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Abstract. Let G{K be a non-compact irreducible Hermitian symmetric
space of rank r and let NAK be an Iwasawa decomposition of G. The
group N acts on G{K by biholomorphisms and the real r-dimensional subset
A ¨eK intersects every N -orbit trasversally in a single point. Moreover A ¨eK
is contained in a complex r-dimensional submanifold of G{K biholomorphic to
Hr, the product of r copies of the upper half-plane in C. This fact leads to
a ono-to-one correspondence between N -invariant domains in G{K and tube
domains in Hr. In this setting we prove a generalization of Bochner’s tube
theorem. Namely, an N -invariant domain D in G{K is Stein if and only if
the base Ω of the associated tube domain is convex and “cone invariant”.

We also prove the univalence of N -invariant holomorphically separable Rie-
mann domains over G{K. This yields a precise description of the envelope of
holomorphy of an arbitrary N -invariant domain in G{K. Finally, we obtain
a characterization of several classes of N -invariant plurisubharmonic funtions
on D in terms of the corresponding classes of convex functions on Ω. As
an application we present an explicit Lie group theoretical description of all
N -invariant potentials of the Killing metric on G{K and of the associated
moment maps.

1. Introduction

The classical Bochner’s tube theorem states that the envelope of holomorphy of
a tube domain Rn`iΩ in Cn is univalent and coincides with its convex envelope
Rn` i convpΩq. Moreover, there is a one-to-one correspondence between the class
of Rn-invariant plurisubharmonic functions on a Stein tube domain in Cn and
the class of convex functions on its base in Rn (cf. [Gun90], Thm.13, p.111).

In this paper we obtain generalizations of the above results in the setting
of irreducible Hermitian symmetric spaces of the non-compact type, under the
action of a maximal unipotent group of holomorphic automorphisms.

Any such space can be realized as a quotient G{K of a non-compact real
simple Lie group G over a maximal compact subgroup K. Let g “ n‘ a‘ k be
an Iwasawa decomposition of g, where n is a maximal nilpotent subalgebra, a
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is a maximal split abelian subalgebra and k is the Lie algebra of K. The integer
r :“ dim a is by definition the rank of G{K.

Let NAK be the corresponding Iwasawa decomposition of G , where A :“
exp a and N :“ exp n. The group N acts on G{K by biholomorphisms and
every N -orbit in G{K intersects the smooth, real r-dimensional submanifold
A ¨ eK transversally in a single point.

As the space G{K is Hermitian symmetric, the Lie algebra g of G contains a
subalgebra which is the direct sum of r pairwise commuting copies of slp2,Rq.
The orbit of the base point eK P G{K under the corresponding subgroup of G is
a closed complex submanifold of G{K which contains A¨eK and is biholomorphic
to the product of r copies of the upper half-plane H in C. This biholomorphism,
which restricts to a diffeomorphism between A ¨ eK and the positive imaginary
octant in Cr, determines a one-to-one correspondence between N -invariant do-
mains D in G{K and tube domains Rr ` iΩ in Hr (cf. Sect. 3). If D is an
N -invariant domain in G{K, then the properties of D and of the N -invariant
functions on D can be best described in terms of Ω . Define the cone

C :“

#

pRą0qr, in the non-tube case,

pRą0qr´1 ˆ t0u, in the tube case.

A set Ω Ă Rr is C-invariant if y P Ω implies y ` v P Ω, for all v P C. Our
generalizion of Bochner’s tube thorem is as follows.

Theorem 3.4. Let G{K be a non-compact irreducible Hermitian symmetric
space of rank r. Let D be an N -invariant domain in G{K and let Rr ` iΩ be
the associated r-dimensional tube domain. Then D is Stein if and only if Ω is
convex and C-invariant.

We also show that a holomorphically separable, N -equivariant, Riemann do-
main over G{K is necessarily univalent (cf. Prop. 3.7). This implies the following
corollary.

Corollary 3.8. The envelope of holomorphy pD of an N -invariant domain D
in G{K coincides with the N -invariant domain whose associated r-dimensional

tube is Rr ` ipΩ, where pΩ is the convex, C-invariant hull of Ω.

A first proof of Theorem 3.4 is obtained by realizing G{K as a Siegel domain
and by combining some results from the theory of normal J-algebras with some
convexity arguments. An alternative proof relies on the special features of the
smooth N -invariant plurisubharmonic functions on G{K. There is a one-to-one
correspondence between N -invariant functions on D and functions on Ω, and
such correspondence preserves regularity.

Let pf : Ω Ñ R be a function defined on a C-invariant domain in pRą0qr and

let C be the closure of the cone C. Then pf is said C-decreasing if for every

y P Ω and v P C the restriction of pf to the half-line ty ` tv : t ě 0u
is decreasing. The following theorem is a generalization to our setting of the
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well known correspondence between Rr-invariant plurisubharmonic functions on
a tube domain and convex functions on its base (see. Thm. 5.11 for a detailed
statement).

Theorem. Let D be a Stein, N -invariant domain in a non-compact, irreducible
Hermitian symmetric space G{K of rank r. Let Ω be the base of the associated
r-dimensional tube domain.

An N -invariant function f : D Ñ R is (strictly) plurisubharmonic if and only

if the corresponding function pf : Ω Ñ R is (stably) convex and C-decreasing.

In particular, every N -invariant plurisubharmonic function on D is continuous.

In the smooth case, an important ingredient for the proof of the above theorem
is the computation of the Levi form of an N -invariant function f : D Ñ R in

terms of the Hessian and the gradient of pf : Ω Ñ R (cf. Prop. 4.1). This is done in
a Lie theoretic way, with no use of explicit models nor of the classification of the
symmetric spaces G{K. Instead, we use a simple moment map identity which
enables us to maximally exploit the symmetries at hand. In the non-smooth
case, the result is obtained by adapting to our context a classical approximation
method.

As an application of the above theorem, we determine all the N -invariant
potentials of the Killing metric on G{K in a Lie theoretical fashion.

The paper is organized as follows. Section 2 contains the preliminaries. In
Section 3 we prove Theorem 3.4. In Section 4 we compute the Levi form of a
smooth N -invariant function on G{K. In Section 5 we investigate N -invariant
plurisubharmonic functions on Stein N -invariant domains in G{K. In Section
6 we determine all the N -invariant potentials of the Killing metric and their
associated moment maps. In Section 7 we give an alternative proof of Theorem
3.4 by using N -invariant plurisubharmonic functions.

We wish to thank the referee for carefully reading the manuscript and for giving
us precious advise.

2. Preliminaries

Let G{K be an irreducible Hermitian symmetric space, where G can be as-
sumed to be a real non-compact simple Lie group and K is a maximal compact
subgroup of G. Let g and k be the respective Lie algebras. Let g “ k ‘ p
be the Cartan decomposition of g with respect to k, with Cartan involution θ.
Denote by Bp ¨ , ¨ q both the Killing form of g and its C-linear extension to gC.

Let a be a maximal abelian subspace in p. The dimension of a is by definition
the rank r of G{K. Let g “ m‘a‘

À

αPΣ gα be the restricted root decomposition
of g determined by the adjoint action of a, where m denotes the centralizer of
a in k. For a simple Lie algebra of Hermitian type g, the restricted root system
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is either of type Cr (if G{K is of tube type) or of type BCr (if G{K is not of
tube type), i.e. there exists a basis te1, . . . , eru of a˚ for which a positive system
Σ` is given by

Σ` “ t2ej, 1 ď j ď r, ek ˘ el, 1 ď k ă l ď ru, for type Cr,

Σ` “ tej, 2ej, 1 ď j ď r, ek ˘ el, 1 ď k ă l ď ru, for type BCr .

The roots 2e1, . . . , 2er form a maximal set of long strongly orthogonal posi-
tive restricted roots. The root spaces g2e1 , . . . , g2er are one-dimensional and one
can choose generators Ej P g2ej such that the slp2q-triples tEj, θEj, Hj :“
rθEj, Ejsu are normalized as follows

rHj, E
ls “ δjl2E

l, for j, l “ 1, . . . , r. (1)

Denote by I0 the G-invariant complex structure of G{K. By changing sign of the
generators Ej if necessary, we may assume that I0pE

j´θEjq “ Hj. By the strong
orthogonality of 2e1, . . . , 2er, the vectors H1, . . . , Hr form a B-orthogonal basis
of a , dual to e1, . . . , er of a˚, and the associated slp2q-triples pairwise commute.

Let g “ n ‘ a ‘ k be the Iwasawa decomposition subordinate to Σ`, where
n “ ‘αPΣ`g

α, and let G “ NAK be the corresponding Iwasawa decomposition
of G. Then S “ NA is a real split solvable group acting freely and transitively
on G{K. In particular, the tangent space to G{K at the base point eK can be
identified with the Lie algebra s “ n‘ a.

