/K®. We
show that each Cartan subset admits a base point p which satisfies some
very restrictive algebraic conditions. This fact is crucial for the computa-
tion of the Levi form of the generic orbits. For most reduced restricted
root systems, such conditions imply that the G-orbit of p is a semisimple
symmetric space G/H, embedded in G®/KC as a totally real submanifold.
In particular, G/H has minimal dimension. In Section 3, we determine the
invariant CR-structure of generic orbits. This is done by explicitly comput-
ing the vector fields generating the tangent space and the complex tangent
space at a reference point in terms of some generalized restricted root sys-
tems of q©. We also determine all the isotropy types of generic orbits. In
Section 4, we set up the general formulas for the calculation of the Levi
form. In Section 5, we carry out the computation of the Levi form and
the Levi cone of all generic orbits. In Section 6, we apply the results of
Section 5 to the study of invariant domains in G*/K® and of their invari-
ant plurisubharmonic functions. As an example, we carry out the rank-one
case.

The author is indebted to Gregor Fels for several useful discussions and
remarks.
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1. CR-STRUCTURES AND LEVI FORM

Generalities about CR-structures

Let M be a complex manifold with tangent bundle 7M and let J: TM —
TM denote its complex structure. Let T*M := TM ®g C denote the formal
complexification of TM. Then J extends to a C-linear morphism of T¢M
and decomposes T*M as

T°M = HM ® AM (1.1)

into the holomorphic and antiholomorphic tangent bundles of M. The bun-
dles HM and AM are by definition the +i-eigenspaces of J on T®M,
respectively. The complex conjugation

= T°M — T®M, XQz— X®2Z,

defines a C-antilinear bundle isomorphism ~: HM — AM. The map X +—
X ® 1 defines a canonical embedding TM — T®M identifying TM with
the real part of T M with respect to the complex conjugation, i.e.,

TM ={ZeT*M | Z = Z}.
The bundle maps #/: TM — HM given by X %(X — iJX) and
74 TM — AM given by X + (X + iJX) define R-isomorphisms
satisfying 79 (JX) = im"(X) and #4(JX) = —im“(X), respectively.
Let S be a real submanifold of M with tangent bundle TS. Let x € S.
Denote by TS, the tangent space to S at x and by
TeS, =TS, NJTS,

the maximal J-stable subspace of TS,. If the complex dimension d of T¢S,
is independent of x, then § is a CR-manifold and d is called the CR-
dimension of S. Moreover, 7cS = TS N JTS is a well-defined J-stable sub-
bundle of 7S. Denote by codimg(S, M) the real codimension of S in M.

DEerFINITION 1.1. A CR-submanifold S ¢ M is called generic if
codimg(S, M) < dimg M — d.
The vector bundles 7¢S and TS can be formally complexified as well. The
decomposition (1.1) induces a decomposition of 7SS as
TES = HS @ AS,

where HS = T*SN HM and AS = T®SN AM. One has that a CR-
submanifold § of a complex manifold is involutive: if Z, W are local
sections of HS, so is [Z, W]. As a consequence, if X, Y are local sections
of T¢S, the same is true for both

[X,Y]-[JX,JY] and [JX,Y]+[X,JY]. (1.2)
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The Levi Form

Let S be a CR-submanifold of a complex manifold M. We recall the
definition of the Levi form of S (see [Bo] or [Tu]).

Let x € S. Denote by Z, a tangent vector in 7¢S, and by Z an arbitrary
extension of Z, to a local section of T¢S. Then the vector fields 7= (2) =
%(2 — i]f) and WA(Z) = %(2+ iJz) are local sections of the bundles HS
and AS.

DEFINITION 1.2. The Levi form L of S at x is the map L: TS, x
TcS, — TCS,/TES, given by

L(X,,Y,) = %[)? —iJX,Y+iJY], modTEs,.

Remark 1.3.  The Levi form L at x is well defined, as it does not depend
on the choice of the extensions X and Y. Moreover, L is an R-bilinear
Hermitian form satisfying

L(X,,Y,)=L(JX,,JY,) and L(X,,Y,) =L(Y,, X,),
where the conjugation on T¢S,/ Tng is the restriction of the conjuga-
tion on T®M,. It follows that L(X,, X,) is real valued, i.e., L(X,, X,) €

TS,/TcS,. By (1.2), for all X,,Y, € TS, the following identities hold
modulo Tng:

FPUG [O 1, = =
L(Xx,Yx)zé[X, Y], —5[X.JY],  and  L(X.X,)=;[/X.X].

A key geometric object associated with the Levi form is the Levi cone,
which is the higher codimensional analogue of the signature of the classical
Levi form of a CR-hypersurface.

DEFINITION 1.4. Let S be a CR-manifold in M and let x € S. The Levi
cone %€,(S) of § at x is defined by

K x(S) = {L(Xx’ Xx) | X, € TCSx} C TS, /TcS,.
Observe that €,(S) is a real cone (i.e., satisfies the condition R* - €,(S) C
¢,(S5)) and may have an empty interior. The cone %, (S) governs the holo-
morphic extension of CR-functions defined on a neighborhood of x in S. In

this regard, we mention a theorem which will be applied in Section 6 (cf.
[Bo, p. 202]).

THEOREM 1.5. Let S be a generic CR-submanifold of a complex manifold
M. Let x € S and assume that the Levi cone at x satisfies the condition
C@x(S) = TSx/TCSx'

Then, for each neighborhood o of x in S, there exists a neighborhood Q) of
x in M satisfying QNS C w and with the property that every CR-function of
class C' on QNS extends to a unique holomorphic function on .
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2. GENERIC ORBITS IN G®/K¢©

2.1. Preliminaries

A semisimple Riemannian symmetric space of the noncompact type is a
coset space G/K, where G is a real semisimple Lie group and K C G is a
maximal compact subgroup. Even when G is a complex group, it is viewed
as a real Lie group. Since G/K is simply connected, it decomposes as the
Riemannian product of irreducible symmetric spaces

G/K = G,/K, x -+ x G, /K,

Throughout the paper, we assume for simplicity that G/K is irreducible.
(Later on, we show how to extend our results from the irreducible case to
the general case (Section 6).) Without loss of generality, G can be assumed
to be a connected real simple Lie group and to admit a faithful linear
representation. Then G and K have complexifications G¢ and K©, and the
coset space G®/KT is a Stein manifold. The group G® can be assumed to
be simply connected. When G itself is a complex group, it can be assumed
simply connected.

Denote by 7 the canonical projection 7: G* — G®/K®. Throughout the
paper, we indicate the image of an object in G* under 7 by overlining the
corresponding symbol (e.g., S := 7(S) for S ¢ G®). Left translations by
elements of G on G®/K® are defined by

= - o= - C 1 C
L, -x=g- x:=3gx, geG, xeG /K-,

and are holomorphic automorphisms of G®/K®.

The aim of this section is to give a parametrization of the closed G-orbits
of maximal dimension in G*/K®. Such a parametrization is based on a
result by Matsuki about the double coset decomposition of a complex
reductive group G* under the action by the fixed point sets of a pair of
involutions [Mal]. In the case we consider, one involution is the conjuga-
tion o of G* corresponding to the noncompact real form G, and the other
one is 7 = 6%, the complexification of the Cartan involution 6 of G. It is
easy to check that

oT =T0 and or=0,

where O denotes the Cartan involution of G®. The fixed point sets of the
above involutions are given by

(GC)U' — G, (GC)T — KC, (GC) — U,
respectively, where U is the compact real form of G.

We denote the Lie algebra of a group by the corresponding gothic letter.
For example, g and q* denote the Lie algebras of G and G®, respectively.
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We denote by the same symbol an involution of a group and the derived
involution of its Lie algebra. Recall that there is a one-to-one correspon-
dence between involutions of a simply connected group and those of its
Lie algebra. Moreover, the fixed point set of a simply connected group is
always connected [S].

Let g = f @ p be the Cartan decomposition of g and let J denote the com-
plex structure of g©. To o, 7, and O there correspond three decompositions
of g* into +1-eigenspaces

W =@He@) 7 =galg, "= T =tar",
“ =@ e =ue,

where 1 = f @ Jp is the compact real form of qC.

2.2. Semisimple Elements, Cartan Subsets, and Generic Orbits

The group G x K© acts on G® by
(g, k) x — gxk™ !,

and two elements x,y sit on the same G x K®-orbit in G® if and only if
X, y sit on the same G-orbit in G®/K®. Before we can state Matsuki’s result
about closed G x K®-orbits in G, we need some preliminaries.

For g € GC, consider the involution of q* defined by

7o = Ad,TAd, 2.1
and the (real) automorphism of g* given by
fo =07,

DEFINITION 2.1.  An element g € G© is called semisimple with respect
to o, 7 if the corresponding automorphism fé is semisimple. The set of
semisimple elements with respect to o, 7 in G* is denoted by G&

ss, o, T*
DEFINITION 2.2.  An element g € G§ . , is called regular semisimple with

respect to o, 7 if the intersection (¢©)~ N (%)~ is commutative. The set of

regular semisimple elements with respect to o, T in G* is denoted by G& . .

Both sets of semisimple and regular semisimple elements with respect to
o, 7 are G x KC-stable and there are inclusions G& c G¢ c GC.

IS, 0, T Ss, o0, T

The set G5, , is open and dense in G® and consists of the elements in

G sitting on closed G x KC-orbits (cf. [Mal, Proposition 4, p. 67]). The

set G§ ,, . is open and dense in G§ ,, . and consists of the elements in G©
sitting on closed G x K®-orbits of maximal dimension (cf. Section 3).

Following Matsuki [Mal, Sect. 4.4], we now introduce Cartan subsets in

GC in our special case, together with the appropriate notion of conjugacy
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and of Weyl group. Cartan subsets are cross sections for the closed G x K®-
orbits in G®: every such orbit intersects some Cartan subset and every
closed orbit of maximal dimension intersects precisely one Cartan subset
(up to conjugacy) along the orbit of the corresponding Weyl group.

DEFINITION 2.3. Let a C p C g be a maximal abelian subspace. a is
called a fundamental Cartan subspace. The torus group A := expJa C G©
is called a fundamental Cartan subset.

DEFINITION 2.4. A standard Cartan subset is a set of the form
C:=expJc-pcG®,
where p is a point in A = expJa and
c=c P, forcg=cnNf, ¢y, =cNpCa,

is a #-stable (maximal) abelian subspace in g N Ad ppC with dim ¢ = dim a.
The space ¢ is called a standard Cartan subspace.

Remark 2.5. Observe that in general the base point p of a standard
Cartan subset C = expJc - p is not uniquely determined: for all p’ €
expJc, - p, one has that ¢ is a maximal abelian subspace of g N Adp,pc
and expJc - p’ defines the same Cartan subset C.

For a fundamental Cartan subset A4, define a Weyl group as
WKXK(A) = NKXK(A)/ZKXK(A)’
where
Ngux(A) ={(h, 1) e K x K | hAI"' = A}

and

Zix(A)={(h,l)e K xK | hal ' =a,Ya e A}.

There is a notion of conjugacy between Cartan subsets which goes as
follows.

Let C, =expJ c% - Ay and C, = expJ cfz - A, be standard Cartan subsets,
where A, = expJc} - p; and A, = expJc} - p,. Then C; and C, are said to
be Wy, x(A)-conjugate if

A, =hA;k™'  for some (h, k) € Ng, x(A).
For a standard Cartan subset C = expJc¢ - p, define a Weyl group as

WKXK(C) = NKXK(C)/ZKXK(C)’
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where
Nk (C) ={(h,]) e K x K | hCI"! = C}

and
Zix(C)={(h,) e K xK | hel ' =¢,VceC}.

Remark 2.6. (i) By [Mal, Lemma 10(ii)], if two Cartan subsets C; and
C, are conjugate, then C, = mC,I~! for some (m,[) € K x K. In other
words, conjugate Cartan subsets intersect the same G x K®-orbits in G°.

(i) The group Wx, x(A) and its action on A have been described in
[AG, Proposition 6]:

Wirk(A)={(h,]) e K x K | h € Ng(a), hi™' € expJT}

is isomorphic to the semidirect product of the Weyl group Wy (a) and I', the
kernel of the map exp: a — expJa/expJa N K. Precisely, I' is the lattice
in a given by
2h
I'= Iom——"—,
Z T B )
where, for each root «, the vector 4, is defined by «(H) = B(H, h,), H € a.
If (h,]) € W, x(A) and x = /X € A, then

(B, 1) - x = /AWK =1 = o/ (AdX ) vel.

In particular, there is an embedding Ng(a) < Nk, x(A), h — (h, h).
(iii) Let C =expJc- p be a Cartan subset and let H be the isotropy

subgroup in G of the base point p € G¥/K®. Then, for each & € Ny (¢),
one has that

hexpJc- ph~' =expJAd,c- hph~! =expJc- pkh™!, k,kh™' e K®.

This means that C and hCh~! are Cartan subsets in G* with the same
image C in G*/KC. In particular, they intersect precisely the same G-orbits
in G®/KC.

Standard Cartan subsets can be described in terms of orthogonal systems
of restricted root vectors in g. In our situation, this description is equivalent
to the one given in [Mal, p. 83]. Let A, denote the restricted root system
of g with respect to a and let

s=g"® Pg*, o =Z()=meda, m=Z(a)

ael,

be the corresponding root decomposition.
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An orthogonal system of restricted root vectorsisaset Q = {X, , ..., X,
of restricted root vectors Xaj € g% satisfying the conditions [X,, , Xaj]
[Xo. HXaj] =0fori#j.

Define

fQ - = R(Xal + 0Xa1) S0 R(Xam + GXam) C f’

-

m

ag:=[\Ker{a;} ={H ea|a;(H)=0for j=1,...,m} Ca, (2.2)
j=1

Ag:= {"MecA=expJa| = _1forj=1,...,m}.
Each connected component of the set

is a standard Cartan subset. All standard Cartan subsets arise in this way.
The connected components of Cy, are in one-to-one correspondence with
the ones of A,. A connected component C of Cy, can be written as

C =explty-expJag - p, (2.4)
where the (r — m)-dimensional torus
expJagy = AOQ ={e¥H c A|HH =1forj=1,...,m}

is the connected component of the identity of A, and p is a base point
satisfying the conditions

p=ecexpla and a;(Ay) = 7/2 modm, j=1,...,m.
(2.5)

Remark 2.7. (i) Denote by Ry = {ay,...,a,} the set of restricted
roots corresponding to an orthogonal system of restricted root vectors
0 ={X,,,..., X, } Then the roots in R, are orthogonal with respect
to the Killing form, i.e., (a;, a;) = 0 for all i # j (see [Ma2]). In general,
they may not be strongly orthogonal. For example, when G = SO,(6, 8)
there are orthogonal systems of restricted root vectors arising from
orthogonal, nonstrongly orthogonal roots. However, a set of orthogo-
nal, nonstrongly orthogonal restricted roots may not admit an orthogonal
system of restricted root vectors.

(i) Conjugacy of Cartan subsets can be formulated in terms of
orthogonal systems as follows:

e Let Oy = {X,,,..., X, } be an orthogonal system of restricted
root vectors of an orthogonal set of roots Ry = {e,...,a,}. Let w €
Ng(a) and let Ry = w- Ry = {way, ..., wa,,}. Then Q; and O, =
{wX,,,...,wX, } give rise to families of pairwise conjugate Cartan sub-
sets Cp, and Cyp,.
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* Let C; = C, be conjugate standard Cartan subsets. If C; is asso-
ciated to an orthogonal system of root vectors Q; = {X,,..., X, } of
an orthogonal set of roots Ry , then C, is conjugate to a Cartan subset
associated to the orthogonal system Q, = w - Q; of the set of orthogonal
roots Ry, = w- Ry, . Precisely, A4, is a connected component of A4, , for
O, =w-Q.

As a consequence, Wy (a)-equivalence classes of sets of positive orthogo-
nal restricted roots, admitting an orthogonal system of restricted root vec-
tors, yield a complete set of representatives of Wy, x(a)-conjugacy classes
of standard Cartan subsets.

Let {C; = expJ¢; - p;}ic; be a complete set of representatives of the
Wy .k (A)-conjugacy classes of standard Cartan subsets in G©. By the above
description, such a set is finite. For i € I, denote by

X;:=G-expJ¢; - p;- K®
the set of the G x K®-orbits in G* intersecting C;, and by
X, =G -expJa-K®

the set of the G x KC-orbits in G® intersecting the fundamental Cartan
subset A := expJa. In our situation, Theorem 3 in [Mal, p. 80], can be
summarized as follows.

THEOREM 2.8. (i) Every closed G x K®-orbit in G® intersects a standard
Cartan subset C; for some i € I.

(i) Closed G x K®-orbits consisting of regular semisimple elements
with respect to o, T intersect precisely one Cartan subset C; in the orbit of
the Weyl group Wy x(C)).

(iii) There is identification of orbit spaces X,/G x K& = AWy k(A).
In other words, x,y € A lie on the same G x K®-orbit if and only if they lie
on the same Wy (A)-orbit.

Since the canonical projection 7 is equivariant, continuous, and closed,
the sets of elements in G®/KC sitting on closed G-orbits and on closed
G-orbits of maximal dimension are given by G;CS’ s.» and G% . T€Spec-

tively. We call the closed G-orbits of maximal dimension generic orbits. By
the above theorem,

< v
Gss, o, T UXt

Moreover, every generic orbit S admits a reference point on a set C;, where
C;, i € 1, is a uniquely determined Cartan subset. Sometimes, for simplicity,
we call C; a Cartan subset as well.
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2.3. Standard Cartan Subsets and Minimal Orbits

In this section, we prove that every standard Cartan subset admits a base
point p which satisfies some very restrictive algebraic conditions. Under
such conditions, the G-orbit of p € G/K® has locally minimal dimension
(cf. Sections 3.2 and 3.3). For most reduced restricted root systems, such
conditions also imply that the G-orbit of p is a semisimple symmetric space,
embedded in G®/KC as a totally real submanifold. In this case, the G-orbit
of p has absolute minimal dimension.

LEMMA 2.9. Let g be a simple real Lie algebra. Let C C C, be a standard
Cartan subset associated to an orthogonal system of restricted root vectors

O={X,,---» X, }-
(i) If the restricted root system A of g is reduced, not of type C, or Fy,
there exists a base point p = e’ € A, of C satisfying
a(Ay) =0 mod /2 for all @ € A,. (2.6)
(ii) If the restricted root system A, of g is of type C,, (BC),, or F,, there
exists a base point p = e’ ¢ Ag of C satisfying either conditions (2.6) or
2a(Ay) =0 mod 7r/2 for all « € A,. 2.7)
Proof. Let g be a simple real Lie algebra of real rank 7 (i.e., dimga = r).
Then the restricted root system A, is irreducible and it is either isomorphic
to one of the rank-r reduced root systems, or it is of type (BC), (see [He,
Kn2]). Let Ry = {ay, ..., a,} be the set of (orthogonal) restricted roots
corresponding to Q.

By definition, a base point p = ¢’ of a Cartan subset C C C,, satisfies
the system of equations

an

a;(A4g) = (2n + 1)5

: for some integers ny,...,n,, € Z. (2.8)
am(AO) = (an + 1)%

The proof of the lemma is equivalent to showing that in A, there exists a
base point p = e’ for C, satisfying either

ﬂ- .
aj(A0)=(2n1+1)5, ]:1’...’m’
. (2.9)
a(A4y) € Za, VYae A,
or
7T .
a](AO)z(Zn]+1)E, ]:1’.."m’
T 2.9y
2a(A) € ZE’ VaeA,.
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Observe that when the orthogonal roots «y, ..., «,, span the space a*, then
ap = {0} and the base point p is uniquely determined by conditions (2.8).
So it is not a priori obvious that conditions (2.9) or (2.9) can be fulfilled
by some base point p.

When A, is of type A4,,D,, G,, Eg, E;, Eg, orthogonal restricted roots
are automatically strongly orthogonal (cf. [Ma2]). In all these cases, the sets
R, of strongly orthogonal restricted roots, up to Weyl group equivalence,
have been determined in [Su]. (They coincide with the sets of strongly
orthogonal roots of the split real form of a complex Lie algebra of type
A,, D,, G,, E¢, E;, Eg, respectively.) For the sake of completeness we list
them hereby.

A, A={F(e;—¢), l<i<j<r+1}CR™N(e;+--+ep)™
II={(e;—e),.... (e, — er+1)}'
Every set of strongly orthogonal roots is conjugate to a set of the form
Ro={(e;, —e,)-.. (e,  —e,),k>1i <ip...,ip_y < iy}, where
i1, 0y .5 by € {1,2,...,r+ 1} are distinct integers.

Dr A:{:I:(el:tej),lfl<]§r}C[Rr
= {(61 - 62)’ cees (er—l - 6,), (er—l + er)}‘
Every set of strongly orthogonal roots is conjugate to a set of the form
Ro=R(l,k)=A{(e; £ e3), ..., (ex_1 £ ey), (exr1 — €xyhy1)s - (€xn —
621+2k)} for l, k > 0, 21 + 2k <r.
For r even, there is also the possibility Ry = R(0,7/2 —1)U{e, | +e,}.

Gy A = {&(e; — e3), £(e5 — €)), £(e; — €3), £(2e; — €3 — ¢3),
+(2e, —e; —e3), £(2e5 —e; —ey)} CRPN(e; + ey + e3)t.
IT={(e; — €3), (—2¢; + €3 + €3)}.
Every set R, of strongly orthogonal roots is conjugate to a subset of the
maximal set R = {(e, — e3), (2¢; — e, — e3)}.

Ey A={*(e;+e), 1<i<j<8, 1Y% (-1)De;, Y v(i) even} C
RS.
IT = {%(61 —e—e3—e —es—eg—erteg) (et e) (e —ep), (65—
€), (€4 — €3), (es — e4), (e5 — e5), (€7 — ¢6)}-
Every set R, of strongly orthogonal roots is conjugate to a subset of the
maximal set
R = {%(61—€2+€3—€4+€5—€6—€7+€8),%(€1+€2—€3+€4—€5—
eq—e7+eg), (e3+ey), (ex+es), (€1 +¢5), 5(—ey —ey —e3+ ey +es+eq —
e7 + eg), %(—51 +e,+e3—eys—es+e—e;+eg), (eg+ep)l

E; A ={roots in Eg orthogonal to the root (eg + e;)}.
I={l(e,—ey—e;5—e,—es—es—e;+e3), (e, +e1),(es—ep), (e5 —
2\¢1 2 3 4 5 6 7 8/)>\€2 1), \€2 1)>\€3
€1), (e — €3), (es — €y), (€5 — es)}.
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Every set R, of strongly orthogonal roots in E; is conjugate to a subset of
the maximal set given by the first seven vectors of R C Eg.

Es A ={roots in Eg orthogonal to the roots (eg + €;), (eg + €4)}-
M= {j(e;—ey—es—es—es —eg—e;+eg), (e +€y), (3 — €), (e3 —
€1), (€4 —e3), (es —e4)}.

Every set R, of strongly orthogonal roots in Eg is conjugate to a subset of
the maximal set given by the first four vectors of R C Eg.

When A, is of type B,, C,, (BC),, Fy, sets of orthogonal restricted roots
are not necessarily strongly orthogonal. For these types of root systems, sets
of orthogonal roots can be described as follows.

B, A={te, 1<i<r*(e+e)1<i<j<rjcR.

I = {(81 - 62)’ LR (er—l - er)’ er}'
Every set of orthogonal roots is conjugate to a set of the form

3Q = {(e,-l .:|:ejl), ....,.(eik :I:.ejk.), €ps---s€py }, Where k,n > 0,.i1. <
Jiseeosip < Ji and iy, ji, vy ipy jis Byy -5 b, € {1,2, ..., r} are distinct
integers.

C, A={£2e, 1<i<r *(e;xe;)), 1<i<j=<r}cCR.

IT={(e; —ey), ..., (e,1 —€,),2¢,}.
Every set of orthogonal roots is conjugate to a set of the form

RQ = {(e,-] :i: ej]),.:.,.(e,-k + ?jk)_’ 2ep,, ..., 2e, }, where k,n > 0_, il. <
Jiseees i < Jio and iy, ji, ey ips Jioo Ays oo -5 By, € {1,2, ..., r} are distinct
integers.

(BC), A={*e;,+2¢;, 1 <i<r £(e;xe;), 1 <i<j<r}cCR.

= {(el - 62)’ cees (6,,1 - 6,,), er}'
Every set of orthogonal roots is conjugate to a set of the form

Ry = {(e;, £¢),....(e; £ej), eml,...,emp,2ehl,...,Zehn}, where
k,p,nZO, il <j1,...,ik <jk, and il,jl,...,ik,jk,ml,...,mp,hl,...,
h, €{1,2,...,r} are distinct integers.

F, A={%e,1<i<4 x(e+e), 1<i<j<4 J(te+e+
€3 + 641)} C R4.
IT={5(e; — ey —e5—ey), e, (€3 — €4), (e — €3)}.
Every orthogonal set R, of roots is conjugate to a subset of
Ry =A{(e; £ ey), (et ey)}, Ry ={ey, ..., e},
Ry =A{(e; £ ej), ey, e, L < J, I, J, h, k, all distinct}.

In the above lists, we have identified a* with a subspace of some
euclidean space R”. In this way, every root in A, can be written as a lin-
ear combination of the functionals e, ..., e, € R”, and conditions (2.8)
translate into a linear system of equations in e; (A4y), ..., ¢; (A) for some

{ir, ... i} C {1,....n}
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For A, = A,, B,, D,, the systems (2.8) arising in this way have the fol-
lowing properties:

» The equations are either of the form

ek(AO)ieh(A0)=(2s+1)g or ei(A0)=(2t+1)g, t,sel.
(2.10)

 Different equations involve e;’s with different indices, except for
pairs of equations of the form

ep(Ag) + e(Ay) = 2a + 1),
a,bel. (2.11)
ep(Ay) = e(Ay) = @b + 1),

One can check that it is always possible to find A4, € a such that e¢;(A4) €
2%, for all i and conditions (2.9) are satisfied.

For A, = G,, Eg, E7, Eg and every set of strongly orthogonal roots R,
it is always possible to find 4, € a such that conditions (2.9) are satisfied.
An easy calculation proves it for G,.

Let R be the maximal set of strongly orthogonal roots in Eg. The corre-
sponding 8 x 8 system (2.8) uniquely determines the values {e;(A4y)}i=1. s
and the values of the simple roots in II

1
5(61 —ey—e3—eys—es—e;—e;+eg), (e +e), (e —e), (e3—e),

(e4 —€3), (es — e4), (€5 — e5), (€7 — €5)

on A, which are respectively given by

' o
(”1+”2—”3—”4)§a (1+n2+”4+n5—”6)§,
o T
—(”1—”44‘”5—”7)5, (”1—”24‘”3—”4)5,
a s
(‘”1"'”2"‘”6‘”7)5’ (my —”2—”3"'”4)5’
o '
(—”1—"44‘”54‘”7)5’ —(1+”5+”6+”7—”8)5-

It follows that A, satisfies conditions (2.9) for the maximal set R and there-
fore for every subset R, C R. The discussion of E,; and E; is included in
that of Ej.

For A, = C,, systems (2.8) arising from a set R, of orthogonal roots
contain a number of systems like (2.11) and equations of the form

2e(Ag) = (2u + 1)%, uez,
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which have solutions in %Z% If the roots in R, are actually strongly orthog-
onal, it is always possible to find A, € a satisfying conditions (2.9). How-
ever, there are sets of orthogonal, nonstrongly orthogonal roots for which
it is only possible to find A4, € a satisfying conditions (2.9)". (In some cases,
such roots also admit an orthogonal systems of restricted root vectors: for
example when g = EVII.)

For A, = F,, conditions (2.9) can be satisfied for all orthogonal sets of
roots contained in R; and R, and all strongly orthogonal sets contained in
R;. For orthogonal sets contained in Rj;, conditions (2.9)" can be satisfied.
(However, only when g = EVI and g = EIX do such sets of roots actually
admit an orthogonal system of restricted root vectors.)

In the nonreduced case (BC),, because of double roots, conditions (2.9)
generally need to be replaced by conditions (2.9)’, even for sets of strongly
orthogonal roots. Then the arguments used for B, apply to this case as well.

We conclude by observing that when g admits a complex structure, the
restricted root system A, is isomorphic to the ordinary root system A and
orthogonal systems of restricted root vectors only occur in connection with
strongly orthogonal roots. In particular, every Cartan subset admits a base
point satisfying conditions (2.6).

Conditions (2.6) and (2.7) put severe restrictions on a point p = e
expJa on the associated involution 7, of a® (see (2.1)) and on the G-orbit
of p e G*/KE.

JAy ¢

LEMMA 2.10. Let p = e’ e expJa. Then
(i) 7,=Ad,7and 7,7, = Ad .

(i) or,=71,10, 77, =717, and 7,0 = O71,.

P~ 7p p=Tp
(iii) Let C =expJcg - p be a Cartan subset associated to the orthogonal
system of restricted root vectors Q ={X,,, ..., X, }. Then the base point p
satisfies
Tl =T,lcg=—-1d  and  7,7,9]G=Ad,lcg = 1d.

Proof. 1f p € expJa, then 7(p) = o(p) = p~!. It follows that
O'Adp = Adp—l o, ’TAdp = Adp—l T.

The above relations together with the definitions of 7, and 7,1 imply parts
(i) and (ii). Observe that 7,[ay, = 7,-1|ap = —1d, since p € expJa. More-
over, by (2.2), one has that

Tp(Xo +6X,) = 7)1 (X, + 0X,) = —(X, +6X,) forall X, € Q.

All the statements in part (iii) are now immediate.
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LEMMA 2.11. Let p = e’ € expJa be a point satisfying conditions (2.6).
Then
(i) Ady=1d,7,=17,1,and 7,0 = o7,
(i) 7, preserves the real form G of G®.
iii) The restriction of T, to q is an involution of ¢ commuting with the
p g
Cartan involution 6.
iv) o, is a conjugation of g€ with real form g = §) & Jq, where
) jug
q = 0 @ q is the T ,-decomposition of g.

Proof. By conditions (2.6), one has that Ad « = Id on g© and G*. As a
consequence, 7,0 = o7, and 7,(G) = G. Statement (iii) is immediate. (iv)
Since o7, = 7,0, one has that o7, is a conjugation of a® commuting with
7,. In this way, the 7,-decomposition g* = §* & q* is both o- and o7 -
stable. In particular, Fix(or,, ¢*) = Fix(o7,, )*) @ Fix(o7,, %) = h @ Jq.

COROLLARY 2.12. By Lemma 2.11, one has that
(G®)r = (G™)" = Ad K",

Remark 2.13. Let p = ¢ € expJa be a base point for a Cartan subset
C = expJc- p. Assume p satisfies conditions (2.6). Denote by G; and
(G®); the isotropy subgroups of the point p € G°/K® in G and G,
respectively. Then

C Chr C Ch7 T
(G7); =(G")»=Ad,K and G;=GN(G~)»=G".
In other words, G5 is a (possibly disconnected) real form of (GY) 5 The
G-orbit of p is a semisimple (generally non-Riemannian) symmetric space
G/G"r of the same dimension and rank as G/K. The map G* — G©, g —
g - p induces an identification

GC/KC ~ GC/(GT")C,

and the space G/G™ embeds in G®/(G™»)* as a totally real submanifold
of maximal dimension. If g = § @ q is the 7,-decomposition of g, there is
a canonical identification g = 7(G/G'™); and the Cartan subspace ¢ is a
maximal abelian subspace of q.

LEMMA 2.14. Let p = ¢’ € expJa be a point satisfying conditions (2.7).
Then

(i) Ad,s =1d and Ad is a complex involution of g*.

(i) Ad,: commutes with 7, 7,, and o.

p’
(iii) Ad,+ measures the noncommutativity of o and 7 ,:

o7, =T,0Ad 4, (0'7'17)4 =1d.

p
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Proof. The proof of the lemma is a straightforward application of the
definitions and of the results of Lemma 2.10.

Remark 2.15. Let p = ¢ e expJa be a point satisfying condi-
tions (2.7). In general, under these assumptions, o7, # 7,0 and the
7 ,-decomposition of g©

“=0"@q"
is not o-stable. It follows that
dimgg N < dimeh®  and  dimpG/G, > dimzG/K.

In this case, the G-orbit of the point p € G*/KC is not a totally real
submanifold of G/KT.

3. THE CR-STRUCTURE AND THE ORBIT TYPE
OF A GENERIC ORBIT

3.1. Vector Fields Induced by the G-action

Fix the trivialization of the tangent bundle TG® = G® x g® given by the
right-invariant vector fields on G®. A vector in g© and the corresponding
right-invariant vector field on G* are denoted by the same symbol. Let
G® x e p® denote the G-equivariant bundle defined as the quotient of
G® x p® by the equivalence relation [x, v] ~ [xk~', Ad,v], k € K. The
map

(X,v) — [x, (L), 'v] = [x,Ad,-v], %€ G“/K® veT(G"/K");,
provides a G-equivariant identification between the tangent bundle
T(G®/K®) and G® xgc p®. Here (L,), := (dL,),. Under this identi-
fication, the tangent space to G¢/KC at ¥ is given by

T(G*/K®); = Ad,p®,  x e G, n(x)=x.