The map φ : sÑ p, given by φpXq :“ 1
2
pX ´ θXq, is an isomorphism of vector

spaces. As a consequence,

xX , Y y :“ BpφpXq , φpY qq “ ´1
2
BpX , θY q, (2)

for X, Y P s, defines a positive definite symmetric bilinear form on s. Moreover,
the map J : sÑ s, given by

JX :“ φ´1 ˝ I0 ˝ φpXq, (3)

defines a complex structure on s, such that φpJXq “ I0φpXq. The complex
structure J permutes the restricted root spaces of s (cf. [RoVe73]), namely

Ja “
r
à

j“1

g2ej , Jgej´el “ gej`el , Jgej “ gej . (4)

In order to obtain a precise description of J on s, we recall a few more facts. Let
gC “ hC‘

À

µP∆ gµ be the root decomposition of gC with respect to a maximally
split Cartan subalgebra h “ b ‘ a of g, where b is an abelian subalgebra of m.
Let σ be the conjugation of gC with respect to g. Let θ denote also the C-
linear extension of θ to gC. One has θσ “ σθ. Write Z :“ σZ, for Z P gC.
As σ and θ stabilize h, they induce actions on ∆, defined by µ̄pHq :“ µpHq
and θµpHq :“ µpθpHqq, for H P h, respectively. Fix a positive root system
∆` compatible with Σ`, meaning that µ|a “ Repµq P Σ` implies µ P ∆`.
Then σ∆` “ ∆`.
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Given a restricted root α P Σ, the corresponding restricted root space gα

decomposes into the direct sum of ordinary root spaces with respect to the Cartan
subalgebra h as follows

gα “
´

à

µP∆, µ­“µ̄
Repµq“α

gµ ‘ gµ̄ ‘ gλ
¯

X g,

where λ P ∆ is possibly a root satisfying λ “ λ̄ “ α. The next lemma is obtained
by combining Lemma 2.2 in [GeIa22] with (3).

Lemma 2.1. (the complex structure J on s).
paq For j “ 1, . . . , r, let Hj P a and Ej P g2ej be elements normalized as in p1q.
Then JEj “ 1

2
Hj and JHj “ ´2Ej.

pbq Let X “ Zµ ` Zµ P gej´el, where µ P ∆` is a root satisfying Repµq “ ej ´ el
and Zµ P gµ (if µ̄ “ µ, we may assume Zµ “ Zµ and set X “ Zµ). Then
JX “ rEl, Xs P gej`el.
Let X “ Zµ ` Zµ P gej`el, where µ P ∆` is a root satisfying Repµq “ ej ` el
and Zµ P gµ (if µ̄ “ µ, we may assume Zµ “ Zµ and set X “ Zµ). Then
JX “ rθEl, Xs P gej´el.

pcq Let X “ Zµ ` Zµ P gej , where µ is a root in ∆` satisfying Repµq “ ej and
Zµ P gµ (as dim gej is even, one necessarily has µ̄ ­“ µq. Then JX “ iZµ` iZµ P

gej .

Remark 2.2. (a J-stable basis of s) In view of Lemma 2.1, one can choose a
J-stable basis of s, compatible with the restricted root decomposition.

paq As a basis of a‘Ja, take pairs of elements Hj, JHj “ ´2Ej, for j “ 1, . . . , r,
normalized as in p1q.

pbq As a basis of gej´el ‘ gej`el, take 4-tuples of elements

X “ Zµ
` Zµ, X 1

“ iZµ
` iZµ, JX “ rEl, Xs, JX 1

“ rEl, X 1
s,

parametrized by the pairs of roots µ ­“ µ̄ P ∆` satisfying Repµq “ ej ´ el pwith no
repetitionq, with Zµ a root vector in gµ. For µ “ µ̄, one may assume Zµ “ Zµ

and take the pair X “ Zµ, JX “ rEl, Xs.

pcq As a basis of gej pnon-tube caseq, take pairs of elements

X “ Zµ
` Zµ, JX “ iZµ

` iZµ,

parametrized by the pairs of roots µ ­“ µ̄ P ∆` satisfying Repµq “ ej pwith no
repetitionq, with Zµ P gµ.

The next lemma contains some identities which are needed in Section 3. Its
proof is essentially contained in [GeIa22], Lemma 2.4.

Lemma 2.3. Let µ P ∆` be a root satisfying Repµq “ ej´ el and let Zµ a root

vector in gµ. Let X “ Zµ ` Z
µ
P gej´el and JX “ rEl, Xs P gej`el. If µ ­“ µ,

let X 1 “ iZµ ` iZµ and JX 1 “ rEl, X 1s. Then
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paq rJX,Xs “ rJX 1, X 1s “ sEj, for some s P R, s ­“ 0;

pbq rJX 1, Xs “ 0.

Let µ be a root in ∆`, with Repµq “ ej pnon-tube caseq and let Zµ be a root

vector in gµ. Let X “ Zµ ` Z
µ

and JX “ iZµ ` iZµ. Then

pcq rJX,Xs “ tEj, for some t P R, t ­“ 0.

Hermitian symmetric spaces and Siegel domains. Let S “ NA be the real
split solvable group arising from the Iwasawa decomposition of G subordinate to
Σ`. The group S acts simply transitively on G{K. With the complex structure
J described in (3) and the linear form f0 P s˚ defined by f0pXq :“ BpX,Z0q,
where Z0 P Zpkq is the element inducing the complex structure on p, the Lie
algebra s “ n ‘ a of S has the structure of a normal J-algebra (see [GPSV68],
p. 49, [PS69], Sect. 3, p. 51, and [RoVe73], Sect. 5, A).

This means in particular that ωpX, Y q :“ ´f0prX, Y sq is a non-degenerate
skew-symmetric J-invariant bilinear form on s and that the symmetric bilinear
form xX, Y y :“ ´f0prJX, Y sq is the J-invariant positive definite inner product
on s defined in (2).

The adjoint action of a on s is symmetric with respect to x¨, ¨y and decomposes
s into the orthogonal direct sum of the restricted root spaces. Moreover, the
adjoint action of the element H0 :“ 1

2

ř

j Hj P a decomposes s and n as

s “ s0 ‘ s1{2 ‘ s1, n “ n0 ‘ n1{2 ‘ n1 ,

where nj “ nX sj and

s0 “ a‘
à

1ďjălďr

gej´el , s1{2 “ ‘
1ďjďr

gej , s1 “ ‘
1ďjďr

g2ej ‘
à

1ďjălďr

gej`el .

Set E0 :“
ř

Ej. The orbit
V :“ Adexp s0E0

is a sharp convex homogeneous selfadjoint cone in s1 and

F : s1{2 ˆ s1{2 Ñ sC1 :“ s1 ` is1, F pW,W 1
q “

1

4
prJW 1,W s ´ irW 1,W sq,

is a V -valued Hermitian form, i.e. it is sesquilinear and F pW,W q P V (the closure
of V ), for all W P s1{2. The group S acts on sC1 ‘ s1{2 by affine transformations,
given by

g ¨ pZ,W q “ pAdsZ ` ξ ` 2iF pAdsW, ζq ` iF pζ, ζq, AdsW ` ζq, (5)

where g “ exp ζ exp ξ expσ, where ζ P s1{2, ξ P s1, σ P s0, and s “ expσ. Then
the Hermitian symmetric space G{K – S ¨ eK is biholomorphic to the Siegel
domain given by

DpV, F q “ tpZ,W q P sC1 ‘ s1{2 | ImpZq ´ F pW,W q P V u,
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via the map

L : S ¨ eK ÞÑ DpV, F q, s ¨ eK ÞÑ s ¨ piE0, 0q. (6)

If s1{2 “ t0u (if and only if the restricted roots system of g is of type Cr),
then G{K is of tube type, otherwise it is of non-tube type. If dimR s1 “ n and
dimR s1{2 “ 2m, then sC1 ‘ s1{2 can be identified with Cn`m and DpV, F q with an
open convex affinely homogeneous domain therein.

3. N-invariant Stein domains in G{K

The goal of this section is to obtain a characterization of N -invariant Stein do-
mains in an irreducible non-compact Hermitian symmetric space G{K of rank r.
To an invariant domain D we associate an r-dimensional tube domain in Hr.
Then we prove that D is Stein if and only if the base of the associated tube is
convex and satisfies an additional geometric condition.

For this we exploit the realization of G{K as a Siegel domain (cf. Sect. 2). We
also prove the univalence of holomorphically separable, N -equivariant, Riemann
domains over G{K. This result yields a precise description of the envelope of
holomorphy of an N -invariant domain in G{K.