Left translations by elements of G on G*/KT® induce a Lie algebra homo-
morphism associating to X € g the vector field X* on G®/K® generated
by the action of the one-parameter subgroup

Loy ix: ¥ —> exptX - . 3.1

By definition, the value X*(x) of X* at x is the tangent vector at X to the
curve exp tX - ¥ in G¢/KC.
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LEMMA 3.1. One has that
X*(x) = (X),
where
I,: " — Ad,»"

is the projection induced by the Lie algebra decomposition q© = Ad f* @
Ad, pC.

Proof. For ¥ € G¥/KC, the isotropy subgroup of ¥ in G® is given by
G¢ = Ad K€, where x € G® and X = (x). Therefore the isotropy algebra
is given by a¢ = Ad,fC and X*(X) coincides with the projection IT,(X).

3.2. Tangent Space, Complex Tangent Space, and Isotropy Subgroup
of a Generic Orbit Lying in X,

In this section, we calculate the tangent space and the complex tangent
space to a generic orbit in the invariant subset X, associated to the fun-
damental Cartan subset 4 = expJa. Fix ¥, € A for some x, = ¢/ ¢ A.
Denote by § the G-orbit of x,. The tangent space TSz to S at X is gener-
ated by the vectors X*(x,) for X € g. By Lemma 3.1, the vectors X*(X,)
are obtained by computing the projection

I, : g — Ad, p". (3.2)
Let A, be the restricted root system of g with respect to a and let

s=g"® Pg", "=Z(a)=mda, m=Za)

acl,

be the corresponding root decomposition. Since 6g* = g~¢, consider the
0-stable subspace of g

gla] i =g*®g™“, ae Al
For Z, € g%, consider the two-dimensional subspace of g[«]
Z|a] := spang{Z,, 0Z,}.
If Z, runs through a basis of g%, one has

ala] = P Z[al.
Z

@

Each Z[a] is 6-stable, with Cartan decomposition Z[a] = Z[a]; ® Z[a],,
and a 6-invariant basis is given by

{K,:=Z,+60Z,, P, :=Z,— 0Z,)}.
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Denote by Z[a]® c g® the complexification of Z[a]. Define
E, = Ad, K, = cosa(H,)K, + sina(H,)JP,, (33)
F, = Ad, P, = cos a(H,)P, + sin a(H)JK,. '

Then
{Ea > ']Ea > Fll b JF(X}

is a real basis of Adx“Z[a]C compatible with the decomposition g* =
Ad, fC @ Ad, p".

In the next proposition, we explicitly compute the map (3.2). For sim-
plicity, we write X* for X*(X,).

PropoOSITION 3.2. (i) If X € m, then X* =0.
(i) If X €q, then X* = X.
(iii) IfK,, P, € Z[a], then
K} = —sina(Hy)JF,, P: = cosa(H,)F,. (3.4)

Proof. Statements (i) and (ii) follow directly from the fact that m C

Adx“f‘D and a C Adx“p@. To prove statement (iii), observe that relations

(3.3) imply that

K, = —sina(Hy)JF, + cosa(H\)E, and
P, =cosa(Hy)F, —sina(Hy)JE,.
Therefore K} = —sina(H,)JF, and P = cos a(H,)F,, as requested.

Define

3= @ ala]

aeA}
and consider the map

xa®s— ad P Ad, Z[al;, X r— X*(%). (3.5)
a, Z,

PROPOSITION 3.3.  The map (3.5) is an isomorphism if and only if x, sat-
isfies the condition

a(Hy) #£0 mod 7/2, Va €A,. (3.6)
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Proof. By Proposition 3.2, the map (3.5) is the identity on a. Moreover,
on each subspace Z[a] C g[«] the restriction of the map *

| Z[a]: Z[a] — Ad, Z[a],

with respect to the real bases {K,, P, } and {F,, JF,}, is given by the matrix

Vo= (cosatry 0 )-

Since, for each root «, one has that det M, = sin a(H,)) - cosa(H) # 0 if
and only if a(H) # 0 mod 7/2, the statement follows.

Denote by Gy, the isotropy subgroup of X, in G, by gy and ggo the
isotropy subalgebras of X, in g and g®, respectively. In the next proposition,
we determine the orbit type of the generic orbits in X,.

PROPOSITION 3.4. Let x, = ¢/ ¢ expJa. The point %, € G°/KC lies on
a generic G-orbit if and only if the map (3.5) is an isomorphism. In this case,
the isotropy subgroup of X is given by the centralizer of a in K

Gz = Zg(a).

X T
Proof. At Lie algebra level, we have
0z, =6 NAd, fC =fNAd, f@pNJAd,t. (3.7)
Since

Ad,f=mo @ Ad, Z[«] and
o, Z,

Ad, K, = cosa(Hy)K, + sina(H,)JP,,
the intersection (3.7) has minimal dimension when
tNAd, f=3(a) and pNJAd, t = {0}.

This happens when (3.6) holds and the map * in (3.5) is an isomorphism.
In this case, gz, = ¢ N Ad, f* = 3¢(a) and G; = Zg(a).

Remark 3.5. (i) The argument of Proposition 3.4 also shows the fol-
lowing facts:

* The isotropy subgroup Gy, is compact whenever
a(Hy) £ 7/2 mod , Va e A,. (3.8)

It was shown in [AG] that conditions (3.8) define precisely the subset of
X, where the G-action is proper. Indeed, if a(H,) = m/2 mod 7 for some
root @ € A, the isotropy subgroup Gy, is noncompact.



640 LAURA GEATTI

* The isotropy subgroup Gy is maximal if
a(Hy) =0 mod /2, Va e A,.
In this case, the G-orbit of X, is minimal and by Remark 2.13 is a semisim-
ple symmetric space, embedded in G®/K® as a totally real submanifold.
Two points X, and X¥; sit on a minimal orbit of the same type if and only
if a(Hy— H;) =0 mod 7, Va € A,. In particular, the G-orbit of X, is of
type G/K whenever

a(Hy) =0 mod , VaeA,.
(i) The set of generic orbits in X, is parametrized by the complement
in a of the set of hyperplanes
\J{H €a|a(H)=0modm/2},
acl,
modulo the action of the Weyl group Wy, x(A). Generic orbits in X,, form
an open dense subset and they are all of the same type.

The next remark relates points on generic orbits in 4 with regular
semisimple elements G in G® (cf. Definition 2.2 and [Mal]).

1S, O, T
Remark 3.6. Let x, = ¢/ be a point in expJa. Then X, sits on a
generic orbit if and only if x, € G¢

1S, o, T*
Proof. By Definition 2.2, a point x, belongs to G?S’ .- if and only if the
intersection (%)™ N (g&) ™™ =Jg N Ad, p° is abelian. Since
Ad, »" =a" @ P Ad, Z[a];
@ Z,
and
Ad, P, = cosa(H,)P, +sina(Hy)JK,, P, € Z[a],,
the intersection Jg N AdepC is abelian if and only if it coincides with Ja.

This happens if and only if condition (3.6) holds, and the statement follows
by Proposition 3.4.

COROLLARY 3.7. The tangent space and the complex tangent space to a
generic orbit S at X are given by
TS, =a® P Ad, Z[a]; and TSy, = P Ad, Z[a];,
a, Z, a, Z,
where Z,, runs through a basis of ¢ for o € AT. The orbit S is also generic
as a CR-manifold (cf. Definition 1.1).

Remark 3.8. Later on, in the computation of the Levi form of generic
orbits (cf. Lemma 4.3 and Proposition 5.4), we need the inverses of relations
(3.4), namely

1

(*)_lFa = W(I{O)Pa and (*)_1JFa =

-1

W(HO)K&. (3-9)
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3.3. Tangent Space, Complex Tangent Space, and Isotropy Subgroup
of a Generic Orbit beyond X,

In this section, we consider the generic orbits outside X, in G¢/KC,
namely the orbits intersecting a standard Cartan subset C other than the
fundamental one, where C = expJc - p is a standard Cartan subset with
¢ #a.

Let p = e* € expJa be a base point for C. Let 7, be the associated
involution of g€ and

g“ =@ q"

the corresponding decomposition, where §° = Ad, ¢ and q© = Ad,p".
Denote by H® = Ad,K" the isotropy subgroup of p € G*/K® in G*.
Then

G¢/K® = G*/H®

and the tangent bundle T(G*/K®) can also be identified with G© x e qF,
where q© = T(G®/K®);.

Fix X, p € C, where x, = ¢/*0 ¢ expJc. By Lemma 3.1, the tangent
space TSy and the complex tangent space TSy can be determined by
computing the projection

. prg— AdXOq‘D
subordinated to the decomposition
o" = Ad, h° @ Ad, o (3.10)

In dealing with generic orbits outside X, the restricted root system A, is
replaced by the restricted root system A, determined by the adjoint action
of ¢© on g°.

Observe that, by Lemma 2.10(iii), the standard Cartan subspace ¢ is con-
tained in g N q°. Since ¢ is #-stable, it decomposes as ¢ = ¢; @ ¢y, Where
¢ C fand ¢, C p. Since ¢; and ¢, are commuting abelian subspaces consist-
ing of semisimple elements, ¢ is an abelian semisimple subspace of g. By
the same argument, its complexification ¢ is a maximal abelian semisim-
ple subspace of q. Denote by A, the set of nonzero roots of g* under the
adjoint action of ¢©, and let

a“=q"® P a°, " =mC o, m® = 3¢ (c%) (3.11)

ael,

be the corresponding root decomposition of g*. One can verify that A_ is a
root system, possibly nonreduced. One has that dim¢* > 1 and 7,3% = g™
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Moreover, since ¢©

by

is o-stable, there is an induced action of o on A, given

&(H) = a(o(H)) and  o(q®) = g~

Recall that, by Lemma 2.9, the base point p can be assumed to satisfy
either conditions (2.6) or (2.7). As we already saw in Lemmas 2.10, 2.11,
and 2.14, these conditions have important implications for the behavior of

the involution 7, with respect to the conjugation o.

LeEMMA 3.9. Let C =expJc - p be a standard Cartan subset. Assume the
base point p satisfies either conditions (2.6) or (2.7). If a € A, then

AdPAZ g% — g“

is either the identity (under conditions (2.6)) or a semisimple involution of g*
(under conditions (2.7)). Let g, = g¢ @ g% be the decomposition of g, into
the corresponding +1-eigenspaces and consider the map ot ,: a* — g~“. Then

J— o ; —_ o
o1, = 7,0 on g%, while o7, = —7,0 on q7.

Proof. By Lemma 2.10(iii), one has that Ad ,:|c = Id,. Hence Ad g, =
a,- Moreover, by Lemmas 2.11 and 2.14, one has that (Adp4)2 =Id1fZ, e
q%, then AdnZ, = 7p17,Z, = Z,. Hence o1,Z, = 071 Z,, = 7,0Z,.

If Z, e g% then AdyZ, = 7,17,Z, = —Z,. Hence 07,2, = —07 -1 Z,
= —71,0Z,.

For a € Af, define

gle] :=g*@g*®g g "

Since the involution Ad s+ is semisimple, there exists a basis of g* consisting
of t1-eigenvectors. For each such Z, € g,, define

Zla] :=spanc{Z,, 0Z,, 7,2y, T,0Zs}
and write Z[a], or Z[«a]_ to emphasize that the generator Z, belongs to
g¢ or to g%, respectively. Both gla] and Z[«] are Ad s, 7,, and o-stable.
If Z, runs through a suitable basis of g* consisting of Ad :-eigenvectors,
then

gla] = @ Zla], @ @ Zla]_.
Z, Z,

Let
Zla] = Z[a]ye ® Z[a],c = Re Z[a] @ J Im Z[a] (3.12)

be the decompositions of Z[«] with respect to 7, and o. Observe that on

Z[a], the involutions 7, and o commute. Hence there exists a o-invariant
basis of Z[a], which is also 7,-stable. On Z[«]_, the involutions 7, and o
anticommute. So there exists a o-invariant basis of Z[«]_, but it cannot be

T p-stable.
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Remark 3.10. Our next goal is to explicitly exhibit a o-invariant basis of
each Z[a], and Z[a]_. In order to compute the projection (3.10), we also
want such a basis to be as close as possible to a 7,-stable one. Subdivide
the roots in A, into real, imaginary, and complex roots, depending on their
behavior on c:

Al={aeA |a(H)eR,H e},

Al ={acA |a(H)e iR, Hec},

Al ={aecA |a(H)¢R, iR, H €}
We need to distinguish several cases.

(1) If @ € A¢ is a complex root, then each Z[«] is a four-dimensional
space and a 7 ,-stable basis of Z[«] is given by

Hy=Z,+71,Z,, Hy=0Z,+1,0Z,,
Q=24 —7p24 Qa =0Z, —7,0Z,.
(i) Assume Z, € g%. Then oH, = H; and 0Q, = Oz A
o-invariant basis of Z[a],, which is also 7 ,-stable, is given by

1 1
ReHa = E(Ha + O-Ha) = E(Ha +H51)’

-1 -1
ImHa = TJ(HQ — (THa) = TJ(Ha _H&)’
(.13)

1 1
Re Qa = E(Qa + O-Qa) = E(Qa + Q&)7

-1 -1
ImQ, = 5-J(Qu — 000) = 5-/(Qu — Q)-

(i) Assume Z, € g*. Then oH, = Q; and ¢Q, = H;. A
o-invariant basis of Z[«]_ is given by

1 1
ReHa = E(Ha + UHa) = E(Ha + Q&)7
-1 -1
Im H, = SLI(H, — oH,) = 51 I(H, ~ 0s),
(3.14)

1 1
Re Qa = E(Qa + O-Qa) = E(Qa +H6z)’

1 1
Im Qa = TJ(Qa - UQD() = T‘I(Qa - H&)'
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(2) If a € Al is areal root, then gla] = ¢* ® g~ and both ¢* and g~
are o-stable. Since Ad,: and o commute (Lemma 2.14(ii)), there exists a
o-invariant basis {Z,} of g* of Ad ,:-eigenvectors. For each such Z,,

Z|a] = span{Z,, TpZa}.
(i) If Z, € g%, then 0Q, = Q; = Q, and oH, = H; = H,. A
o-invariant basis of Z[e],, which is also 7 ,-stable, is given by
{Ha> Qu}-

(i) If Z, € g%, then 0Q, = H; = H, and oH, = Q; = OQ,. A
o-invariant basis of Z[«]_ is given by

{ReH, = 51, + Q). 1mH, = S, - 0).

(3) If @ € Al is an imaginary root, then gle] = g* @ g~* and
o7, ¢* — g% is a complex antilinear map preserving both g and g% (see
Lemma 2.14(ii)).

(i) Observe that (or,)* = Id on g¢; in other words, o7,|g% is a
conjugation of g¢. In particular, g% admits a o7 ,-invariant basis, whose
elements satisfy the condition o7,Z, = Z,. For each such Z, € g%,

Zla], = span{Z,, 7,Z,}.
Since oH, = H; = H, and 0Q, = Q; = —Q,, a o-invariant basis of
Z[al],, which is also 7 ,-stable, is given by
{ReH,=H,, ImQ, =-J0O,}.

(i) On g%, one has that ((rrp)2 = —Id. It follows that g% is even
dimensional and admits a basis consisting of pairs {Z,, o1,Z,}. For each
such Z, € g%, the space Z[a]_ is four dimensional and formulas (3.14)
hold.

For the zero root space, one has
g’ =gl0]=m" @ = Q?L ®q’, m® = Sbc(fc)-
By Lemma 2.10(iii), one has that ¢* c g% and therefore
g(jr = mE and g, =m_.
LEMMA 3.11.  One has that m© = {0}. In particular, m® is o-stable.

Proof. Let M € mE. Since 7,(c(M)) = —o(7,(M)) = —o(M), one
has that o(M) € ¢C. On the other hand, ¢* is o-stable and consequently
M = a(o(M)) € ¢©Nm® = {0}. It follows that m® = {0} and m® = m¢.
This means that 7, and o commute on m®. In particular, m® is o-stable.
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Consider the decomposition of g:

3=3,00 @ Zla]ng, 3()=gnm-eec.
a, Z,

Then a basis of g compatible with the above decomposition can be obtained
from a o-invariant basis of q°, compatible with the 7 p-decomposition ql =
m® @ ¢, and a o-invariant basis of each subspace Z[a].

For a € A} and Z, € g%, define

E, = Ad, H, = cosa(X()H, + sin a(X)JQ,,

' (3.15)
F,:=Ad, 0, = cosa(X))Q, + sina(X,)JH,.

Then
{E,,JE,, E;,JE;, F,,JF,, Fy,JF;}

is a real basis of Ad, Z[«a] compatible with the decomposition (3.10).
For real or imaginary roots, some of the above vectors may coincide (cf.
Remark 3.10).

For simplicity, we write
cosa(Xy) = A+iB and sina(Xy) =C+iD (3.16)

for A = Recosa(X,), B = Imcosa(X,), C = Resina(X;), D = Im
sin a(X})). The next proposition is an analogue of Proposition 3.2 and com-
putes the vector fields induced by the G-action on S at a reference point.
It is obtained by analyzing the restrictions of the map * to the different
components of g. We write X* for X (¥, - p).

PROPOSITION 3.12. (i) If X e m® Ng, then X* =0.
(i) If X ec, then X* = X.
(iii) If Z, € g§ and {ReH,,ImH,,ReQ,,ImQ,} is the basis of
Z[a], N g given in (3.13), then
1
Re H} = 5(DF, — CIF, — DF; - CIFy),

1

ImH;, = 5(~CF, — DIF, + CF; — DIF,),
| (3.17)

ReQ;, = 5(AF, + BIF, + AF; — BIF;),

1
Im QZ = E(BFa _— AJFa +BF5[ + A]Fa)
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(iv) If Z, € ¢* and {ReH,,ImH,,Re Q,,ImQ,} is the basis of
Z|a]_ N g given in (3.14), then

1
Re H; = 7(DF, ~ CIF, + AF, — BIF,),

1
ImH? = =(—CF, — DJF, + BF, + AJF,),

2

X (3.18)
ReQ;, = 5(AF, + BJF, - DF; — CIF;),

1
ImQ} = E(BF“ — AJF, + CF; — DJFy).
Proof. The proof consists of long but straightforward computations and
it is omitted.

Remark 3.13. For simplicity, we have stated the result for four-
dimensional spaces Z[a]. Formulas (3.17) and (3.18) simplify in the
cases of real and imaginary roots discussed in Remark 3.10 (2)(i), (2)(ii),
(3)(i) and respectively become

H =ReH} = —sina(X)JF,, Qr = Re O = cosa(Xy)F,,
cos a(XO)F sin a( X))

Re H! = JE,,
€ (o3 2 o 2 a
Im H* = — sin;x(XO)Fa 4 cos ozz(XO)JFm

Re H} = —sin a(X()JF,, Im QO = —cos a(X()JF,.
Define

3= Zla]Nng
a, ”Z

a

and consider the map

D8 — @ P Ad, Z[a]c, X +— X*(xy- p). (3.19)
o, Z,

ProPOSITION 3.14. (i) If the base point p satisfies conditions (2.6), the
map (3.19) is an isomorphism if and only if x, satisfies the conditions

sin2a(X,) # 0, YaeA,.

(ii) If the base point p satisfies conditions (2.7), the map (3.19) is an
isomorphism if and only if x satisfies the conditions

sin 2a(X,) # 0, Va € A, such that g* = {0},
cos 2a(X) # 0, Ya € A, such that g% = {0},
cos2a(X)sin2a(X,) #0,  Va € A, such that g%, g* # {0}.
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Proof. By Proposition 3.12, the map = is the identity on ¢. On each
four-dimensional subspace subspace Z[a] N g the restriction

«|Z[a]Ng: Z[a]Ng — AdXOZ[a]qc,

with respect to the real bases

{ReH,,ImH,,ReQ,,ImQ,} and {F,,JF,, F;,JF;},
is given by one of the following matrices
D -C -D -C
-C -D C -D
A B A -B]’
B —-A B A
D -C A -B
_ -C -D B 4 o
M=l 4 B _p —c| Zac

B -A C -D

Mt = Z,€qs,

Computing the determinants of these matrices and substituting relations
(3.16), one gets

1
detM* = 4_1| sin2a(X,)*>  and det M~ = | cos 2a(X,)|.
The same formulas hold as well in the special cases of real and imaginary

roots discussed in Remarks 3.10 and 3.13. Hence the statement follows.

PROPOSITION 3.15. Let xy- p = €’*0 . p € expJc - p. The point X, - p €
G®/KFC lies on a generic G-orbit if and only if the map (3.19) is an isomor-
phism. Then the isotropy subgroup is given by

Grp=GNZyc(cY),  where H* = Ad,K".

WP
Proof. The isotropy subalgebra of X, p in g is given by

Gy =aN AdXOI)‘D = Ker(x: ¢ — AdeqC),

where

Ad, §° =3¢ (") ® D Ad, Z[a]ye.
a, Z,
By the results of Proposition 3.12 and 3.14, the kernel of the map * has
minimal dimension when the map (3.19) is an isomorphism. In this case,
the isotropy subalgebra is given by g = g N 5bc(t‘c) and the isotropy
subgroup is given by Gy = G N Zye (c®).
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Remark 3.16. (i) By the above proposition, closed generic orbits inter-
secting C are all of the same type. By Lemma 3.11, the group Zc(c®) is
o-stable and dim G N Zye(c®) = dim Zg(a), as expected. Closed generic
orbits in G - C form an open sense subset of G - C. By proposition 3.14(i)-
(ii), they are parametrized by the complement in ¢ of the set

U {a(X)=0mod 7/2} |J {a(X)= m/4 mod =/2}

aeAf aehl

q*={0} a¢={0}

U {a(X)=0mod 7/4} |J {a(X) =0}

aeAl aeAl
a¢, a¢ #{0} qe#{0}
U Ima(X)=0
% Re a(X) =0 mod 7/2
g*={0}
U Ima(X)=0
% Re a(X) = w/4 mod /2
a1={0}
U Ima(X)=0
. Rea(X) =0 mod =/4 [’
0, a1#{0}

modulo the action of the Weyl group. Observe that only the hyperplanes
in ¢ defined corresponding to real or imaginary roots in A, disconnect the
above set.

(i) A point X;- p € C sits on a generic orbit if and only if x, - p €
G;CS} o+ (cf. Definition 2.2). In this case,

(6°)77 N (g%) o =JgNAd, q" = Jc.

The proof is similar to that of Remark 3.6 and follows from Proposition 3.14
and the decomposition

Ad, q" =" @ P Ad, Z[a]c.
a, Z,

(iii) Properness of action. There are cases when the G-action is proper
also on some subset of G®/K® outside X,, (cf. Remark 3.5). This can be
checked directly in Example 6.8. In general, this happens when G is a
Hermitian Lie group and G®/KC is also the complexification of a compactly
causal symmetric space of G (cf. Section 6).



INVARIANT DOMAINS 649

COROLLARY 3.17. The tangent space and the complex tangent space to a
generic orbit S at X - p are given by

TS5 =c® P Ad, Z[a],e and TSy ;= @ Ad,, Z[a]c
a, Z, a, Z,

The orbit S is also generic as a CR-manifold (cf. Definition 1.1).

Remark 3.18. Later on, in the computation of the Levi form of a generic
orbit S (cf. Lemma 4.3 and Propositions 5.14-5.16), we need the inverses
of relations (3.17) and (3.18), namely for Z, € g,

1 1 1 1 1
(*)“Fa=—( Out ——Qu+ - TH, — - -JHQ),

2\ cosa cos sin « sin &

1 1 1 1 1
(*)1FE¥=_< Qa+_—Q&_ . ]Ha+ﬁ]H&>a

2\ cosa cos @ sin « si (320)
. 1/ 1 1 1 '
(*) JFa:_ JQa Qa Ha_fH& >
2\ cosa cos sin o sin a
1 1 1 1 1
(x)"VF, = —(— JOQu+ —=J0z — —H, — — H)
2 cos « cos sin « sin &
and for Z, € g%,
1 CcOS o sin & sin « cos
F = JO. — JH
()" Fo cos 2« Qut cos 2& Qs cos2a “ + cos 2&
_ sin o cos cos o sin &
(*) lF&:—JQa —Qa a = a’
cos2a cos2a cos 2a cos 2a (3.21)
4 cosa sin & sin a cos & '
JF, = ——J - =
() “  cos2a Qut cos 2a Qa + cos2a ¢ cos2a ¢
1 sin o cos & cos sin «
JF. = JH H.
() “  cos2a Qut cos 2o 1Qa - cos2a ¢ + cos2a ¢

Let @ € A[. For Z, € g%, satisfying 0Z, = Z,, one has

1 1
Qa’ (*)71]Fa ==
COS & Sin o

For Z, € g%, satistying 0Z, = Z,, one has

H,.

()7'F, =

(*)71Fa _ cos aQ, +sinaJQ, n cosaH, — sinaJHa’
cos 2w cos 2a
i J inaH, — JH
(¥)-LIF, = sinaQ, +cosaJQ, 0.+ sinaH, — cosa o
cos 2w cos 2«
Let a € AL If Z, € g satisfies o7,Z, = Z,, then
1
(x)7'F, = JH,, — (x)7JF, = JQ,.

sin & “  cosa
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If Z, € g%, then Z[a] is four dimensional and formulas (3.21) become
cos & sin &

(*)7'F, = o 2a(Qoz + Hj) — o8 ZaJ(H“ + 0Qa),
() Fa = o0 (Qu + Ha) + ———(H, + Q0.
(), = =200 = Hy) + — o (Hy = Qa),
()" F; = CS(;;lzaa(Qa —Hz)+ CCOOSSZC;J(Qa —H,).

4. THE LEVI FORM OF A GENERIC ORBIT:
GENERAL FORMULAS

In this section, we establish the general formulas for the Levi form
of a generic orbit § at a base point X,. Given arbitrary tangent vectors
Z,WeTgSs,, it is necessary to extend them to local sections of the sub-
bundle 7S of the tangent bundle 7S and to compute their brackets at X,
(see Definition 1.2).

4.1. Extending Vector Fields

Let C =expJc- p be a Cartan subset. In particular, if p = ¢ and ¢ = q,
then C is the fundamental Cartan subset. Let x, - p = expJX,, - p be a point
in C. Let X, - p be the corresponding point in G*/K® and S the G-orbit
of X~ p. Let ¢° = §® @ q© be the decomposition of g* induced by the
involution 7,. The complex tangent space to S at X, - p is given by

Te(S)sp = P Ad, Z[a],c C Ad, q".
a, Z,
Let Z € T Sy5- We need to extend Z to a local vector field in a neigh-
borhood of X, p in §. If the G-orbit of X, p is generic, a neighborhood
Uz of Xp - p in § can be parametrized by a suitable neighborhood V}, of
Zero in
c®dscg, 3$:= P Zla]ng, Z[a] = span{Re H,,ImH,,ReQ,,ImQ,}
a,Z,
(cf. Propositions 3.3 and 3.14), via the map
Vo —> Uz =exp Vg - X - P, Xr—Xx=expX - X, p.
Here the vector X = X(X) € V and the group element y = y(¥) =
exp X(x) € G, satisfying
F=expX T p=7 % P,
are uniquely determined by the point X € Uz .
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LEMMA 4.1. A vector field on Us - extending Z can be defined by
Z(%) := (dL,)g5Z = Ad, Z.
Proof.  The above extension is well defined. If x € Ug, then 2()2) is a
local section of T¢S;. In fact,
(dL )55 TSxp — TSk and (dL
It follows that Z()'c) e TeS;

TeSe s

Yo P — T(DS*

Vsp

4.2. The Calculation of the Brackets

LetZ, W e T@Sm and let Z , W be the extensions defined in Lemma 4.1.

In order to calculate the brackets [Z W], choose a complex basis of g©
compatible with the decomposition

C=p"@q",
namely
{{Hj}a {Ml}7 {Ezlx}7 {Fz;}}’
where {H;};,_; _gme is an orthonormal basis of cg = {H e & |
a(H) € R, Yo € A} {M}_i _gmuc is a basis of m®, and, for
a e AF, {Fi}ioi dimg» and {E.}i_;  gim o are bases of Adeq[a]qc and
Ad, g[a]bt, respectively (cf. Sections 3.2 and 3.3). Write
Z(x) = m(DM; + h(DH; + el (DE + [o())F,
and
W (%) = mi(})M, + W(D)H; + (e}) (R)EL + (f2) (R)FL,
with the summation convention. When ¥ varies in a neighborhood of
X, - p in S, the vector fields Z, W are vectors in g whose coefficients are

complex-valued functions of x. Since 2(x0 D), W(xo ~p) € span{F.}, .,
the coefficients satisfy the relations

m;(Xy-p) =my(Xy-p)= hi(Xo-p)= h}(x(J'P) =e,(Xg p) =e,(Xo-p)=0.
Calculating the brackets by the formula [fX, gY] = fg[X, Y]+ fX(g)Y —

gY(f)X and observing that brackets of tangent vector fields are tangent
vector fields, one obtains

[Z, W]ss = Z(Z(h;) — W(h;))H, mod T¢Sx5-
J
It remains to calculate the first derivatives Z(4}) and W (h;) of the coeffi-
cient functions 4, h; with respect to the tangent vectors Z and W at x; - p.
Let B denote the Killing form of q°.



652 LAURA GEATTI

LEMMA 4.2. One has
-1 -1
Z(h) =B(I(»)'Z, W1, H)),  W(hy)=B((*)"'W, Z], H)),
where (%)~': TS;—;
(3.19).

Proof. Consider the curve c(t) := expt(x¥)~"'Z - X, p. Since (x)7'Z
belongs to ¢ ® 3 C g, the curve ¢(¢) is all contained in the G-orbit of X, p,
has initial point ¢(0) = X, - p, and has initial tangent vector ¢’(0) = Z. In
this way,

— ¢ ® 3 is the inverse of the map defined in (3.5) and

Z(h) = % tzoh}(exp(t(*)’lZ) X0 P)- 4.1)

The functions /(%) can be expressed as
hi(x) = B(W (%), H;) = B(Ad,»)W, H;).
If X = exp((x) ' Z) - X - p for some Z € TS,

y(exp((*)_lZ) Xg - P) = exp((*)_lz).

then

If follows that
2y = L w(exp() ' 2) 7 p) = B( L
P dt j 0 dt

— B(I(+)"'Z, W], H,).

The second identity is obtained in a similar way.
The following bracket formulas are now immediate:

|
Adexp(y 1y W5 H/)
0

t=0 t=

7 Wl =[(%)"! — (%)
2 Wl =l Z W)
[Z,IW 55 =[()"'Z, IW] = [(x)"\TW, Z]

Xo P

4.3. The Levi Form: General Formulas

Recall that
TCSW = @ Adx(]Z[a]qC
a, Z,
(cf. Sections 3.2 and 3.3) and observe that the map X ® 1+ Y ® i > X +
JY provides the identification

(TS5)/(TeSe5) = =cadJe.

In particular, the quadratic Levi form L(Z, Z) is valued in ¢ and is given by

1 ~ ~
L(Z.2)=~3[Z.7Z),, mod TcSq

Xo P

Denote by (x)~! the inverse of the map * defined in (3.5) and (3.19).
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LEMMA 4.3. Let Z, W € T Sx—p- Then

L(Z, W) = %[(*)fljw, z]- %[(*)*WV, Z]  mod TS

X0 P?
L(Z, Z)= %[(*)‘UZ, Z] - %[(*)“Z, Z] mod TSy

Proof. The above formulas follow directly from the bracket formulas
(4.2).

5. CALCULATION OF THE LEVI FORM AND THE LEVI
CONE OF A GENERIC ORBIT

5.1. The Calculation in X,

In this section, we compute the Levi form and the Levi cone of the
generic orbits intersecting A, where A4 := exp Ja is the fundamental Cartan
subset. We resume the notation introduced in Section 3.2

Recall that by Corollary 3.7 the complex tangent space to a generic orbit

S at a base point X, € A4, where x, = ¢/, H, € a, is given by
TcS;, = D Ad, glalf, where Ad, gla]} = @AdeZ[a]p (5.1)
aelA} Za

and Z, runs through a basis of g* for every o € A}.

In order to compute the Levi form by the formulas developed in Section
4, we explicitly construct a basis of T¢S; where the calculations turn out
particularly simple. Such a basis depends on the choice of a convenient
basis %, = {Z,} for each restricted root space g% C g.

Extend a to a #-invariant Cartan subalgebra ) =t @ a of g, with t C f.
Let A be the root system of g* with respect to H* and let

CZE)C@@Q)‘
AeA

be the corresponding root decomposition. Since f) is both #- and o-invariant,
there are induced actions of 6 and o on A, defined by

OM(H) := AM(O(H)), MH) :=AMo(H)), Henp®.