Consider the unipotent abelian subgroup of G, isomorphic to Rr, defined by
R :“ exp Ja (cf. (4)). The R-invariant set

R exppaq ¨ eK

is an r-dimensional closed complex submanifold of G{K, intersecting all N -orbits
in G{K. Consider the positive octant Ja` :“ t

ř

ykE
k | yk ą 0, k “ 1, . . . , ru

in Ja. One easily verifies that if E P Ja`, then

Adexp aE “ Ja` and iJa` “ exp a ¨ piE0, 0q,

where piE0, 0q is the base point of DpV, F q (see (5)). The map L restricts to a
biholomorphism

R exppaq ¨ eK Ñ Ja‘ iJa`,

given by

expp
ř

j ejE
jq expp

ř

k hkHkqK ÞÑ
ř

j ejE
j ` iAdexpp

ř

k hkHkq
E0. (7)

In particular L| exppaqK determines a diffeomorphism

L : aÑ Ja`,
ÿ

k

hkHk ÞÑ Adexpp
ř

k hkHkq
E0 “

ÿ

j

e2hjEj. (8)

N-invariant domains in G{K and tube domains in Hr. In view of the above
discussion, the following facts hold true.
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(i) An N -invariant domain D in G{K is uniquely determined by a domain D
in a via

D :“ N expD ¨ eK.
(ii) The intersection of D with the closed complex submanifold R exppaq ¨ eK is
given by R exppDq ¨ eK .

(iii) A tube domain Ja ` iΩ in Ja ` iJa` determines a unique N -invariant
domain in G{K via

D “ N exppDq ¨ eK, where D “ L´1pΩq.

Definition 3.1. The r-dimensional tube domain associated to D is the image of
the set R exppDq ¨ eK under L, namely

Ja` iΩ, where Ω :“ LpDq .

Remark 3.2. (i) If we identify Ja` iJa with Rr ` iRr (by sending Ej into the
jth vector of the canonical basis of Rr, for j “ 1, . . . , r), then the set Ja` iJa` is
identified with Hr, where H is the upper half-plane in C. In particular, the tube
domain associated to D is just a tube domain in Hr.

(ii) If the domain D is Stein, then R expD ¨eK is Stein and so is the tube domain
associated to D. In particular, by Bochner’s theorem, its base Ω is convex.

We are going to give a precise characterization of the open convex sets Ω arising
from Stein N -invariant domains in G{K.

Assume that the symmetric space G{K is realized as a Siegel domain DpV, F q,
and let D be an N -invariant domain therein. Then

D “ tpZ,W q P DpV, F q | ImpZq ´ F pW,W q P Ωu,

where Ω is the Adexp n0-invariant open subset in V , determined by

iΩ :“ D X iV,

and, by (6), (7) and (8), the base of the associated tube is

Ω “ ΩX Ja`.

Define a cone in Ja as follows

C :“

#

Cr, in the non-tube case,

Cr´1, in the tube case,
(9)

where

Cr :“ conepE1, . . . , Er
q “ Ja` and Cr´1 :“ conepE1, . . . , Er´1

q ˆ t0u.

Definition 3.3. A set Ω Ă Ja is C-invariant if E P Ω implies E ` C Ă Ω
Equivalently, if E P Ω implies E ` C Ă Ω, where C denotes the closure of C.
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The characterization of N -invariant Stein domains in G{K can be stated as
follows.

Theorem 3.4. Let G{K be a non-compact irreducible Hermitian symmetric
space of rank r. Let D be an N-invariant domain in G{K and let Rr ` iΩ be
the associated tube domain. Then D is Stein if and only if Ω is convex and
C-invariant.

In order to prove the above theorem, we need some preliminary results. For
this we separate the tube and the non-tube case.

The tube case. Denote by convpΩq the convex hull of Ω in s1. Since Ω is
Adexp n0-invariant and the action is linear, then also convpΩq is Adexp n0-invariant.
Denote by p : s1 Ñ Ja the projection onto Ja, parallel to ‘gej`el . Denote by

pE1
q
˚, . . . , pEr

q
˚ (10)

the elements in the dual n˚ of n, with the property that pEjq˚pElq “ δjl and
pEjq˚pXαq “ 0, for all Xα P gα, with α P Σ`zt2e1, . . . , 2eru.

Lemma 3.5. The following statements hold true

(i) Let E “
ř

xkE
k P Ja`, where xk P Rą0, for k “ 1, . . . , r. Then

ppAdexp n0Eq “ E ` Cr´1.

In particular, the coordinate xr of E remains unchanged under the Adexp n0-
action.

(ii) Let X P gej´el be a non-zero element. Then rrEl, Xs, Xs “ sEj, for
some s P Rą0.

(iii) One has ppconvpΩqq “ convpppΩqq.

Proof. (i) Let E P Ja` and let h0 P exp n0, where n0 “ ‘
1ďiăjďr

gei´ej . By

Theorem 4.10 in [RoVe73], for every 1 ď i ă j ď r there exists a basis tEp
iju of

gei´ej , with coordinates txpijup, such that

pEiq˚pAdh0Eq “ xip1`
ř

p, jąi
pxpijq

2q

(formula (4.13) in [RoVe73]). Since i ă r, one has ppAdexpXEq “ E ` Cr´1, as
claimed. In particular the rth coordinate of E does not vary under the Adexp n0-
action.

(ii) Let X P gej´el be a non-zero element. Then exp tX P exp n0 and ad3
XpEq P

g3ej´el “ t0u. It follows that the curve

Adexp tXE0 “ exp adtXpE0q “ E0 ` trX,E
ls ` t2

2
rX, rX,Elss, t P R,

is contained in V . By Lemma 2.3 (a), its projection onto Ja is given by

ppAdexp tXE0q “ pE
jq˚pAdexp tXE0qE

j “ p1` t2

2
sqEj,
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for some s P R, s ­“ 0. By (i) the quantity 1 ` t2

2
s ą 0, for all t P R. Therefore

s ą 0, as claimed.

(iii) We prove the two inclusions. By the linearity of p, the set ppconvpΩqq is
convex and contains ppΩq. Hence, ppconvpΩqq Ą convpppΩqq. Conversely, let Z P
convpΩq. Then there exist t0 P p0, 1q and X, Y P Ω such that Z “ t0X`p1´t0qY .
Since ppZq “ t0ppXq ` p1´ t0qppY q, one has ppconvpΩqq Ă convpppΩqq. �

The non-tube case. Denote by rp : sC1 ‘ s1{2 Ñ iJa the projection onto iJa
parallel to s1 ‘ ip‘g

ej`elq ‘ s1{2.

Lemma 3.6. Let E P Ja`. Then rppN ¨ piE, 0qq “ ipE ` Crq.

Proof. The N -orbit of the point piE, 0q P sC1 ‘ s1{2 is given by

N ¨ piE, 0q “ exp s1{2 exp s1 exp n0 ¨ piE, 0q

“ tpξ ` ipAdexp n0E ` F pζ, ζqq, ζq | ξ P s1, ζ P s1{2u (11)

By (11) and Lemma 3.5 (i), one has rppN ¨ piE, 0qq “ ipE`Cr´1` p̃pF ps1{2, s1{2qqq.
In the symmetric case, gej ­“ t0u, for all j “ 1, . . . , r. Moreover, by Lemma
2.3(c), for every X ­“ 0 in gej , the element rJX,Xs “ F pX,Xq P V X Ja
is a positive multiple of Ej. It follows that trJζ, ζs, ζ P s1{2u “ Ja`, and

p̃pN ¨ piE, 0qq “ ipE ` Crq, as claimed. �

Proof of Theorem 3.4. The tube case. An N -invariant domain D in a symmetric
tube domain DpV q is itself a tube domain with base the Adexp n0-invariant set Ω.
Hence all we have to prove is that Ω is convex if and only if Ω is convex and
Ω` Cr´1 Ă Ω.

Assume that Ω is convex. Then Ω is convex, being the intersection of Ω with
the positive octant Ja`. To prove that Ω is C-invariant, let E “

ř

j xjE
j P Ω,

where xj ą 0, for j “ 1, . . . , r, and let X P gej´el be a non-zero element. One has
ad3

XpEq P g
3ej´el “ t0u. Hence, for every t P R,

Adexp tXE “ E ` txlrX,E
ls ` 1

2
t2xlrX, rX,E

lss

lies in Ω. As Ω is convex, by replacing t with ´t and adding terms, one has that
also E` 1

2
t2xlrX, rX,E

lss “ E` t2sxlE
j lies in Ω, for some s ą 0 (cf. Lemma 3.5

(ii)). This argument applied to all j “ 1, . . . , r ´ 1 and the convexity of Ω imply
that Ω` Cr´1 Ă Ω, as desired.

Conversely, assume that Ω convex and C-invariant. We prove the convexity of
Ω by showing that convpΩq Ă Ω. From Lemma 3.5 (ii) and the C-invariance of
Ω, one has

ppΩq “ ppAdexp n0Ωq “ Ω` Cr´1 Ă Ω.

Moreover, from Lemma 3.5 (iii), the above inclusion and the convexity of Ω, one
has

convpΩq X Ja Ă ppconvpΩqq “ convpppΩqq Ă Ω.
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Finally, from the Adexp n0-invariance of convpΩq it follows that

convpΩq “ Adexp n0pconvpΩq X Jaq Ă Adexp n0Ω “ Ω.