One has that
60X =6\  and Or = —A.

Observe that, if A is a root in A, then A + 6A is not a root (cf. [He, p. 530]).
For a € A, define

Aa = {/\ (S A|/\|a = (1}.
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Then
AeA, = AeA,, 0N, 0N € A_,
If 0 # @ € A, the complexified restricted root space (g*)¢ decomposes as

@) =@desd o @ =@dedes, pel, n=a,
Aedq A€y
A#X A#X

where the root spaces on the right-hand side are ordinary root spaces in
a®. (The roots A € A, are chosen so that each summand appears precisely
once in the above decomposition.) For the complexified restricted zero-
root space, one has (g°)® = m® @ a®, where m® = 3,c(a®). Observe that
m® is a reductive subalgebra containing the ordinary root spaces g*, with
/\|(IC =

Starting from the above decomposition, for each o € A, we construct a
basis %, of the restricted root space ¢* C g. In order to do this, fix a set
of root vectors {W, },ca, with W, € g*, normalized as follows

BW,,W.)=1,  BW,,W,)=0,  A+p=#0.

(Here B denotes the Killing form of q©.) In addition, if A = A is a real
root, we also assume oW, = W,. Then

B = (W5 + oWos =T (W3 = oW ) bscsy AW} | (5.2)

is a o-invariant basis of (g“)C c q€ and hence a basis of g* C g.
For A € A, let hy € b = {H € H° | A(H) € R,V X € A} be the vector
defined by

MH)=B(H, hy), Hebt",
and for @ € A, let i, € a be the vector defined by

a(H)=B(H, h,), H ea"
Then h, z(h)\ 0h)).

LeEMMA 5.1. Let a € A, and let 3B, be the basis of q* defined in (5.2).
The following relations hold

(i) Let Z, € o* Then |Z,,0Z,] = B(Z,,0Z,)h, € a, where
B(Z,,6Z,)isa negative real constant.

(i) For Z, # Z!, € B,, one has that [Z,, 0Z'] € £©.
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Proof. (i) If Z, € g%, then 6Z, € ¢~ and [Z,, 6Z,] € g° = 3,(a). On
the other hand, 0[Z,, 0Z,] = —[Z,, 0Z,]. Hence [Z,, 0Z,] € p N 3,(a) =
a. For all H € a, one has

B(H’ [Zav eza]) = B(H7 B(Zou eza)ha)’
and by the nondegeneracy of B|a x a, it follows that [Z,, 0Z,] = B(Z,,

6Z,)h,. Since B(X, 0Y) is negative definite on g, the statement follows.
(i) Let A, u € A,, with A # u, @u. Calculating

(W) £+ oW), 6(W,, + aW,)]
= [W)\, OWM] + [W)\, HUWIJ«] + [(TWA, HW/.L] + [O'WA, GUWM]’
one has that all the brackets on the right-hand side belong to root spaces

q”, where y € A is a nonzero root which vanishes identically on a®. Such
root spaces are contained in f* and the statement follows.

LEMMA 52. (i) Let a# B e A}.Let Z, € g* and Zg € gP. Then
B([Z, £ 0Z,, Zs + 0Z4],a%) =0.

(ii) Let Z,, Z!, be distinct elements of the basis B, of g defined in
(5.2). Then

(Z,—0Z,, Z,+0Z,] =2[Z,, 0Z,], B([Z,£0Z,, Z,£06Z.],a")=0.
Proof. The lemma follows by direct computations and Lemma 5.1(ii).

COROLLARY 5.3. Let a € A, and let %, be the basis of g defined in (5.2).
Only the brackets of the form (Z, — 0Z,, Z, + 0Z,] give some contribution
in the a direction.

For a € A}, fix the basis %, of g* defined in (5.2). Recall from Section
3.2 that to each Z, € %, there are associated K, € Z[a);, P, € Z[a],,
and F, = Ad, P, in Adx”Z[a]E and recall the decomposition (5.1) of the
complex tangent space TS; . We calculate the Levi form with respect to

the basis {{Fa}ZaE%a}aeAn*' O% TCS)_CU'

PROPOSITION 5.4.  For the Levi form one has:

2B(Z,, 0Z,)
W(W&F F)=——[Z .07 |= —2% %
(@) (Fo Fo) sin2a(H0)[ w 0Z4] sin2a(H,) “
for a € A}
(b) L(F,, F,) =0 forall F,,# F,, when dimg® > 1.

(c) L(F,, Fg) =0 forall a # B € A].
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Proof. We compute the Levi form by the formulas of Lemma 4.3
together with the identities of Remark 3.8, Lemmas 5.1 and 5.2, and
Corollary 5.3. For example, writing « for «(H,) and computing modulo
TSy, we have

L(FanFDz) = [‘TF\Q’FDI])C

0

([~ IE,, F,] = [(*)"'F,, JF,))

N = N = N =

1
([ —K,,, cosaP, + sin aJKa]
sin a

1
—|: P,, cosaJP, — sin aKa]>
cosa

_ 1<Sina Cf)SOZ)[Pa,Ka]
2\cosa sina
1 2 2B(Z,, 0Z,)
= [P K|=—""[2,0Z2]=""® "a/p
sin2a[ w Kl sin2a[ w 0Z4] sin 2« «

The other identities follow in a similar way.

We conclude this section by computing the Levi cone of the generic orbits
in X,,.

Remark 5.5. Denote by I1, = {«a, ..., a,} the set of simple roots in A,.
Consider the intersection points of the hyperplanes

N {H e a|e(H) =mm}, m; €Z,

aell,
and call them vertices. To each such vertex I/, we can associate a cell
wy ={H € af|e;(H) — o;(V)| < 7/2}.
When V' = O € a, we denote
wy={H € a||e;(H)| < m/2,Va; € T1,,}.

By Remark 3.5(ii), the union of such cells contains the parameter space of
generic orbits in X, and the union of the closures of such cells exhausts
the whole a. By Remark 3.5(i), the point » € G*/K® corresponding to a
vertex V' sits on a minimal orbit of type G/K. By Remark 3.5(ii), there are
finitely many G-orbits of type G/K in X,,.
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DErFINITION.  Given a set of vectors {X, ..., X, } in a real vector space
W, the cone generated by {X,..., X} is by definition the set of lin-
ear combinations with nonnegative coefficients of {X,..., X;} and it is
denoted by

cone{ Xy, ..., X;}.

PROPOSITION 5.6. Let S be a generic G-orbit in X,. Let X, be a base point
of S, where xy = expJH, € expJa. Assume H € wy, for some vertex V, € a
defined by the conditions «;(Vy) = 0 mod 7 for all «; € 11,. Then there are
the following possibilities.

(i) If|la(Hy) — a(Vy)| < 7/2 for all a € A, then the Levi cone €;, (S)
has nonempty interior and it is sharp.

(i) If |a(Hy) — a(Vy)| > 7/2 for some a € A\, then the Levi cone
is given by €5 (S) = a.

Proof. The proposition follows from the formulas of Proposition 5.4.
Since B(Z,, 0Z,) < 0 for all Z, € g%, the Levi cone is given by

€5, (S) = cone{ Ca. (5.3)

-1 N
SinZa(HO) « aEA:
Hence it has nonempty interior. By Remark 5.5, expression (5.3), and
the periodicity of the sin function, it is sufficient to consider H, € w.
Moreover, by Remark 2.6(ii), there is no loss in generality in assuming
0< C(i(Ho) < 77/2 for all a; € Hﬂ'

Then

(i) is obvious.

(i) Assume a(H,) > /2 for some o € A \II,. We claim that R -
h,, C €z, (S) for every simple root «; € 11;.

Let A = Z;zl m;a; be the highest root in A;. Observe that A has all the
coefficients m; € Z_, and can be obtained from an arbitrary simple root «;
by adding simple roots. Since a(H,) > /2, also A(H,) > /2. Then, for
every simple root «; € Il there exists a root A = 3_%_; n;a;, with coefficient
n; € Z > 0, such that A(H,) €]m/2, n[ and A — a;(H,)) €]0, 7/2[, whenever
A —aj € A,. Now fix ; € I, and A as above and let «; € II, be a simple
root such that A — «; € A,. Then consider the triplet of roots A — a;, a;, A.

Since a;(Hy), A — a;(H,) €]m/2[, and A(H,) €]m/2, m[, by (5.3)
—hy s —ha, by € € (S)  and  spang{h,, hy} C €. (9).

Similarly, if ) € II, is a simple root such that A — a; — a; € A, consider

the triple of roots A — «a; — ., oy, A — ;. By the result of the previous step
and by (5.3),

—hy—aas —hay> Thy o, € € (S)  and  span g{hy o, he } C €5 (S).

ay
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Iterating this argument, one obtains that +h, € €5 (S) for every simple
root «y appearing in A with nonzero coefficient. In particular, this holds
for «;. Since «; was arbitrary, the claim follows. Since A, is irreducible, the
proof of the proposition is complete.

5.2. The Calculation beyond X,

In this section, we compute the Levi form and the Levi cone of the
generic orbits intersecting C, where C = expJc - p is a standard Cartan
subset different from the fundamental Cartan subset 4. We resume the
notations introduced in Section 3.3. By Corollary 3.17, the complex tangent
space TSy -5 to a generic orbit § at a base point X, p € C, where x, =

e, X, e, s given by

TeS7—= @D Ad, glal,c, where Ad, gla],ec = @Ad Zlal,e (54)

aelA} Z,

and Z, runs through a basis of g* C g* for each & € A}.

As in the previous case (cf. Section 5.1), we explicitly construct a basis of
TS5, where the calculation of the Levi form turns out particularly simple.
This depends on the choice of a convenient basis 93, of each restricted root
space q* C g.

Recall that, by Lemma 2.9, the base point p of the Cartan subset C =
expJ, - p can be assumed to satisfy either conditions (2.6) or (2.7). As a
consequence, Ad .« is either the identity or an involution of a® commuting
with 7, and o. Also recall that Ad,« preserves each restricted root space
q® and acts as the identity on g” = ¢© @ m® (cf. Lemmas 2.14, 3.9, and

3.11).

LEMMA 5.7. There exists a Cartan subalgebra (© of q®, extending ¢©, of
the form

C=0cac  °crf,

which is stable under Ad, 7,, ©, and o. In particular, if b = b N g, then
[ =b @ cis a 6-stable Cartan subalgebra of g.

Proof.  Since 7, and ® commute (cf. Lemma 2.10(ii)), the subspace Ht
is @-stable. Since ¢© and §* are @-stable, the complex reductive subalgebra
m® = 3.c(c*) is O-stable as well. By Lemma 3.11, m© is also o-stable. Let
b® be a o and O-stable Cartan subalgebra of m®. Since Ad,+ and 7, act
on m® as the identity, (© = b® @ ¢* is a Cartan subalgebra of g* with the
required properties and the corresponding real form [ = b @ ¢ is a #-stable

Cartan subalgebra of g.
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Every 6-stable Cartan subalgebra in m = m® N g provides an extension
of ¢ with the required properties. In general, not all #-stable Cartan subal-
gebras [ = b @ ¢ obtained as above are conjugate in g, unless m is compact.
In that case, b is compact as well.

Let A be the root system of g© with respect to (* and let

gC — IC D @g)\
A€A

be the corresponding root decomposition. The roots in A, are restrictions
to ¢ of the roots in A. Observe that m® consists of the root spaces g*,
where A € A is a nonzero root such that A|¢® = 0. Since (* is both o and
7,-stable, there are induced actions of o and 7, on A defined by

AMH) := Ao (H)), T, MH) = M7,(H)), HelC

Since o and T, commute on [€, one has that

A=k
Observe that, for every root A € A,
A+ 7,1 ¢ A

Since Ad acts trivially on [, it acts as plus or minus the identity on each
root space g*, A € A. Moreover, since Ad ,« preserves the Killing form and
commutes with both o and 7, it acts in the same way on all the root spaces
gi)t7 gi/\’ gzl:’rp/\’ and g:l:’fp/\‘

For a € A, define

A, ={reA|AC =a}.
Then
AeA, = —T,A €],
and each restricted root space g* decomposes as

ga — @ gA D g—‘rp)\ or ga — @ g)\ o g—fl,)\ o) g,u’
Aeldy A€l
AE=TpA AE=TpA

mED, p=—Tpu.

The root spaces appearing on the right-hand side are ordinary root spaces
in g©. (The roots A € A, are chosen so that each summand appears pre-
cisely once in the above decomposition.)

For each restricted root space g“, we use the above decomposition to
construct a basis 98, compatible with the decomposition g% = g @ g*. If
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the root « is either real or imaginary, we also require the elements Z, € %,
to satisfy the properties stated in parts (2) and (3) of Remark 3.10: if « is
real, 94, consists of o-invariant elements; if « is imaginary, 9, consists of
o7 -invariant elements generating g¢ and of pairs of elements {Z,,, 07,Z,}
generating g®.

Fix a set of root vectors {W, },ca, wWith W, € g*, satisfying

BW,, W) =1,  BW,,W,)=0,  A+p=#0.

Then [W,, W_,] = h,, where h) € [y ={h e [* | A(H) e RV A € A} is the
element defined by A(H) = B(H, h,), H € (©.

In addition, for every real root A € A, the vectors W), are assumed to be
o-invariant, i.e., o(W,) = W,, while for every imaginary root A € A, the

vectors W, are assumed to satisfy
U(VVA) =W,

depending on whether the real form of the complex three-dimensional o-
stable subalgebra generated by {h,, W,, W_,} is isomorphic to 3[(2, R) or
to 3u(2). Imaginary roots with such properties are called “noncompact”
and “compact,” respectively.

We write g* = g%, or g* = g*, depending on whether Ad  acts as plus
or minus the identity on g*.

Remark 5.8. For each root a € A, the basis %, is given as follows.
(1) Let @ € A} be a real root.
(i) If A € A, is a root satisfying A # A and 7,A # —A, A, then
A, —=THA, A, —T,,X are distinct roots in A, and the restricted root space g*
contains the four-dimensional subspace

deg " egd @g (5.5)
If g* = g}, then a o-invariant basis of subspace (5.5) is given by the vectors
1
Re(W) +7,W_)) = 5((W,\ +aWy) +1,(W_, + aW_))),
-1
Im(W, +71,W_))= 7]((WA —aWy) +7,(W_, — aW_))), 56

1
Re(W) —7,W_)) = E((W’\ +oW)) —1,(W_, + dW_))),

Im(W, — 7, W) = 2 T(F, = 0W3) = 7, (W — W),
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If g* = g*, then a o-invariant basis of subspace (5.5) is given by the vectors

1
Re(W, +Jr ,W_\)==((W, + oW\) +Jr,(W_) + cW_))),
P 2 P

-1
Im(W, +J7,W_,)= 7]((WA —aWy) +J1,(W_, — aW_))),
(5.7
1
RC(W)\ — JTPW_/\)Z E((W/\ + UV/)\) - JTp(W—)\ + O-W_A))a

-1
Im(W\ —_ JTPW_/\) = 7.}((1/11)L - (TW/\) — JTP(W—A —_ O'W_)L)).
(i) If A € A, is a root satisfying A = A and T,A = —A, subspace
(5.5) reduces to g* and a o-invariant basis of g* is given by
W,. (5.8)

(i) If A € A, is a root satisfying A = A and 7,A # —A, subspace
(5.5) reduces to g* @ g~™* and a o-invariant basis of is given by

{W/\ + Tpr)u W)\ - Tpr/\} lf 9)‘ = Qi (59)

or by
W+ I, W, Wy —Jr, W, if gt =gt (5.10)

(iv) If X € A, is a root satisfying A # A, —7,A, and —7,A = A,
subspace (5.5) reduces to g* ® g~* = g @ g* and a o-invariant basis is
given by

(W, + oWy, —I(W, — aW)}. (5.11)

(2) Let @ € Af be an imaginary root.
(i) If A € A, satisfies A # —A and 7,1 # —A, A, then A, —7,A, =2,
7,A are all distinct roots in A,, the restricted root space g* contains the
four-dimensional subspace

gdeg M egtegn, (5.12)
and the vectors
1
zZl = E((WA +1,0W) +1,(W_) +71,0W_))),
1
Zi = E((W)L +71,0W)) = 7,(W_, +7,0W_))),

(5.13)
1
Z) = E((W/\ —T,0Wy) + 1,(W_\ — 7,0W_))),

1
Zoy=5(Wy = mp0W,) = 7,(W_y = 7,00_)))
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are linearly independent. If g* = g}, then o7, is a conjugation of subspace
(5.12) and the elements {Z}, Z2,JZ},JZ}} form a o7 ,-invariant basis. If
a* = g*, the elements {Z], Z2, Z3, Z*} are a basis of subspace (5.12) sat-

isfying the conditions
O'TPZ; =27, a'TpZﬁ =73, (5.13y

(i) If A € A, satisfies A # —A, 7,A # —A, 7,A = A, subspace (5.12)
reduces to g* @ g~ "»*. Since o, is a complex antilinear endomorphism of
g*, it follows that g* = g. A o7 -invariant basis of g* @ g~"»* is given by

the following vectors from (5.13)
{zl, 7%} if T,oW), +W, #0, (5.14)
{Z3,0z8y it oW, + W, =0. '

(ili) If A € A, satisfies A = 7pA = —A, subspace (5.12) reduces to
g*. In particular, g* = gj‘_. If A is noncompact, a o7 ,-invariant basis of g*
is given by

p

1 .
zl, = z(WA +7,W_) if W, +7,W_, #0,

(5.15)
JZE=JW, if W, +7,W_, =0.
If A is compact, a o7 ,-invariant basis of g* is given by
1
3 _ .
JZa_EJ(WA+TpW—A) lf W)‘+TPW_)\ #0, (515)/

72 =W, if W, +7,W_, =0.

[¢3

(iv) If A € A, satisfies A = —A and 7,A # —A, A, subspace (5.12)
reduces to g* @ g~"»*. The vectors in (5.13) become

Z=w, + ToWors Zi=w, - T,W_\ for A noncompact,
Zi =W, +7,W_,, Zﬁ =W, —1,W_, for A compact.

—’Tp/\

Assume g* = g%. Then a o7 ,-invariant basis of g* @ g is given by

p

{Zl,JZ%  for A noncompact,

(5.16)
{Z%,JZ3}  for A compact.
Assume now g* = g*. Then a basis of g* @ g~"»* is given by
{zl, z}, or,Z) = 7%  for A noncompact,
i (5.17)

{Z2,Z3}, or,Z; =12,  for A compact.
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(3) Let a € A, be a complex root. Then a basis of g% compatible
with the decomposition g* = g¥ @ g%, is given by

{VV)‘ + TPW_)" W, — TpW—)‘}Afit;)\ s {W/)‘},\;i‘;)\ . (518)

Remark 5.9. For a € A, let h, € ¢© be the vector defined by a(H) =
B(H, h,) for H € ¢®. Then

1
hazz(hA—Tph)\)ecR, AeA

Observe that [ = by @ g, where by = Jb; @ b, and cg = J¢; D ¢y,

LeEMMA 5.10. Let a € A,. Let B, be the basis of a* defined in Remark 5.8.
The following relations hold:

(i) If Z, €q® then [Z,,7,Z,] = B(Z,,7,Z,)h, € "
(ii) Let Z,, Z, be distinct elements in %,,. Then
(Z,,7,Z.] € ",

a 'pTa

Proof. The proof of (i) is similar to the proof of the corresponding
statement in Lemma 5.1, and it is based on the nondegeneracy of the Killing
form restricted to ¢ x ¢©.

The proof of (ii) consists of direct computations.

LEMMA 5.11. (i) Let a# B e Af. Let Z, € g* and Zg € gP. Then

B([Z, £ 7,Z,,

Zg+1,Z4],c")=0.
(ii) Let Z,,Z,, € g* be distinct elements of the basis %, defined in
Remark 5.8. Then

[Z, — TpZo> Lo + TpZa] =2[Z,, TpZa],

B((Zy 7,24 Z\ £ 7,Z,],c%) = 0.

Proof. The lemma follows from direct computations and Lemma
5.10(ii).

COROLLARY 5.12. Let a € A, and let 3B, be the basis of q“ defined in
Remark 5.8. Only the brackets of the form [Z, — 7,2, Z, + 7,Z,] give some
contribution in the ¢* direction.

For a € Af fix the basis %, of g constructed in Remark 5.8. Recall from
Section 3.3 that to each Z, € %, there are associated H, € Z[a]qc, Q, €
Zla]ye, and F, = Ad, O, in Ad, Z[a],c and also recall the decomposition
(5.4) of the complex tangent space T¢ Sy We calculate the quadratic Levi
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form with respect to this basis of T¢Sy-5. By Remark 3.10, one has that

5
Ad, Z[a],c = spanc{F,}, for @ real, or for a imaginary and Z, € g%.
Ad, Z[a],c = spanc{F,, F5}, for @ complex, or for @ imaginary and

Z, €q%.

The proofs of Propositions 5.13-5.16 follow from direct computations
using the formulas of Lemma 4.3 and Remark 3.18 together with the results
of Lemmas 5.10 and 5.11 and Corollary 5.12.

PROPOSITION 5.13. Let a # B, B € Af. Then
L(F,, Fy) = L(F,, F3) = L(F;, Fy) = L(F;, F3) = 0.

Let a € A} with dimg* > 1. Let Z,,, Z,, be distinct elements of the basis %,
such that Z[a]l N Z'[a] = {0}. Let F,, F., be the corresponding elements in
Ad, gla].c. Then

L(Fy, Fy) = L(Fy, F) = L(F,, F) = L(Fg, F) = 0.
PROPOSITION 5.14. Let a € (AT) be a real root. Let Z, € g* be a root
vector satisfying o(Z,) = Z,,.
(i) If Z, € aS, then

2

L(F,,F,))=—|[~Z
(Fo> Fo) sinZa(XO)[ w Tp

Z,].
(i) If Z, € g%, then

L(F,,F,) = J[Zos 7y Z4):

cos2a(X))
PROPOSITION 5.15.  Let a € (AF)' be an imaginary root.
(i) IfZ,€q$ and o1,Z, = Z,, then

2
sinh 2 Im a( X))

(ii) Let Z, € q*. Then dimg Z[a] = 4 and

L(Fa’Fa): - J[Za,TpZa].

2

L(F,, F,) =L(F3, F3) =0,  L(F,, F3) = cosh 2 Tm a(X,)

JZy T Z,]

In particular, for z,, z; € C, one has
L(ZaFa + Z&F&’ ZaFoz + Z&F&) = ZRG(ZQzL(Faa F&))'

PROPOSITION 5.16. Let o € (AT)¢ be a complex root.
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(i) If Z, € qS, then

2
L(F,, F,)=L(F;,F;)=0 L(F,, F;) = ————(Z Z,]l.
( a’ a) ( a’ a) > ( a’ (X) Sinza(Xo)[ a’ Tp a]
(i) If Z, € g%, then
2
L(F,, F,) =L(F;, F;)=0 L(F,, F;) = ———==J[Z Z,].
( a’ Ol) ( a’ Cl) > ( a’ Ot) COSZO[(XO) [ a’ Tp 01]

In particular, for z,,, z; € C, one has

L(z,F, + z;F;

[e3

s ZaFéz + Z&F&) = ZRC(ZazL(Fas F&))‘
Now we are ready to compute the Levi cone of generic orbits.

DEFINITION 5.17. For a € A, denote by m,, the cardinality of the set A,
or, equivalently, the complex dimension of the restricted root space g“.

LEMMA 5.18. Let S be a generic orbit with base point X, - p, where
xg-p=eXo.peC=expJc-p. Let ¢ = ¢; @ ¢, be the Cartan decomposi-
tion of c. The Levi cone €(S)y— at X, - p is the cone in ¢ generated by the
following vectors:

(1) =+Reh,, £Imh, € ¢ for all a € (AT)".

1
~ sinh 2Im a(X,)

Xo P

(2) Jh, € ¢

for all a € (A}) for which ¢* = g%, m, > 1, and all roots \ € A, are
noncompact imaginary roots.

1

B /2 ,
3) sinh 2 Im a(XO)J « €
forall a € (A} for which ¢* = g%, m, > 1, and all roots X € A, are compact
imaginary roots.
(4) LJh, € ¢ for all other a € (AT), with m,, > 1.

(5) Either h, or —h, € ¢, for all roots a € (A])".
In particular, ‘€(S )z has nonempty interior.
Proof.  Statements (1)-(5) of the proposition follow by applying Propo-
sitions 5.13-5.16 to the basis %, defined in Remark 5.8 for « € A,. We
examine the various cases.

Let a € A¢ be a complex root. One can easily check that, for all the
vectors Z, in (5.18), one has

[Zo, TpZo] = Chy,
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where C is a nonzero complex number. Together with Proposition 5.16, this
proves (1).

Let a € Al be an imaginary root. If dimg® = 1, then g% = a$ (cf.
Remark 3.8(2) (iii)). Let Z, € q* be one of the vectors in (5.15) or in
(5.15)'. Then

(Z,,7,Z,] =Lh

a’ ' pFa a’

depending on whether « is a noncompact or a compact imaginary root.
Assume now dim g* > 1. The vectors in (5.16) in Remark 3.8 (2)(iv) satisfy

(Zy, 7pZo) =[IZ3, 7,0 Z;) = h,
and

[Zi’ szi] = [',Zg’ TpJZCSz] = —hg,
respectively. This proves (2) and (3). It remains to show that £4, € ¢ in
all other cases, when dimg® > 1. If g§ contains the subspace (5.12), the
vectors {Z}, Z2} in (5.13) are a pair of vectors Z, # Z/, € B, such that
[Za» 7'pZoz] = _[Zt/l7 TpZ:x] = Ch,,
where C is a nonzero real constant. The same is true for the vectors
{Zl, 7%}y or {JZ3,JZ%} in (5.14). If g* contains the subspace (5.12), the
vectors {Z!, Z4} and {Z2, Z3} in (5.13) satisfy conditions (5.13)" and the
spaces Z'[a] and Z?[«] are four dimensional. By Proposition 5.15(iii), one
has that £Jh, € ¢. The same is true for the vectors given in (5.17). The
spaces Z'[a] and Z?[«] are four dimensional and, by Proposition 5.15(iii),
one has that +Jh, € ¢. This concludes the proof of (4).

Let a € Al be a real root. If Z, € g is a o-invariant element, then
B(Z,,1,Z,) is either a real or a purely imaginary number, depending on
whether Z,, € g% or Z, € g*. One can check that for each o € (A})" there
exists an element Z, for which B(Z,, 7,Z,) # 0 (cf. Remark 5.8(1)(i)-
(1)(iv)). By Lemma 5.10(ii), this proves (5).

Since A, is a root system, it follows from (1)—(5) that the cone €(S)x5
has nonempty interior.

Before proving the next proposition, we need to quickly review the def-
inition of a compactly causal symmetric space and the properties of the
associated symmetric algebra. We take as references [FO, HO, KN].

DEFINITION 5.19. Compactly causal symmetric spaces.
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Let G/H be a semisimple pseudo-Riemannian symmetric space, i.e., a
triple (G, H, 7), where G is a real semisimple Lie group, 7 is an involution
of G (commuting with the Cartan involution), and H is an open subgroup
of the fixed point subgroup of 7 in G. Let (g = ) & q, 7) be the corre-
sponding symmetric algebra. The space G/H is called “compactly causal”
if q contains Ady-stable regular convex cones V' consisting of elliptic ele-
ments (regular means V' N —V = {0} and (V') = q).

Remark 5.20.

e If G/H is irreducible, it is compactly causal if and only if G/K is a
bounded symmetric domain and the induced involution 7: G/K — G/K is
antiholomorphic.

e The symmetric Lie algebras arising from irreducible compactly
causal symmetric spaces are precisely the ones where g is simple hermi-
tian and 3(f) is contained in q. In particular, g admits an elliptic maximal
abelian subpace ¢ C q and 3;(c) is compactly embedded in g.

In the proof of the next proposition, we need a characterization of com-
pactly causal symmetric Lie algebras in terms of the restricted root system
A.. This was essentially done in [KN].

e Let g =0;®H, ® q; ® g, be the combined decomposition of g with
respect to both 7 and the Cartan involution 6 (here f := h N f etc.). Con-
sider the Lie subalgebra r = q¢ @ [y, ¢] C f. Let A, be the restricted
root system of g& with respect to ¢©. A root @ € A, is called compact if
a® Nt® # {0}, and noncompact otherwise. If a is a noncompact root, then
q® is contained in p®. Denote by (A,), and (4A,), the compact and noncom-
pact roots in A, respectively. The root system A, is called split if g* c fC
for all compact roots a € (A,),. The Weyl group Wy (¢) = Ny(¢)/Zy(c) is
isomorphic to the group W, generated by the reflections in the compact
roots ([KN, Definition II1.9 and Proposition V.2.i]). If the positive noncom-
pact roots (Af), are stable under the Weyl group, the system A} is called
r-adapted.

Define the following cones in cp:

Chin *= Cone({ha}ae(Aj)n)i
Cmax = (Cmin)* = {X € (R | B(X> ha) >0, ae (A<+)n}

The symmetric algebra (g, 7) is compactly causal if and only if g is her-
mitian, there exists an elliptic maximal abelian subspace ¢ C ¢, and the
restricted root system A, (with respect to ¢) is split and admits an r-adapted
positive system. In particular, C,,,, is W, .-stable (cf. [KN, Proposition V.10]).
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* In the special case when the abelian subspace ¢ C q is also a com-
pact Cartan subalgebra of g, one has that the symmetric algebra (g, 7) is
compactly causal if and only if g is hermitian. The root system A, coincides
the ordinary root system A; compact roots A, (resp. noncompact roots A,)
are the ones for which the corresponding root space is contained in f¢
(resp. p©). An r-adapted positive system is the usual f-adapted positive sys-
tem for which the positive noncompact roots A/ are stable under W,, i.e.,
the reflections in the compact roots A, (equivalently, every positive non-
compact root is larger than an arbitrary compact root).

PROPOSITION 5.21. Let S be a generic G-orbit in G©/KC, intersecting a
standard Cartan subset
C=expJc-p
different from the fundamental Cartan subset (i.e., ¢ # a). Let X, - p € S be a
base point, where x - p = expJX, - p € C. Then

in all cases with only one possible exception: assume that the Cartan subspace
¢ is compact, the base point p satisfies conditions (2.6), and the G-orbit of

p is a compactly causal pseudo-Riemannian symmetric space. Then, if X, €
+JCnax C ¢, the Levi cone €(S)x; is sharp.

Proof.  Identify ¢ with cg = J¢i @ ¢, via the map (7, A) — (=JT, A).
Consider the image of the cone €(S)s5 in ¢ under this map and denote
it by €. Denote by (—, —) the restriction of the Killing form to ¢ X ¢g.
Observe that the restricted root system A, is always connected. When g
admits a complex structure, A, is isomorphic to the ordinary root system A.
We need to distinguish several cases.

e Assume that ¢ is a noncompact Cartan subspace, ¢ # a. By
Lemma 5.18, the cone € contains R - &, for every complex root a. We
want to show that € contains R - 4, for every simple root a. Since real
and imaginary simple roots are strongly orthogonal, there exists a simple
complex root « € A.. Let B be a real (resp. imaginary) simple root such
that o + B € A, for some complex simple root a. Then (e, B) < 0. If a + B
is complex, then from R - h,,R-h, g C €, one obtains R-hg C €. If
a + B is imaginary (resp. real), then (@ + B, 8) = 0 and the Cartan inte-
ger a, g is equal to —2. At this point, there are two possibilities: either
|a| > |B| or |a| < |B]- In the first case, « + 28 is a root, while, in the sec-
ond case, 2a + B is a root. Both @ + 28 and 2a + B are complex roots, so
either R - h, 5 or R hy, g is contained in €. It follows that R - hg C €.
If vy is a simple real (resp. imaginary) root such that 8 + vy is a root, then
@+ B+ v is also a root and it is complex. It follows that R - h, C €. Iter-
ating these arguments we exhaust all simple roots and obtain € = cp. It
follows that “€(S)x5 = ¢.
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e Assume that ¢ is a compact Cartan subspace and that there exists
a noncompact Cartan subalgebra [ of g extending ¢ (see Lemma 5.7). All
roots in A, are imaginary.

We claim that there exists a simple root ag € A, which is the restriction of
a complex root A € A = A(q%, (). Let Ay, ..., A, be the simple roots in
A. Recall that the restrictions of the simple roots in A form a basis of A,
and that the root system A contains a complex simple root. If none of the
simple roots in A vanishes on ¢, the claim is immediate. Assume now that
some simple roots in A vanish on ¢ and that all the simple roots which do
not vanish on ¢ are purely imaginary. Then in A there exist simple roots
A le=0,..., A [c=0and A, |c 5 O such that Ag = A, +- -+ A + A, €
A is a complex root restricting to a simple root «, € A,. This concludes the
proof of the claim.