This completes the proof of the theorem in the tube case.

The non-tube case. Let D be an N -invariant domain in a symmetric Siegel
domain DpV, F q. Denote by convpDq the convex hull of D in sC1 ‘ s1{2. As N
acts on D by affine transformations, also convpDq is N -invariant.

If D is Stein, then DXtW “ 0u is a Stein tube domain in sC1 with base Ω. By
Theorem 3.4 for the tube case and Lemma 3.6, the set Ω is convex and Ω`Cr Ă Ω.

Conversely, assume that Ω is convex and C-invariant, i.e. Ω ` Cr Ă Ω (see
Def. 3.3). We are going to prove that D is convex. By Lemma 3.6, one has

rppDq “ rppN ¨ Ωq “ ipΩ` Crq Ă iΩ.

Moreover,

convpDq X iJa Ă rppconvpDqq “ convprppDqq Ă iΩ.

By the N -invariance of convpDq, one obtains

convpDq “ N ¨ pconvpDq X iJaq Ă N ¨ iΩ “ D.

Hence D is convex and therefore Stein (cf. [Gun90], Vol.1, Thm.10, p. 67). This
concludes the proof of the theorem. �

Remark. If D is an N-invariant Stein domain in G{K, then the associated
tube domain Rr ` iΩ is Stein, being biholomorphic to the intersection of D with
a closed submanifold in G{K. In particular its base Ω is an open convex set.
Theorem 3.4 shows that Rr` iΩ is not an arbitrary Stein tube domain, as Ω must
also be C-invariant.

We conclude this section with a univalence result for holomorphically separable,
N -equivariant, Riemann domains over G{K.

Proposition 3.7. A holomorphically separable, N-equivariant, Riemann domain
π : Z Ñ G{K is univalent, i.e. the holomorphic map π is globally injective.

Proof. Let π : Z Ñ G{K be a holomorphically separable, N -equivariant, Rie-
mann domain over G{K . By [Ros63], Thm. 4.6, Z admits a holomorphic, N -
equivariant open embedding into its envelope of holomorphy, which is a Stein
N -equivariant, Riemann domain over G{K . Hence, without loss of generality,
we may assume that Z is Stein.

Let πpZq “ N exppDq¨eK be the image of Z under π. Define Σ :“ exppDq¨eK
and rΣ :“ π´1pΣq. Note that rΣ is a closed submanifold of Z.

Claim. The map rφ : N ˆ rΣ Ñ Z, given by pn, xq Ñ n ¨ x, is a diffeomorphism.
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Proof of the claim. Since Σ “ πpZq X exppaq ¨ eK is a closed real submanifold

of πpZq and π is a local biholomorphism, the restriction π|
rΣ : rΣ Ñ Σ is a local

diffeomorphism. Moreover there is the commutative diagram

N ˆ rΣ

Idˆpπ|
rΣ
q

��

rφ // Z

π
��

N ˆ Σ
φ // N expD ¨ eK

where the maps Id ˆ pπ|
rΣq and π are local diffeomorphisms, and φ is a global

diffeomorphism. Hence the map rφ is a local diffeomorphism.

To prove that rφ is surjective, let z be an arbitrary element in Z. Note that

πpzq “ n exppHqK, for some n P N and H P D. Then the element w :“ n´1¨z P rΣ

satisfies n ¨ w “ z, implying the surjectivity of rφ.

To prove that rφ is injective, assume that n ¨w “ n1 ¨w1, for some n, n1 P N and

w, w1 P rΣ. From the equivariance of π it follows that n ¨πpwq “ n1 ¨πpw1q. As φ
is bijective, it follows that n “ n1 and πpwq “ πpw1q. Thus w “ pn´1n1q ¨w1 “ w1,

implying the injectivity of rφ and concluding the proof of the claim.

Now, to prove the univalence of π, it is sufficient to show that the restriction

π|
rΣ : rΣ Ñ Σ of π to rΣ is injective. For this, consider the closed complex

submanifold R ¨ rΣ “ π´1pR ¨ Σq of Z, where R “ exp a. As Z is Stein, so is

R ¨ rΣ. Hence the restriction π|R¨rΣ : R ¨ rΣ Ñ R ¨Σ defines an R-equivariant, Stein,
Riemann domain over the Stein tube R ¨ Σ. As R is isomorphic to Rr, from
[CoLo86], p. 60, it follows that π|R¨rΣ is injective. Hence the same is true for π|

rΣ

and π, as wished. �

Corollary 3.8. The envelope of holomorphy pD of an N-invariant domain D

in G{K is the smallest Stein domain in G{K containing D. Namely, pD is the

N-invariant domain such that the base pΩ of the associated tube is the convex
C-invariant hull of Ω.

4. The Levi form of an N-invariant function on G{K

Let G{K be a non-compact, irreducible Hermitian symmetric space of rank r.
Let f : D Ñ R be an N -invariant function. Then f is uniquely determined by
the functions

rfpHq :“ fpexpH ¨ eKq, (12)

and
pfpyq :“ fpexppL´1

pyqq ¨ eKq “ rfpL´1
pyqq (13)
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where H P D and y “ LpHq P Ω Ă pRą0qr, according to the following commuta-
tive diagram

Ω

L´1

��

pf

!!C
CC

CC
CC

D
exp
��

rf // R.

D

f
=={{{{{{{

Since the N -action on D is proper and every N -orbit intersects transversally
the smooth slice exppDq ¨ eK in a single point, it is easy to check that the

map f Ñ rf is a bijection between the class C0pDqN of continuous N -invariant
functions on D and the class C0pDq of continuous functions on D. By Theorem
4.1 in [Fle78], such a map is also a bijection between C8pDqN and C8pDq.
Analogous statements hold true for the map f Ñ pf .

The goal of this section is to express the real symmetric J-invariant bilin-
ear form

hf p ¨ , ¨ q :“ ´ddcfp ¨ , J ¨ q,

of a smooth N -invariant function f on D, in terms of the first and second deriva-

tives of the corresponding function rf on D (Prop. 4.1). Recall that a function
f on D is plurisubharmonic (resp. strictly plurisubharmonic) if and only if the
Levi form

LC
f pZ,W q “ 2phf pX, Y q ` ihf pX, JY qq

is positive semidefinite (resp. positive definite), where Z “ X ´ iJX and W “

Y ´ iJY are vectors of type p1, 0q.
Since LC

f is positive semidefinite (resp. positive definite) if and only if hf is
positive semidefinite (resp. positive definite), the calculation of hf will enable
us to characterize smooth N -invariant plurisubharmonic functions on a Stein N -
invariant domain D in G{K by suitable conditions on the corresponding functions
rf on D and pf on Ω (cf. Thm. 5.1).

If f is N -invariant, then so is hf . Therefore it will be sufficient to determine
hf along the slice exppDq ¨ eK.

For X P g, denote by rX the vector field on G{K induced by the left G-action.
Its value at z P G{K is given by

rXz :“ d
ds

ˇ

ˇ

s“0
exp sX ¨ z.

Let X P gα, for α P Σ` Y t0u (here X P a, when α “ 0). If z “ aK, with

a “ expH and H P a, then the vector field rX can also be expressed as

rXz “ e´αpHqa˚X. (14)

Set
b :“ BpH1, H1q “ . . . “ BpHr, Hrq, (15)
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which is a real positive constant only depending on the Lie algebra g.

Proposition 4.1. Let D be an N-invariant domain in G{K and let f : D Ñ R
be a smooth N-invariant function. Fix a “ expH, with H “

ř

j hjHj P D.
Then, in the basis of s defined in Remark 2.2, the form hf at z “ aK P D is
given as follows.

(i) The spaces a˚a, a˚Ja, a˚g
ej´el , a˚g

ej`el and a˚g
ej are pairwise hf -

orthogonal.

(ii) For Hj, Hl P a one has

hf pa˚Hj, a˚Hlq “ ´2δjl
B rf
Bhl
pHq ` B2

rf
BhjBhl

pHq.

On the blocks a˚g
ej´el and a˚g

ej the restriction of hf is diagonal and the only
non-zero values are given as follows.

(iii) For X, X 1 P gej´el as in Remark 2.2(b), one has

hf pa˚X, a˚Xq “ ´2 }X}
2

b
B rf
Bhj
pHq, hf pa˚X

1, a˚X
1q “ ´2 }X

1}2

b
B rf
Bhj
pHq.

(iv) pnon-tube caseq For X P gej as in Remark 2.2(c), one has

hf pa˚X, a˚Xq “ ´2 }X}
2

b
B rf
Bhj
pHq.

On the remaining blocks the form hf is determined by (4), its J-invariance, (i)
and (iii) above.