By Lemma 5.18(4), one has that R - 4, C €. Consider now the root
Ay = Ao+ Ay + Ay, + A, where {A ..., Ay }is a (possibly empty) set of
simple roots in A vanishing on ¢ and A, is a simple root in A such that
a; = Aplc # 0 is a simple root in A.. If a; # «g, then ey + a; € A, and
either oy or o + «a; is the restriction of a complex root. In both cases,
R-h, C € If o =« then 2a; € A.. In this case, consider the root
Ay = A+ A, + A, + Ay, where {A, ..., A, } is a (possibly empty) set
of simple roots in A vanishing on ¢ and A, is a simple root in A such that
ay = Ayle # 0 is a simple root in A.. Then «, # a; = a; and either a,
or @) + a, is the restriction of a complex root. In both cases R - 4, C €.
Iterating this argument, we obtain that R - 4, C €, for all simple roots in
A.. Hence, € = cg and €(S)y5 = ¢.

» Assume that ¢ is a compact Cartan subspace and that every Car-
tan subalgebra of g extending ¢ is compact. It follows that the Lie algebra
q is equal-rank and that the base point p satisfies conditions (2.6) (see
Remark 3.10(3)(ii)). In particular, the G-orbit of p is a semisimple sym-
metric space G/H and 34(c) is compact. We claim that:

if G/H is compactly causal, then
o C(S)gp = ¢ for all Xy & £JC
* €(S)xyp is sharp for all Xy € £JCpyy;
if G/H is not compactly causal, then €(S)x = C.

We first deal with the case when ¢ itself is a compact Cartan subalgebra of
g. Later we reduce the general case to this case.
If ¢ is a compact Cartan subalgebra of g, then by Remark 5.20 we have
to show that:
if g is hermitian, then

(@) E(S)gp =cforall Xy & £IC,y,
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(b)  E(S)gyp is sharp for all Xy € £JCyy;

if g is not hermitian, then €(S)x5 = .

Simple “equal-rank” real Lie algebras admit a set of simple roots
IT = IT, UIl, with a unique noncompact root (cf. [W], Lemma 4, [Kn2],
Appendix C).

Let {Z,}uen> Z, € 6%, be a o-stable set of root vectors. After a normal-
ization we can assume

(Zo, 0Z,] = ho, €A and  [Z,,0Z,] = —h,, a € Af.

a’ a’

Let W, be the Weyl group generated by the reflections in the compact roots.
Since A; and A, are W-stable, by Remark 2.6 the base point X, - p can be
assumed to satisfy:

Im a(X,) >0 for all @ € A}.

Then, by Lemma 5.18, the cone % is the cone in ¢ generated by the vectors

1
{_mha}m;’ {hataear (5.19)

Hermitian case. Fix a f-adapted positive system A* (cf. Remark 5.20).
Denote by A the corresponding highest root. Without loss of generality, we
may assume Im A(X,)) > 0 and only consider the cone —C,,,.

(a) If Xy € —JCu then Ima(X,) > 0 for all roots « € A™. In this
case, the cone € is sharp. It is in fact the image of the dual of the positive
Weyl chamber, under the reflections with respect to the highest roots of the
simple factors of f.

(b) If Xy &€ —JCpa then Ima(X,) < 0, where « is the sim-
ple noncompact root. Since AT is f-adapted, all positive noncompact
roots are obtained from « by adding simple compact roots. Since A is
noncompact and Im A(X,)) > 0, there exists a noncompact root w such that
Im u(X;) > 0. Assume w is a root of minimal order with this property.
Write

P
w=a+y nf, ng > 0, (5.20)
s=1

with B € II,. Let B be a root in II, such that u — 8 is a noncompact
root, with negative imaginary part on X,. Consider the triplet of roots

h,,—hg,—h, z€€ and spang{h,, hg} C €.
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Next take y € I, such that u — 8 — 7y is a noncompact root, with negative
imaginary part on X,. By the result of the previous step and the same
argument, one has that

R-hy,R-hy, g R-h, 5, C%e

Subtracting simple roots from w in this way, we finally obtain that {R -
hg , R - h,} are contained in € for all simple roots which appear in (5.20).
To obtain the same result for the remaining simple roots, we add them one
by one to u, until we obtain the highest root. Observe that the noncompact
roots obtained in this way all have positive imaginary part on X,. If y is a
root in II;, such that u + y € A, consider the triplet of roots vy, w, u + .
By the results of the previous steps, we have that

R-h,,R-h,,R-h, , CE.

Iterating this argument until all simple roots are exhausted, we obtain state-
ment (b).

Non-hermitian case. Fix AT a positive system with a unique noncompact
simple root « € II,,. In this case, the highest root A is compact and the
coefficient in A of the root « is equal to 2 (cf. [Kn2, Appendix C]).

Assume first that all noncompact roots have positive imaginary part on
X. Since the coefficient of @ in A is equal to 2, there exists a compact root
v which is a sum of precisely two noncompact roots: v = A + . Observe
that

~h,, hy, h, €€ and span{h,, h,} C €.

The root A (resp. p) contains « with coefficient one and from A one can
construct the highest root by adding simple roots. If A + 8 € A for some
B €11, then

+-hy,—hg, hy,g€€ and span{h,, hg} C €.

When the noncompact root « is added, yielding a compact root, we obtain
R-h, Ce

Claim. IfR-h, € €, then € = ¢ and €(S)x5 = C.

Let B be a root in II; such that « + B € A. For the triplet of roots
a, B, « + B, we have that

thy, —hg, hyipg €€ and spang{h,, hg} C €.

If vy is a root in II, such that @ + B+ y € A, then consider the triplet of
roots @ + B, v, « + B + . By the previous step and the same argument,
one has that

thoips —hy Borpry €€ and  spang{h, g, h,} C €.
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By iterating this argument until all the simple roots are exhausted, the claim
follows.

Assume now that « € II, has negative imaginary part on X,,. Since there
exists a compact root which is sum of noncompact roots, there exists a
noncompact root with positive imaginary part on X,. Let A be a root of
minimal order with this property. Then A is of the form

p
A=a+) np, ng >0,
s=1

i.e., it is obtained by adding simple compact roots to «. From now on the
proof continues as in case (b).

Finally, assume that ¢ is a compact Cartan subspace, but not a Cartan
subalgebra of g. Let [ = b @ ¢, for some b C ), be a compact Cartan subal-
gebra of g extending ¢ and let A be the corresponding root system. Let

i (g — (R, T (X) =X —7,X

be the projection of [ on to cg. Since h, = h, — 7,h, and a(X;) = A(X))
for all A € A,, the cone € is the m,-projection of an appropriate cone
@€ C I.

Assume that the G-orbit of p is a compactly causal symmetric space
G/H. Fix an r-adapted positive system in A. and compatible orderings for
At and Af. Since (A]"), is W,-stable, without loss of generality, X, may be
assumed to satisfy

Im a(Xy) >0  forall a € (A}),.

By Lemma 5.18, then € is the cone in ¢y generated by the vectors

1
TS Imax h e 521
{ sinh 2 Tm a(X,) “Lew)n’ {hatacay, (5:21)

Since the root system A, is split, given o € A, the corresponding root space
g can be assumed to be contained either in f© or in p® (cf. Remark 5.20)
and €¢; C [ is the cone generated by the vectors

1
————h ALY e
{{ Sinh 2 Tm A(X,) A}agfﬁ:a,, t A}ae@:)k]

1
B “‘smhz Im A(X(ohA}AeA;’ Prabes; }

If Xy € —JCpax then Im a( X)) > 0 for all positive noncompact roots in A,
and

“©; = cone ({—hA}AeA;, {hA}AeA;>'
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The cone € C [y is sharp, by (a), and (—7,)-stable (in particular has inter-
section with by equal to {0}). It follows that € and €(S)s; are sharp as
well.

If Xy & —JCpa then there exists a noncompact root a, € (At), such
that Im «,(X,)) < 0. In this case,

€ = Cone<{_c/\h)\}AeAI’ {h)‘}AEA;) < e,

where at least the coefficients ¢, A € A, , are negative. By (b), one has
that €; = [ and therefore €(S)x5 = ¢.
Assume now that G/H is not compactly causal. If A, is spilt, then

1
€ = cone ({hA}AeA;, {_mh)\})‘@;)' (5.22)

One has that € = [ and €(S)g 5 = ¢. If A, is not split,

1
€ 2 COHe(MAheAZ, {‘mh})\ﬁ)-

Hence € = [ and €(S)5 = ¢

6. APPLICATIONS TO INVARIANT DOMAINS

In this section, we apply the calculation of the Levi cone of the generic
orbits obtained in Section 5 to the study of invariant domains in G*/K®
and their invariant plurisubharmonic functions. The results of Propositions
5.6 and 5.21 are summarized in Proposition 6.1. For simplicity, the result is
stated in the irreducible case. Remark 6.2 deals with the general case.

PROPOSITION 6.1.  Let G/K be an irreducible Riemannian symmetric space
of the noncompact type. Let S be a generic G-orbit in G¢/K€ intersecting C,
where C = expJc¢ - p is a Cartan subset. Let X, - p € C be a reference point for
S, where x - p = expJX - p, with X, € ¢. Let ‘€(S)s;5 be the corresponding
Levi cone. Then

in all cases with the following exceptions:

(i) C = A is the fundamental Cartan subset and X, satisfies the con-
ditions |a(Xy) — a(Vy)| < 7/2 for all a € A, for some vertex V, € a defined
by a(Vy) =0 mod 7, Va € 11, (cf. Remark 5.5).



674 LAURA GEATTI

(ii) ¢ is a compact Cartan subspace, q is a hermitian simple Lie algebra,
(6 =b®q,7,) is a compactly causal symmetric pair, and X € £JCyppy C ¢
(cf. Remark 5.20).

In cases (i) and (ii) the cone €(S)z has nonempty interior and it is sharp.

Remark 6.2. 1If G/K is not irreducible, there is a decomposition G/K =
G/K; x --- x G, /K, into irreducible factors, where each G; is a real or
complex simple Lie group. Likewise, there is a decomposition of the com-
plexification G¢/K® and of the G-orbits in G*/K®. One has that the Levi
cone of a generic orbit § = §; x --- x §,, is isomorphic to the direct sum
of the Levi cones of the orbits S;. In particular, it is sharp if and only if all
summands are.

Combining Proposition 6.1 with Theorem 1.5, we obtain the main results
of the paper.

COROLLARY 6.3.  An invariant domain Q c G®/KC, which contains in its
boundary a generic orbit S with Levi cone €(S)g = ¢, cannot be Stein. In
other words, only the generic orbits satisfying condition (i) or condition (ii)
in Proposition 6.1 can be contained in the boundary of an invariant Stein
domain.

Proof. By Theorems 2.8 and 1.5, a generic orbit § satisfying ‘€(S)g 5 = ¢
admits an invariant tubular neighborhood U(S) with the following proper-
ties: U(S) consists of generic orbits and every smooth CR-function on §
extends to a holomorphic function on U(S). It is important to observe
that the size of U(S) does not depend on the function to be extended,
but depends continuously on the CR-structure of S. In our case, the CR-
structure of S depends in a real analytic way on the reference point X, - p €
C (see Corollaries 3.7 and 3.17). By the above facts, if a domain Q con-
tains S in its boundary, all holomorphic functions on () extend to a larger
domain. In particular, () is not Stein. For more details, we refer to Corol-
laries 5.6 and 5.7 in [FG].

COROLLARY 6.4. A generic orbit S with Levi cone €(S)z5 = ¢ cannot
be contained in the level set of a nonconstant invariant plurisubharmonic
function.

The above results show that when G/K is a noncompact Riemannian
symmetric space, invariant Stein domains in G*/K® cannot be arbitrarily
large, but have to lie in some distinguished regions. We hereby describe
them.
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The region X, = G - A associated to the fundamental Cartan subset

The region X, associated to the fundamental Cartan subset coincides
with the region introduced and studied in [AG]. It is constructed as fol-
lows. Denote by G xg p the G-equivariant bundle over G/K defined as
the quotient of G x p by the equivalence relation (g, v) ~ (gk~!, Adv) for
k € K. The bundle G xg p is equivariantly diffeomorphic to the tangent
bundle 7(G/K) of G/K. Consider the G-equivariant map

¢: G xxp — GY/KE, [g, v]— gexpJv-e.

The map ¢ is singular on the G-invariant subset & intersecting a in the
family of hyperplanes {H € a | a(H) = m/2mod 7}, - The restriction of
¢ to each connected component of G xg p \ & is a diffeomorphism, onto
its image. The map ¢ is not surjective. The region X, is by definition the
image of ¢ and coincides with the set of G-orbits intersecting the compact
dual symmetric space U/K, embedded in G®/K® as the U-orbit of the base
point &. In general, the region X, contains several copies of the symmetric
space G/K. One is the G-orbit of the base point é; the other ones are the
G-orbits of the (finitely many) points {v, ..., 9,,} forming the image under
¢poftheset d ={V ea|a(lV)=0modm, Va e A} (cf. Remark 3.5).
Consider the bounded Wy (a)-invariant convex set in a

wg={H ea||a(H)| <m/2,Vae A}

and define Qg := G xgx Adgw,. Then D, := ¢(£y) = G -expJw, is an
open G-invariant domain in X, containing G/K and diffeomorphic to a
tubular neighborhood of G/K. By construction, D, is the largest connected
invariant domain in G®/K® admitting a retraction to G/K. Similarly, each
copy of G/K is contained in a G-invariant domain in G®/K® diffeomorphic
to Dy, namely D; = G -exp Jo;, where w; = {H € a | |a(H) — a(V})| <
m/2,Va € A} for some V; € a.

The boundaries of Dy, ..., D,, are contained in & and entirely consist
of nongeneric orbits. In general, the complement of Dy U ---U D,, in X,
has nonempty interior.

The results of Proposition 5.6 imply that, among the generic orbits in
X,, only the ones contained in Dy U ---U D,, can lie in the boundary of an
invariant Stein domain or on a level set of an invariant plurisubharmonic
function.

The region X = G - C associated to a Cartan subset
with a compactly causal minimal orbit

Let C = expJc- p be a Cartan subset, where ¢ is a compact Cartan
subspace and the G-orbit G/H of the base point p is a compactly causal
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symmetric space. This only occurs when G is of hermitian type and, in addi-
tion, the involution 7, is an antiholomorphic automorphism of the hermi-
tian symmetric space G/K (cf. Remark 5.20). When this is the case, let
W (resp. —W) be the maximal Ady-invariant regular elliptic cone in the
tangent space T(G/H), = q. Consider then the G-equivariant map

¥ G xy W — G°/HE, [g, v]—> g-expiv- p.

The image of ¢ is an invariant domain Sy, in the region X = G - C,
containing the symmetric space G/H in its boundary.

The results of Proposition 5.21 imply that, among the generic orbits in
X only the ones contained in Sy, or in S_y, can lie in the boundary of an
invariant Stein domain or on a level set of an invariant plurisubharmonic
function. The Stein domains in Sy, (resp. in S_j) have been characterized
in [Ne], as well as their invariant plurisubharmonic functions. In particular,
the domains Sy, and S_j have been proved to be Stein. In general, there
may be several Cartan subsets Ci, ..., C, with the above properties and
likewise domains Sy, ..., Sy

Another way of formulating the results of Corollaries 6.3 and 6.4 is the
following.

COROLLARY 6.5. Let Q be an invariant Stein domain in G€/KC, contain-
ing a generic orbit S in its boundary. Then S satisfies either condition (i) or
condition (ii) in Proposition 6.1 and Q) is contained either in X, or in one of
the regions X°*. More precisely, () is contained either in one of the domains
Dy, ..., D, orin one of the domains S.y,, ..., Syy,. The same holds for a
domain Q) admitting nonconstant invariant plurisubharmonic functions.

We illustrate the above results by analyzing the rank-1 case.

ExaMPLE 6.6 (The rank-1 case). A complete list of rank-1 noncompact
Riemannian symmetric spaces G/K is the following:

H"(R) = SOy(n, 1)/SO(n), n > 1, H'(C)=S8U(n,1)/U(n), n > 2,
H"(H) = Sp(n, 1)/Sp(n) x Sp(1), n =1, HX(Cay) = F;/Spin(9)
SL(2,C)/SU(2).
In this case, the generic G-orbits in G®/K® are real hypersurfaces.
The space H'(R) = SO,(1, 1) is one dimensional, so every invariant
domain in G®/KC is automatically Stein.

The space H*(R) = H'(C) = SL(2, R)/SO(2) is two dimensional. This
case will be studied separately in Example 6.8.
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(1) Let G/K be one of the spaces H"(R), n > 3, SL(2C)/SU(2).
The restricted root system of g is reduced and consists of two roots
A, = {£a}. There are two Cartan subspaces in g: the fundamental Cartan
subspace a C p and a compact Cartan subspace ¢ = R(X, + 0X,), X, € g%,
corresponding to the orthogonal system {a} C A,.
The generic orbits intersecting the fundamental Cartan subset A are
parametrized by the set

{T ea|a(T) €10, m/2[U]m, 37/2[} C a.

By Remark 5.5 and Proposition 5.6, the Levi cone of these orbits is sharp.
Define the following invariant domains in X,

Dy=GexpJT -e and D, =GexpJT - py, (6.1)

where a(T) € [0, w/2[ and the point p, = e’ satisfies a(P)) = 7. In
particular, the G-orbit or p, is of type G/K. The domains D, and D, are
connected tubular neighborhoods of the symmetric space G/K, given as
the G-orbit of e and of p;, respectively. Each generic orbit in D, or D,
bounds an invariant Stein subdomain containing G/K. Both D, and D, are
Stein. Moreover, they admit invariant plurisubharmonic functions [LS].

To the compact Cartan subspace ¢, there corresponds the Cartan subset
C =expJc- p,, where p, = ¢/ is defined by the condition a(P,) = /2.
The G-orbit G/H of p, has minimal dimension and is a non-Riemannian
symmetric space. In none of the cases considered here is G/H compactly
causal. For example, if G/K = H"(R), the space G/H is isomorphic to
SOy(n, 1)/SO(n — 1, 1). The Levi cone of all the generic orbits intersecting
C coincides with ¢. As a consequence, the invariant region X; = G - C
contains no proper invariant Stein subdomains and admits no nonconstant
invariant plurisubharmonic functions.

(2) Let G/K be one of the spaces H"(C), n > 2, H*(H), H*>(Cay).

The restricted root system of these spaces is nonreduced and consists
of four roots A, = {£ea, +2a}. There are three Cartan subspaces in g:
the fundamental Cartan subspace a C p and two compact standard Cartan
subspaces ¢ and ¢/, corresponding to the orthogonal system {a} and {2a},
respectively.

The generic orbits intersecting the fundamental Cartan subset A are
parametrized by the subset

{T ea|a(T) €0, w/4U]m/4, w/2[} C a.

By Proposition 5.6, the Levi cone of these orbits is sharp when a(7T) €
10, 7r/4[, while it coincides with a when «a(T') € |w/4, 7/2[. Define D, as in
(6.1) for a(T) € [0, 7/4[. The domain Dy is a connected tubular neighbor-
hood of the symmetric space G/K, and each generic orbit in D, bounds an
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invariant Stein subdomain containing G/K. The domain D, is itself Stein.
Moreover, D, admits invariant plurisubharmonic functions [LS]. In contrast
with the previous case, the complement of D, in X, has nonempty interior
and admits no nonconstant invariant plurisubharmonic functions or Stein
subdomains.

To the Cartan subspace ¢ there corresponds the Cartan subset C =
expJc - p,, where p, = e/ satisfies a(P,) = m/2. The G-orbit G/H of
P> has minimal dimension and is a non-Riemannian symmetric space.

To the Cartan subspace ¢ there corresponds a Cartan subset C' =
expJc - p;, with py = /P satisfying a(P;) = w/4. The G-orbit of the
point ps; is not totally real and has only locally minimal dimension. The
Levi cone of the generic G-orbits intersecting the Cartan subset C and the
ones intersecting C’ coincide with ¢ and ¢, respectively. As a consequence,
none of the corresponding invariant regions in G*/K® admits invariant
plurisubharmonic functions nor invariant Stein subdomains.

ExXAMPLE 6.7 (The space X = SL(2, C)/SO(2, C)). The manifold X has
complex dimension 2 and can be identified with the space of complex sym-
metric unimodular matrices

X = {zz (Zl "'3) eM(2,2,0)| Z=2Z',detZ = 1},
Z3 2

where SL(2, R) acts by (g, Z) — gZg'. Generic orbits in G®/K® are non-

degenerate real hypersurfaces of CR-dimension equal to 1 and their Levi

cone is always sharp. As a consequence, they bound invariant Stein domains

in X. We use the G-invariant function

F: X—R, F(Z):=—det Re(Z):—%((zl+21)(zz+22)—(z3+23)2)

to determine such domains explicitly. The level sets of F are in fact
G-invariant hypersurfaces in X consisting of finitely many G-orbits. Denote
by Fr ={Z € X | F(Z) = R} the R-level set of F. For every R # —1,0,
the set Fy is a regular hypersurface. Observe that the complex Hessian of
F is everywhere given by

01 O

1
—11 0 O
00 -2

If —1 < R < 0, the level set Fy, is disconnected and consists of two G-orbits,
S, with base point

cost+isint 0
Xo=

. ),
0 cost—isint)’ satisfying cos”t=—R, 1€10, /2],
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and §; with base point

= cost+isint 0
- 0 cost—isint

), satisfying cos’t=—R, t€|m,3m/2[.

These are generic orbits intersecting the fundamental Cartan subset A,
where A4 = expJ (|, V), t € R. Call f(Z) = det(Z). The complex tangent
space to S, at x, is given by

TC(SO)XU Z{Z = (21, 2, 23) | &fxg -Z =0, &Fxo L= 0} = {Z = (07 0, 23)}7

and the Levi form at x is given by L(Z, Z) = %|z3|2 > 0. The same result
holds for §;. The domain

Oz ={ZeX|F(Z)-R<0}, R=F(x)=F(x,) <0,

is Stein and consists of two connected components bounded by S, and S,
respectively; each of them is a tubular neighborhood of a minimal orbit of
type G/K.

If R > 0, the level set Fy is disconnected and consists of two G-orbits S
and §;, with base points

( jicosht sinht
0 =

) +
. . inh“t=R,teR
sinh ¢ —zcosht)’ s Le ’

_ (i cosht  sinht
| =

. 1.2 —
. . sinh“t=R,teR
sinh ¢ —zcosht) ’ LE ’

respectively. These are generic orbits intersecting the Cartan subset C,
where C = exp/ (°%) (/). t € R. The complex tangent space to the
orbit at x is given by

TC(SO)):O:{Z = (Zl’ 225 ZS) | ﬁfxu -Z=0, O’)Fxo L= O}Z{ZZ(ZD 2170)}>

and the Levi form at x, is given by L(Z, Z) = —|z;|*> < 0. The same result
holds for §,. The domain

Qf ={ZeX|F(Z)-R>0}, R=F(x))=F(x,)>0,

is Stein and consists of two connected components, bounded by §, and S,
respectively. Observe that the orbit of the base point p = (; Ei is the non-
Riemannian symmetric space G/H = SL(2, R)/SO(1, 1). The space G/H
is compactly causal and contains proper Ady-invariant regular elliptic con-
vex cones in its tangent space q. Denote by £ the maximal ones among
such cones. Then one of the connected components of )} is contained in
Sy = G -expJW, and the other one in S_j; = G -expJ(—W).
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Our techniques do not apply to domains whose boundary entirely consists
of nongeneric orbits. The domains D,,..., D,, are among them and at the
moment their Steinness remains an open question. We want to give a bound
on the number of invariant domains D C X, whose boundary dD contains
no generic orbits and which are possibly Stein. In order to do this, we need
to analyze the complement in G®/KC of the union of all generic orbits.

The G-action on X = G®/KC fits in the framework of [Lu]: consider
the complex affine algebraic variety X© := G¢/K® x G®/K® with the real
structure given by Y (xy, x,) := (a(x;), o(x;)). The action of the complex
algebraic group G on X, given by g - (x;, x,) := (gx;, gx,), is defined
over R. The restricted action of G on the set of real points {(x, o(x)) €
X} = GY/K® corresponds to the left translation action of G on X =
G®/KEC.

In this framework, one can consider the map p: X — X| G, which asso-
ciates to each point x € X the unique closed orbit in the closure of G - x.
Here X||G denotes the set of closed G-orbits in X. Each fiber of p contains
a unique closed orbit, which is also the unique orbit of minimum dimension
in the fiber.

A subset of X is said to be G-saturated, if it is the counterimage of a
subset of X||G. Let x € X be a point on a closed G-orbit S. Then the
isotropy subgroup G, is reductive and there exists a G-saturated neighbor-
hood of x in X which is real-analytically diffeomorphic to G x W, where
W is some open G,-stable neighborhood of 0 in a complement W; of TS,
in TX, (see [Br, Lu]).

Let H be the G-isotropy subgroup of some point on a closed G-orbit.
By definition, the H-stratum Xl in X consists of the points in X having
in their p-fiber a minimal closed orbit of type H.

It turns out that X1 is a locally closed subset of X, and the smooth
points of X!#1 form a dense subset. Let x € X!¥l be a nonsingular point
on a closed G-orbit. Then there exists a G-saturated neighborhood of x
in X1 which is G-equivariantly diffeomorphic to G x;; (W x ), where
WH denotes the fixed point set of H on W, and ./ denotes the null cone
of the H-action on a complement of W in W (see [BFE, Br]).

In our particular situation, let ¥ € G*/K® be a point sitting on a closed
G-orbit. To the point ¥ there is associated the symmetric pair ((G®)?"™, o)
(see [Mal]). Observe that the fixed point subgroup of o in (G®)7"* is pre-
cisely the isotropy subgroup of X in G, namely G; = G N Ad,K®. Let

(@)™, 0) = ((8°)" N (g™ @ (55) 7 N (s°) ™, 0)
= (q N Adxf(Ij ® ]q N AdxpC’ 0_) (62)

be the corresponding symmetric algebra. Then the subgroup G5 acts on the
vector space (g©)~7 N (g®)~™ by the adjoint representation.
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LEMMA 6.8. Let X € G®/K® be a point on a closed G-orbit S. Then
W = (g7 N (g%) ™ =Jg N Adp® is a Gi-stable complement of TS; in
T(G®/K®);, where Gx-action on W; coincides with the adjoint representation.

Proof. We need to show that
T(G%/K®); = TS; & W-. (6.3)

As we just observed, both terms of the above decomposition are stable
under the adjoint representation of Gj.

Consider a point on the fundamental Cartan subset ¥, € 4, where x, =
e’ ¢ A = expJa. If the G-orbit of X is generic, then by Remark 3.6 and
Corollary 3.7,

JanAd, p“=Ja and  T(G®/K®); =Ad,p" =TS; @ Ja.

Hence (6.3) holds. Assume that the G-orbit of X, is nongeneric. Resume
the notation of Section 3.2 and let a € A, be a root such that a(H,) =
Omod 7/2 (cf. Remark 3.5(ii)). By formulas (3.3) and (3.4), one has that

cosa(Hy) =0 JF, = K, = £K € TS;,
sina(H)) = +1 F,=+JK,cJgn Ad, p“ =W, -

In the same way, one has that

sina(H)) =0 F,==+P,=+£P; € TSz,
cosa(Hy) = +1 JF,=+JP, eJgn Ad, p" =W, -

0
Since AdepC =ate ®D., 2, Ad, Z [a]g, the above statements prove (6.3).

Consider now a point on a standard Cartan subset X, - p € C for x; - p
= e'X . p e C =expJc- p. If the G-orbit of X;- p is generic, then by
Remark 3.16(ii) and Corollary 3.17,

Jgn Ad, q"=Jc  and  T(G®/K®).,=Ad, q" =TS, ®Jc.

XoP T

Hence (6.3) holds. Assume that the G-orbit of X, - p is nongeneric. Resume
the notation in Section 3.3 and let @ € A{ be a complex root such that

Im a(Xo) = 0,
Re a(xy) =0, mod /2

(cf. Remark 3.16(i)). If

Im a(Xo) = 0,
cosRe a(X;) =0, sinRe a(X;)==+1,
Z, €05,

combining (3.15) and (3.17) one has
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JFy+JFs, F—F5€TSs,  Fo+F;, JF,—JFeWep=Jgn Ad, o
If
Im a(X,) =0,
cosRe a(X;) ==+1, sinRe a(X;) =0,
Z, €4y,
combining (3.15) and (3.17) one has
JFy—JFs, Fo+Fi€TS,  JF,+JF;,F,—FeWe=Jgn Ad, q".

Similarly, for all roots « satistying the conditions of Remark 3.16(i) and
Z, € g%, by formulas (3.15), Proposition 3.12, and Remark 3.13, one has
that Ad, Z[a],c admits a basis consisting of pairs {S,,JS,}, where S, €
TSgp and JS, € Wy Since Ad, o =" @ P, 5 Ad, Z[a], decompo-
sition (6.3) holds and the lemma follows.

COROLLARY 6.9. Let X € G/KC be a point sitting on a closed G-orbit S,
with isotropy subgroup L. Let (G /K be the L-stratum in G* /K. Then,
at all smooth points z € (G*/K®)IL],

dim T((G®/K)H), # 2dime Te((GY/KO)H),.

LEMMA 6.10. Let D ¢ G®/K® be a G-invariant domain with boundary
dD consisting of nongeneric orbits. If D is Stein, then it coincides with the
interior of the closure of a connected component of the set of generic orbits.
The domains Dy, ..., D,, C X, are of this kind.

Proof. Observe that every relatively closed subset of real codimension
greater than or equal to 3 in a complex manifold M is removable [Sh]. The
same is true for a locally closed subset () C M, of real codimension 2, such
that dimg 70, # 2dim¢ 70, for all z € Q (cf. [St]). These facts together
with Corollary 6.9 and Remark 3.5 prove the lemma.

LEMMA 6.11. Let C = expJc - p be a Cartan subset. The set of regular
semisimple elements with respect to o, T in C consists of finitely many con-
nected components.

Proof. By Remark 3.16(i), we need to show that the exponential in G©
of the set

U A{H €| a(H)=0mod 7/4}
aeAl

consists of the union of a finite number of subsets. Assume first that the
base point p satisfies conditions (2.6). The G-orbit of p is a semisimple
symmetric space G/H and the symmetric algebra associated to p is given
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by (g, = H @ Jq, o) (cf. (6.2)). The Cartan subspace ¢ = ¢; @ ¢, is a 7,,-stable
and #-stable maximal abelian subspace in q.
Let

b@e=0®b, D,

be a 7,- and #-stable Cartan subalgebra of g extending ¢ (cf. Lemma 5.7).
Then t := by ® Jb, & ¢; ® J¢, is a Cartan subalgebra of the compact real
form u of g&. Let A = A(g%, t©) be the corresponding root system. Since
G°® and hence U are simply connected, the kernel of the exponential map

exp: u — U is given by the fundamental lattice

2h
A it,  AH,) =2.

Fzzz’ﬂlZHA, H)\Zmel
Ao

AeA

For a € A], consider the hyperplane in ¢
T
e = {Hec|a(H)=k5,keZ},

perpendicular to H, € ¢, (normalized so that a(H,) = 2) and passing
through the point P = k7 H, € ¢,.

Given two such hyperplanes m , m , passing through P, = k; 7 H,, and
P, =k, H,, respectively, then Jm; , Jm; have the same image under the
exponential map exp: J¢ — GC if and only if JP; and JP, have the same
image in U, if and only if P; — P, = (k; — k,) 7 H, belongs to the lattice I'.

This happens for sufficiently large (k; — k,) € Z if and only if H, € ¢, C
Jt can be written as a linear combination with integer coefficients of the
vectors {H )} ca-

The map A — %()\ — 7A) is a surjective map of A onto the restricted root
system A,. Observe that H_, = 7H, and that A + 7A ¢ A implies that the
Cartan integers ¢, ,, = ¢, , are either 0 or 1. Then

H/\’ TA = —)\,
Haz HA—HT)\’ c)\,T/\ch)\,/\:()’
2(H), — H,)), Cr, A = Cran = 1,

as requested. If the base point p satisfies conditions (2.7), we can apply the
above arguments to the symmetric pair ((g%)°"7, o), where (g©)7™ is a real
form of the ®-stable complex subalgebra (gc)(‘”P)2 of g®. This concludes
the proof of the lemma.

Recall that there are finitely many W, x(A)-equivalence classes of
Cartan subsets in G® and every connected component of closed generic
orbits meets precisely one Cartan subset C in some connected components
of the regular semisimple elements with respect to o, 7 in C (cf. [Mal,
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Theorem 3]). By Lemma 6.11, in each Cartan subset C the set of regular
semisimple elements with respect to o, 7 consists of finitely many con-
nected components. From all these facts it follows that there are finitely
many connected components of closed generic G-orbits in G*/K®. By
Lemma 6.10 and Lemma 6.11, we conclude that

PROPOSITION 6.12.  There are finitely many G-invariant domains D C
G®/KC, with boundary dD consisting of nongeneric orbits, which are possibly
Stein.
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