Proof. Let f : G{K Ñ R be a smooth N -invariant function. The computation
of hf uses the fact that, for X P n, the function µXf : G{K Ñ R, given by

µXf pzq :“ dcfp rXzq, is N -equivariant and satisfies the identity

dµXf “ ´ι rXdd
cf, (16)

where dcf :“ df˝J (see [HeSc07], Lemma 7.1). We begin by determining dcfp rXzq,
for X P n and z P G{K. By the N -invariance of f and of J one has

dcfp rXn¨zq “ dcfp ČAdn´1Xzq , (17)

for every z P G{K and n P N . Thus it is sufficient to take z “ aK P exppDq¨eK.
Let H “

ř

hjHj P D and a “ expH. Then

dcfp rXzq “

#

1
2
e´2hj B

rf
Bhj
pHq , for X “ Ej P g2ej

0 , for X P gα, with α P Σ`zt2e1, . . . , 2eru.
(18)

The first part of equation (18) follows from (14) and Lemma 2.1 (a):

dcfppĂEjqzq “ e´2ejpHqdfpa˚JE
jq “ 1

2
e´2hj d

ds

ˇ

ˇ

s“0
rfpH ` sHjq “

1
2
e´2hj B

rf
Bhj
pHq.
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For the second part, let X P gα, with α P Σ`zt2e1, . . . , 2eru. Then JX P gβ, with
β P Σ`. By (14) and the N -invariance of f , one obtains the desired result

dcfp rXzq “ e´αpHq`βpHqdfpĄJXzq “ 0.

(i) Orthogonality of the blocks. Let X P gα and Y P gγ, where α P Σ`

and γ P t0u Y pΣ`zt2e1, . . . , 2eruq are distinct restricted roots (here Y P a, when
γ “ 0). Then JY P gβ, for some β P Σ`. By (14) and (16), one has

hf pa˚X, a˚Y q “ ´dd
cfpa˚X, a˚JY q “ ´e

αpHq`βpHqddcfp rXz, ĂJY zq

“ eαpHq`βpHqdµXpĂJY zq “ eαpHq`βpHq d
ds

ˇ

ˇ

s“0
µXpexp sJY ¨ zq

“ eαpHq`βpHq d
ds

ˇ

ˇ

s“0
dcfp rXexp sJY ¨zq “ eαpHq`βpHq d

ds

ˇ

ˇ

s“0
dcfp ČAdexpp´sJY qXz

q

“ eαpHq`βpHq d
ds

ˇ

ˇ

s“0
dcfp rXz ´ s ČrJY,Xsz ` ops

2qq

“ ´eαpHq`βpHqdcfp ČrJY,Xszq. (19)

The brackets rJY,Xs lie in gα`β. Since α ­“ γ, one sees that α`β ­“ 2e1, . . . , 2er.
Then, by (18), the expression (19) vanishes, proving the orthogonality of a˚g

α

and a˚g
γ, for all α and γ as above. The J-invariance of hf implies that a˚a is

orthogonal to a˚g
β, for all β P Σ`, and concludes the proof of (i).

Next we determine the form hf on the essential blocks.

(ii) The form hf on a˚a.

Let Hj, Hl P a. Since JHl “ ´2El, one has

hf pa˚Hj, a˚Hlq “ ´2ddcfpa˚E
l, a˚Hjq “ ´2e2elpHqddcfppĂElqz, pĂHjqzq

“ 2e2elpHqdµE
l
ppĂHjqzq “ 2e2elpHq d

dt

ˇ

ˇ

t“0
µE

l
pexp tHj ¨ zq

“ 2e2elpHq d
dt

ˇ

ˇ

t“0
dcfppĂElqexp tAj ¨zq,

which, by (18), becomes

2e2elpHq d
dt

ˇ

ˇ

t“0
1
2
e´2elpH`tHjq B

rf
Bhl
pH ` tHjq “ ´2 B

rf
Bhl
pHqδlj `

B2
rf

BhjBhl
pHq.

This concludes the proof of (ii).

(iii) The form hf on a˚g
ej´el.

Let X, X 1 P gej´el be elements of the basis given in Remark 2.2 (b). Then
JX, JX 1 P gej`el . From (19), (18) and Lemma 2.3(a) one has

hf pa˚X, a˚Xq “ ´dd
cfpa˚X, a˚JXq

“ ´epej`elqpHqepej´elqpHqdcfp ČrJX,Xszq

“ ´e2ejpHq
´

sdcfppĂEjqzq

¯

“ ´ s
2
B rf
Bhj
pHq , (20)
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for some s P Rzt0u. By Lemma 3.5 (ii), one has s ą 0. By the comparison of
(20) with the formula obtained in Remark 6.2, one deduces the exact value of s,

namely s “ 4}X}2

b
. Therefore, one has

hf pa˚X, a˚Xq “ ´2 }X}
2

b
B rf
Bhj
pHq, hf pa˚X

1, a˚X
1q “ ´2 }X

1}2

b
B rf
Bhj
pHq,

as stated. From (19) and Lemma 2.3(b), one obtains hf pa˚X, a˚X
1q “ 0. From

(19), the skew symmetry of ddcf and the fact that 2pej ´ elq R Σ`, one obtains
hf pa˚X, a˚JXq “ hf pa˚X, a˚JX

1q “ 0. Finally, let X “ Zµ ` Zµ, and Y “

Zν `Zν be elements of the basis of gej´el given in Remark 2.2 (b), for µ, ν P ∆`

distinct roots satisfying ν ­“ µ, µ̄. Then, by (19) and Lemma 2.1(b) one has

hf pa˚X, a˚Y q “ ´e
2ejpHqdcfp ČrJY,Xszq “ 0,

since no non-real roots in ∆ have real part equal to 2ej. This completes the proof
of (iii).

(iv) The form hf on a˚g
ej .

Let X “ Zµ ` Zµ and JX “ iZµ ` iZµ be elements of the basis of gej given in
Remark 2.2 (c). Then, from (19) and Lemma 2.3 (c), one obtains

hf pa˚X, a˚Xq “ ´e
2ejpHqdcfp ČrJX,Xszq

“ ´e2ejpHqt dcfppĂEjqzq “ ´
t
2
B rf
Bhj
pHq, (21)

for some t P Rzt0u. Since for all ζ P s1{2 the form F pζ, ζq “ rJζ, ζs takes values in

the cone Ja`, then t ą 0. By the comparison of (21) with the formula obtained

in Remark 6.2, one deduces the exact value of t, namely t “ 4}X}2

b
and

hf pa˚X, a˚Xq “ hf pa˚JX, a˚JXq “ ´2 }X}
2

b
B rf
Bhj
pHq.

Finally, let X “ Zµ ` Zµ and Y “ Zν ` Zν be elements of the basis of gej given
in Remark 2.2 (c), for µ, ν P ∆` distinct roots satisfying ν ­“ µ, µ̄. Then, by (19)
and Lemma 2.1(c) one has hf pa˚X, a˚Y q “ 0. This concludes the proof of (iv)
and of the proposition. �

Remark 4.2. Statement (i) in Lemma 3.5 suggests why in Prop.4.1 (iii) no

conditions appear on Bf̃
Bhr

.
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5. N-invariant psh functions vs. convdec functions

Let D be a Stein, N -invariant domain in a non-compact, irreducible Hermitian
symmetric space G{K of rank r. By Theorem 3.4, the base Ω of the associated
r-dimensional tube domain is a open convex, C-invariant set.

In this section, we characterize the N -invariant plurisubharmonic functions on
D in terms of the associated functions on Ω. We begin with the smooth case.
From Proposition 4.1, we obtain a one-to-one correspondence between the class
of smooth N -invariant plurisubharmonic functions on D and the class of smooth
convex functions on Ω which satisfy an additional monotonicity condition. Later
we obtain an analogous statement for arbitrary N -invariant plurisubharmonic
functions. As a result, N -invariant plurisubharmonic functions on D are neces-
sarily continuous. Define

C :“

#

pRą0qr, in the non-tube case,

pRą0qr´1 ˆ t0u, in the tube case.
(22)

The above cone C coincides with the one defined in (9), when Ja ` iJa` is
identified with Hr. Definition 3.3 can be reformulated accordingly.

Denote by “ ¨ ” the standard inner product on Rr. Let rf and pf be the functions
associated to an N -invariant function f : D Ñ R introduced in (12) and (13).

Theorem 5.1. Let D be an N-invariant Stein domain in G{K and let f : D Ñ

R be a smooth, N-invariant, plurisubharmonic function. Then the following
statements are equivalent:

(i) f is plurisubharmonic (resp. strictly plurisubharmonic) at z “ aK, with
a “ exppHq and H “

ř

j hjHj P D;

(ii) the form
´

´ 2δjl
B rf
Bhl
pHq ` B2

rf
BhjBhl

pHq
¯

j,l“1,...,r

in Proposition 4.1(ii) is positive semidefinite (resp. positive definite) and

grad rfpHq ¨ v ď 0 (resp. ă 0), for all v P Czt0u;

(iii) the Hessian of pf is positive semidefinite (resp. positive definite) at y “
py1, . . . , yrq “ LpHq and

grad pfpyq ¨ v ď 0 (resp. ă 0), for all v P Czt0u; (23)

Proof. The equivalence piq ô piiq follows directly from Proposition 4.1.
piiq ô piiiq Since L´1py1, . . . , yrq “ p1

2
lnpy1q, . . . ,

1
2

lnpyrqq (see (8)), one has
rfph1, . . . , hrq “ pfpe2h1 , . . . , e2hrq . Therefore

B rf
Bhj
ph1, . . . , hrq “ 2 B

pf
Byj

pe2h1 ,...,e2hr qe2hj (24)
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B2
rf

BhjBhl
pHq “ 4 B2

pf
ByjByl

pe2h1 ,...,e2hr qe2hje2hl ` 4 B
pf

Byj
pe2h1 ,...,e2hr qe2hjδjl . (25)

By combining formulas (24) and (25) one obtains
`

4 B2
pf

ByjByl
e2hje2hl

˘

j,l
“
`

B2
rf

BhjBhl
´ 2 B rf

Bhj
δjl
˘

j,l
. (26)

Also, by (24), the same monotonicity conditions hold both for rf and for pf . �

Definition 5.2. A function pf : Ω Ñ R, defined on a convex set, is convex if
pfptx` p1´ tqyq ď t pfpxq ` p1´ tq pfpyq, for all x, y P Ω and t P r0, 1s.

Remark 5.3. (i) If pf is smooth, then it is convex if and only if its Hessian is
positive semidefinite.

(ii) A smooth function is stably convex if its Hessian is positive definite.

Definition 5.4. Let Ω be a convex, C-invariant domain in pRą0qr. A function
pf : Ω Ñ R is C-decreasing (resp. strictly decreasing) if for every y P Ω and

v P Czt0u the restriction of pf to the half-line ty ` tv : t ě 0u is decreasing
(resp. strictly decreasing).

Remark 5.5. (i) If pf : Ω Ñ R is smooth, then it is C-decreasing if and only if

grad pfpyq ¨ v ď 0 for every y P Ω and v P C.

(ii) A smooth, stably convex function pf : Ω Ñ R is C-decreasing if and only if

grad pfpyq ¨ v ă 0, for every y P Ω and v P Czt0u. This follows from the fact

that the directional derivatives grad pfpyq ¨ v of a stably convex, C-decreasing

function pf never vanish. In particular pf is automatically strictly C-decreasing.

In view of the above definitions, we introduce the following classes of smooth
functions:

- ConvDec8,`pΩq: smooth, stably convex, C-decreasing functions on Ω,

- ConvDec8pΩq: smooth, convex, C-decreasing functions on Ω,

- Psh8,`pDqN : smooth, N -invariant, strictly plurisubharmonic functions on D,

- Psh8pDqN : smooth, N -invariant, plurisubharmonic functions on D.

Theorem 5.1 establishes a one-to-one correspondence between ConvDec8,`pΩq
and Psh8,`pDqN , and between ConvDec8pΩq and Psh8pDqN . It shows that the

function pf associated to a smooth N -invariant plurisubharmonic function on a
Stein domain D Ă G{K is not an arbitrary smooth convex function on Ω, as it
must satisfy the additional monotonicity conditions (23).

The rest of this section is devoted to obtaining analogous results in the non-
smooth case. To this aim we adapt to our purposes the notion of a plurisubhar-
monic function given in [Gun90], Def. 1, p. 118.
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Consider the smooth, stably convex, positive, strictly C-decreasing function
ph : pRą0qr Ñ Rą0 defined by

phpyq :“
ř

j
1
yj
, (27)

and let h be the N -invariant strictly plurisubharmonic function on G{K associ-

ated to ph.

Definition 5.6. A function pf : Ω Ñ R is stably convex and C-decreasing non-
smooth case by saying that if for every point in Ω there exist a convex C-invariant

neighborhood W and ε ą 0 such that pf ´ εph is a convex, C-decreasing function
on W .

Definition 5.7. An N-invariant function f : D Ñ R is strictly plurisubhar-
monic if for every point in D there exist an N-invariant neighborhood U and
ε ą 0 such that f ´ εh is an N-invariant plurisubharmonic function on U .

In the smooth case, the above notions coincide with the ones introduced earlier.
Now define the following spaces of functions:

- ConvDec`pΩq: stably convex and C-decreasing functions on Ω;

- ConvDecpΩq: convex, C-decreasing functions on Ω;

- Psh`pDqN : strictly plurisubharmonic, N -invariant functions on D;

- PshpDqN : plurisubharmonic, N -invariant functions on D.

In order to prove our main theorem, we adapt a classical approximation method
to the class of convex, C-decreasing functions on convex, C-invariant domains
in pRą0qr.

For a domain Ω in Rr, denote by dΩ : Ω Ñ R the distance function from the
boundary. If y P Ω, then dΩpyq is by definition the radius of the largest open ball
of center y contained in Ω.

Lemma 5.8. Let Ω be a proper, convex, C-invariant subdomain of Rr. Then the
function

pu :“ ´ ln dΩ

is convex and C-decreasing.

Proof. By a well known characterization of convex domains, the function pu is
convex. If for some y P Ω the open ball Bρpyq of center y and radius ρ is
contained in Ω then, by the C-invariance of Ω, also the ball Bρpy`vq is contained
in Ω, for all v P C. It follows that dΩpy`vq ě dΩpyq and consequently pupy`vq ď
pupyq, for all v P C. Hence pu is C-decreasing, as claimed. �

Fix a smooth, positive, radial function σ : Rr Ñ R (only depending on R2 “

}w}2), with support in B1p0q, such that σ1pR2q ă 0 and
ş

Rr σpwqdw “ 1.
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For ε ą 0 , let Ωε :“ ty P Ω : dΩpyq ą εu. Given a convex, C-decreasing

function pf : Ω Ñ R, define f̂ε : Ωε Ñ R by

pfεpyq :“
ş

Rr
pfpy ` εwqσpwqdw “ 1

εr

ş

Rr
pfpzqσpz´y

ε
qdz .

The functions pfε are clearly smooth.

Lemma 5.9. Let Ω be a convex, C-invariant domain in pRą0qr. Then the fol-
lowing facts hold true.

(i) For every ε ą 0, the domain Ωε is convex and C-invariant.

(ii) The functions
pf`ε :“ pfεpyq ` εphpyq ,

are smooth, stably convex, C-decreasing and, for εŒ 0, they decrease to
pf , uniformly on compact subsets of Ω.

Proof. (i) Let y and y` v be elements of Ωε. Then Bεpyq and Bεpy ` vq are
contained in Ω and, by the convexity of Ω, the same is true for Bεpy ` tvq, for
every t P r0, 1s. This shows that Ωε is convex. Moreover, as Ω is C-invariant, if
Bεpyq is contained in Ω and v is an element of the cone C, then also the open
ball Bεpy ` vq is contained in Ω. This shows that Ωε is C-invariant.

(ii) As pf is convex, for y, y ` v P Ω and t P r0, 1s, one has

pfεpy ` tvq :“

ż

Rr
pfpy ` tv ` εwqσpwqdw

ď

ż

Rr

`

p1´ tq pfpy` εwq ` t pfpy` εw` vq
˘

σpwqdw “ p1´ tq pfεpyq ` t pfεpy` vq ,

showing that the smooth function pfε is convex. Since ph is smooth and stably

convex, it follows that pf`ε :“ pfεpyq ` εphpyq is smooth and stably convex as well.
The inequality

pfεpy ` vq “

ż

Rr
pfpy ` v ` εwqσpwqdw ď

ż

Rr
pfpy ` εwqσpwqdw “ pfεpyq ,

for every y P Ωε and v P Czt0u, shows that pf`ε is C-decreasing.
Finally, as convexity implies subharmonicity, the remaining part of statement

(ii) follows from [Hör94], Thm 3.2.3(ii), p.143. �

Remark 5.10. By (ii), the smooth functions pf`ε pyq are stably convex. This is

not necessarily the case for the functions pfεpyq.

The next theorem summarises our results and should be regarded as a gener-
alization of the well known statements for Stein tube domains in Cn.
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Theorem 5.11. Let D be a Stein N-invariant domain in a non-compact, irre-

ducible Hermitian symmetric space G{K of rank r. The map f Ñ pf is a bijection
between the following classes of functions

(i) Psh8,`pDqN and ConvDec8,`pΩq,
(ii) Psh8pDqN and ConvDec8pΩq,

(iii) Psh pDqN and ConvDecpΩq,
(iv) Psh`pDqN and ConvDec`pΩq.

In particular, N-invariant plurisubharmonic functions on D are necessarily con-
tinuous.

Proof. As we already remarked, (i) and (ii) follow from Theorem 5.1 and Re-
mark 5.5.
(iii) Let f be a function in Psh pDqN . Since the r-dimensional submanifold
R exppDq ¨ eK Ă D is biholomorphic to a Stein tube domain Rr ˆ iΩ and the
restriction of f to R exppDq ¨ eK is plurisubharmonic and R-invariant, then
pf is necessarily convex. Assume by contradiction that pf is not C-decreasing.

Then there exists s P R such that the sublevel set t pf ă su is not C-invariant
and the corresponding N -invariant domain tf ă su is not Stein (cf. Thm. 3.4).
This contradicts [Car73], Thm. B, p. 419, asserting that the sublevel sets of a
plurisubharmonic function in a Stein domain in Cn are necessarily Stein. Hence
pf belongs to ConvDecpΩq, as claimed.

For the converse, let pf in ConvDecpΩq . By Lemma 5.9(ii), the functions
pf`ε are in ConvDec8,`pΩεq and, for ε Œ 0, they decrease to pf uniformly on
compact subsets of Ω. It follows that the corresponding N -invariant functions
f`ε decrease, uniformly on the compact subsets of D, to the N -invariant function

f corresponding to pf . By (i) each f`ε belongs to Psh8,`pDqN . Hence f P

Psh pDqN , as wished.
(iv) follows directly from the definition of Psh`pDqN and of ConvDec`pΩq.

Finally, from the inclusions

ConvDec`pΩq Ă ConvDecpΩq Ă C0pΩq
Y Y

ConvDec8,`pΩq Ă ConvDec8pΩq

it follows that all the above functions on Ω are continuous, and so are the corre-
sponding N -invariant plurisubharmonic functions on D. �

6. Applications: the N-invariant potentials of the Killing metric.

Let G{K be a non-compact, irreducible Hermitian symmetric space of rank r.
The Killing form B of g, restricted to p, induces a G-invariant Kähler metric
on G{K, which we refer to as the Killing metric. This metric coincides, up to a
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positive multiplicative constant, with the Bergman metric of G{K. In this section
we exhibit an N -invariant potential of the Killing metric and the associated
moment map in a Lie theoretical fashion. Later, we determine all the N -invariant
potentials of such metric.

Let f : G{K Ñ R be a smooth N -invariant function. The map µf : G{K Ñ n˚,
defined by

µf pzqpXq :“ dcfp rXzq, (28)

where X P n, is N -equivariant and satisfies (16). If f is strictly plurisubharmonic,
then it is referred to as the moment map associated with f .

Proposition 6.1. Let z “ naK P G{K, where n P N , a “ expH P A and
H “

ř

j hjHj P a. Let b be the constant defined in (15).

piq The N-invariant function ρ : G{K Ñ R defined by

ρpnaKq :“ ´1
2

řr
j“1BpH, Hjq “ ´

b
2
ph1 ` ¨ ¨ ¨ ` hrq ,

is a potential of the Killing metric.

piiq The moment map µρ : G{K Ñ n˚ associated with ρ is given by

µρpnaKqpXq “ ´
b
4

řr
j“1 e

´2hjpEjq˚pAdn´1Xq “ BpAdn´1X,AdaZ0q , (29)

where X P n, and the pEjq˚ are defined in (10).

Proof. (i) Let naK P G{K, where a “ expH and H “
ř

j hjHj. The function

rρ : aÑ R associated to ρ is given by rρpHq “ ´1
2

řr
j“1hjBpHj, Hjq (cf. (12)). In

order to obtain (i), we first prove the identities (29). By (28) and (18), one has

µρpaKqpXq “ dcρp rXaKq “ ´
b
4

řr
j“1 e

´2hjpEjq˚pXq.

By (2), one has

pEjq˚pXq “ BpX, θEjq{BpEj, θEjq “ 2BpX, 1
2
pEj ` θEjqq{BpEj, θEjq.

Since

b :“ BpHj, Hjq “ BpI0Hj, I0Hjq “ BpEj ´ θEj, Ej ´ θEjq “ ´2BpEj, θEjq

and Z0 “ S0 `
1
2

ř

j E
j ` θEj, for some S0 P m (cf.[GeIa22], Sect. 2), one obtains

´b
4

řr
j“1 e

´2hjpEjq˚pXq “ ´b
2

řr
j“1 e

´2hj BpX, 1
2
pEj ` θEjq{BpEj, θEjq

“
řr
j“1 BpX, Ada

1
2
pEj ` θEjqq “ BpX, Ada Z0q ,

and (29) follows from the N -equivariance of µρ.

Next we are going to show that on pˆ p one has

hρp a˚¨ , a˚¨ q “ Bp ¨ , ¨ q.
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Every X P s decomposes as X “ pX ´ φpXqq ` φpXq P k‘ p (see Sect. 2). Since
the projection φ : sÑ p is a linear isomorphism, the above identity is equivalent
to

hρpa˚X, a˚Y q “ hρpa˚φpXq, a˚φpY qq “ B
`

φpXq, φpY q
˘

“ ´1
2
B
`

X, θY
˘

, (30)

for all X, Y in s . By Proposition 4.1(i), it is sufficient to consider X, Y both
in the same block a˚a, a˚g

ej´el , and a˚g
2ej .

Let Hj, Hl P a, be as in (1). Then, by (ii) of Proposition 4.1, one has

hρpa˚Hj, a˚Hlq “ δjlBpHl, Hlq “ BpHj, Hlq .

Let X, Y P gα, with α “ ej ´ el or α “ ej. Then JY P gβ, for β “ ej ` el or
β “ ej, respectively. From (19) and (i) one obtains

hρpa˚X, a˚Y q “ ´e
αpHq`βpHqdcρp ČrJY,Xszq

“ ´eαpHq`βpHqBprJY,Xs, AdaZ0q.

From the invariance properties of the Killing form B , the decomposition of X
and JY in k‘ p and the identity φpJ ¨q “ I0φp¨q (cf. (3)), one has

BprJY,Xs, AdaZ0q “ BpAda´1rJY,Xs, Z0q “ e´pαpHq`βpHqqBprJY,Xs, Z0q

“ e´pαpHq`βpHqq pBprJY ´ φpJY q, X ´ φpXqs, Z0q `BprφpJY q, φpXqs, Z0qq

“ e´pαpHq`βpHqqBprZ0, φpY qs, φpXqs, Z0q “ e´pαpHq`βpHqqBpφpXq, rZ0, rZ0, φpY qssq

“ ´e´pαpHq`βpHqqBpφpXq, φpY qq “ 1
2
e´pαpHq`βpHqqBpX, θY q.

It follows that
hρpa˚X, a˚Y q “ ´

1
2
B
`

X, θY
˘

, (31)

as desired. This concludes the proof of (i).

(ii) The identity (31) implies that the N -invariant function ρ is strictly plurisub-
harmonic. Hence µρ is the moment map associated to ρ. Note that the plurisub-
harmonicity of ρ also follows by applying Proposition 5.1(iii) to the function
pρpy1, . . . , yrq “ ´

b
2

ř

j

?
yj. �

Remark 6.2. Combining (20) and (21) in Proposition 4.1 with (30), we obtain
the exact value of the positive quantities s and t

s “ 4}X}2

b
, for X P gej´el , and t “ 4}X}2

b
, for X P g2ej .

Remark 6.3. The map µG : G{K Ñ g˚ given by µGpgKqp¨q :“ BpAdg´1 ¨ , Z0q

is a moment map for the G-action on G{K. The moment map µρ in (ii) of
Proposition 6.1 coincides with the restriction of µGpnaKq to n. Namely, for
X P n and naK P G{K one has

µρpnaKqpXq “ µGpnaKqpXq “ BpAdpnaq´1 X ,Z0q.
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In the next remark, all N -invariant potentials of the Killing metric are deter-
mined.

Proposition 6.4. Let ρ : G{K Ñ R be the potential of the Killing metric given
in Proposition 6.1 and let σ be another N-invariant potential. Let pρ and pσ be
the corresponding functions on pRą0qr defined in (13).

(a) In the non-tube case, one has pσ “ pρ ` d, and therefore σ “ ρ ` d, for
some d P R;

(b) In the tube case, one has pσpyq “ pρpyq ` cyr ` d, for c, d P R. In particular

σpnaKq “ ρpnaKq ` ce2hr ` d,

where y “ py1, . . . , yrq P pRą0qr, a “ expH, with H “ L´1pyq “
ř

j hjHj, and
c, d P R.

Proof. Let f :“ σ´ρ be the difference of the two potentials. Then f is a smooth

N -invariant function on G{K such that ddcfp¨, J ¨q ” 0. Let pf : Ω Ñ R be the
associated function.
(a) In the non-tube case, by Proposition 4.1 (iv) and (24), the function pf satis-

fies B pf
Byj
” 0, for all j “ 1, . . . r. Hence pf is constant on pRą0qr and f is constant

on G{K.

(b) In the tube case, from Proposition 4.1, (26) and (24), it follows that B pf
Byj
” 0,

for all j “ 1, . . . r ´ 1, and B2
pf

By2
r
” 0 . Hence pf is an affine function of the

variable yr . Equivalently, pσpyq “ pρpyq ` cyr ` d, for c, d P R, as claimed. �

Remark 6.5. Let DpV, F q be a symmetric Siegel domain. Then the Bergman
kernel function Kpz, zq, where z P G{K, is N-invariant and lnKpz, zq is a po-
tential of the Bergman metric. As both the Killing metric and the Bergman metric
are G-invariant, they differ by a positive multiplicative constant. It follows that
lnKpz, zq is a positive multiple of one of the N-invariant potentials of the Killing
metric described in the above remark.

Example 6.6. As an application of Proposition 6.4, we exhibit all the N -
invariant potentials of the Killing metric for the upper half-plane in C and for
the Siegel upper half-plane of rank 2.

(a) Let G “ SLp2,Rq and let G{K be the corresponding Hermitian symmetric
space. Since b “ 8 and r “ 1, then the potential of the Killing metric given in
Proposition 6.1 is

ρpnaKq “ ´4h1.

The subgroup S “ NA, where

N “

"ˆ

1 m
0 1

˙

: m P R
*

and A “

"ˆ

eh1 0
0 e´h1

˙

: h1 P R
*

,
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acts on C by linear fractional transformations. The Siegel realization of G{K is
the S-orbit of i, namely the upper half-plane

H “ tx1 ` iy1 P C | y1 ą 0u.

By (8), one has
pρpy1q “ ρpexpL´1py1qKq “ ln 1

y2
1
.

Since H coincides with its associated tube and ρpx1 ` iy1q “ ln 1
y2
1
, all the N -

invariant potentials of the Killing metric are given by

σpx1 ` iy1q “ ln 1
y2
1
` cy1 ` d, c, d P R.

(b) Let G “ Spp2,Rq be the real symplectic group and let G{K be the corre-
sponding Hermitian symmetric space. As b “ 12, the potential of the Killing
metric defined in Proposition 6.1 is given by

ρpnaKq “ ´6ph1 ` h2q.

Fix the Iwasawa decomposition for which

N “

"ˆ

n m
0 tn´1

˙*

, A “

"ˆ

a 0
0 a´1

˙*

,

where n is unipotent, n tm is symmetric and a “

ˆ

eh1 0
0 eh2

˙

, with h1, h1 coordi-

nates in a with respect to the basis defined in Lemma 2.2. The Siegel realization
of G{K is the Siegel upper half-plane of rank 2

P “ tW “ S ` iT PMp2, 2,Cq | tW “ W, T " 0u,

of 2ˆ 2 complex symmetric matrices with positive definite imaginary part. It is
the orbit of iI2 under the action of S “ NA by linear fractional transformations.
The associated tube is H ˆ H and coincides with the diagonal matrices in P .
By (8), one has

pρpy1, y2q “ ρpexpL´1py1, y2qKq “ ln 1
py1y2q3

.

A matrix S ` iT P P can be expressed in a unique way as

na ¨ iI2 “ n ¨

ˆ

ie2h1 0
0 ie2h2

˙

.

If T “

ˆ

t1 t3
t3 t2

˙

, a simple computation shows that e2h1 “ t1´t
2
3{t2 and e2h2 “ t2.

Hence y1 “ t1 ´ t23{t2, y2 “ t2 and ρpS ` iT q “ ln 1
pt1t2´t23q

3 . If σ is an arbitrary

N -invariant potential of the Killing metric, then by Proposition 6.4,

σpS ` iT q “ ln 1
pt1t2´t23q

3 ` ct2 ` d, for some c, d P R.
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7. N-invariant Stein domains in G{K via N-invariant psh functions.

In this section, we present an alternative proof of Theorem 3.4, which relies
on the special features of the N -invariant plurisubharmonic functions. As an
example of the role played by N -invariant plurisubharmonic functions in this
proof, consider the unit ball Bn in Cn, for n ą 1. The N -orbits in Bn are
real hypersurfaces, and coincide with the horospheres internally tangent to the
boundary. Since the N -invariant plurisubharmonic functions on Bn decrease on
the subset exp a ¨ eK (see Thm. 5.11), a horoball containing the set exp tH1 ¨ eK,
for t P pc,8q, is an N -invariant Stein domain in Bn. The converse holds true as
well. This shows that for an N -invariant Stein domain in the ball, the base of
the associated tube domain is a half-line.

This proof of Theorem 3.4 is divided into two parts. If D has smooth boundary,
then the argument relies on the computation of the Levi form of smooth, N -
invariant functions on D (see Sect. 4).

In the non-smooth case, the result is obtained by realizing D as an increasing
union of Stein, N -invariant domains with smooth boundary. This construction is
based on Lemma 7.2, where an arbitrary open convex C-invariant set is exhausted
by an increasing union of open convex C-invariant sets with smooth boundary.

Proof of Theorem 3.4: the smooth case. The rank-1 tube case is trivial,
since every R-invariant domain in the upper half-plane H is Stein. So we deal
with the remaining cases: the rank-one non-tube case and the higher rank cases.

We resume the notation y “ py1, . . . , yrq, for elements in Rr. Let D Ă G{K
be a Stein, N -invariant domain with smooth boundary and let Rr ` iΩ Ă Cr be
its associated tube domain. By Rem. 3.2 (ii), its base Ω is a convex set with
smooth boundary.

Assume by contradiction that Ω is not C-invariant, i.e. there exist y P Ω and
z P py ` Cq X BΩ. By the convexity of Ω, the open segment from y to z is
contained in Ω. In addition, the vector v “ z´ y P C is transversal to the
tangent hyperplane TzBΩ and points outwards. Therefore, given a smooth local

defining function pf of BΩ near z, one has

B pf
Bv
pzq “ grad pfpzq ¨ v ą 0.

In the tube case, the above inequality and (24) imply that B rf
Bhj
pHq ą 0, for some

j P t1, . . . , r ´ 1u. Then, by Proposition 4.1 (iii), the Levi form of the corre-
sponding N -invariant function f is negative definite on the J-invariant subspace
a˚g

ej´el ‘ a˚g
ej`el of TaKpBDq, the tangent space to BD in aK. In the non-tube

case, one has B rf
Bhj
pHq ą 0, for some j P t1, . . . , ru. Then, by Proposition 4.1 (iv),

the Levi form of the corresponding N -invariant function f is negative definite on
the J-invariant subspace a˚g

ej of TaKpBDq. This contradicts the fact that f is a
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local defining function of the Stein N -invariant domain D and proves that Ω is
C-invariant.

Conversely, assume that Ω is convex and C-invariant. We prove that D is
Stein by showing that it is Levi-pseudoconvex, i.e. for all points aK P BD and
local defining functions f of D near aK, one has hf pX,Xq ě 0, for every tangent
vector X P TaKBD X JTaKBD, the complex tangent space to BD at aK.

Let z P BΩ and let aK “ L´1pzq. Denote by W :“ TzBΩ the tangent space to
BΩ in z. Then the complex tangent space to BD at aK is given by

a˚p
à

gej˘el ‘
à

gejq ‘ pL´1
˚ qzW ‘ JpL´1

˚ qzW.

Let v “ pv1, . . . , vrq be an outer normal vector to W in Rr. The convexity and
the C-invariance of Ω imply that vj ď 0, for j “ 1, . . . , r in the non-tube case,
and vj ď 0, for j “ 1, . . . , r ´ 1 in the tube case. Otherwise the space W would
intersect y ` C , for every y P Ω, yielding a contradiction.

Let pf be a smooth local defining function of Ω near z. By the convexity of

Ω, the Hessian Hessp pfqpzq is positive definite on W . Moreover, as the gradient

grad pfpzq is a positive multiple of v, one has B pf
Byj
pzq ď 0, for all j “ 1, . . . , r, in

the non-tube case, and B pf
Byj
pzq ď 0, for all j “ 1, . . . , r ´ 1, in the tube case.

Let f be the corresponding N -invariant local defining function of D near aK “

expL´1pzqK. By Theorem 5.1, the form hf is positive definite on pL´1
˚ qzW ‘

JpL´1
˚ qzW Ă a˚a‘ a˚Ja.

In addition, by (24) and Proposition 4.1, the form hf is positive definite on
a˚p

À

gej˘el‘
À

gejq. As a result, D is Levi pseudoconvex in aK “ expL´1pzqK.
Since aK is an arbitrary point in BDXexp a¨eK and bothD and f areN -invariant,
the domain D is Levi-pseudoconvex and therefore Stein, as desired.

For the proof of Theorem 3.4 in the non-smooth case we also need the following
results.

Lemma 7.1. Let D be a domain in a Stein manifold, let D1 Ă D be a subdomain
with smooth boundary and let z P BDXBD1. If D1 is not Levi pseudoconvex in z,
then D is not Stein.

Proof. Under our assumption, there exists a one dimensional complex submani-
fold M through z in D with Mztzu Ă D1 ([Ran86], proof of Thm. 2.11, p. 56).
This implies that D is not Hartogs pseudoconvex ([Ran86], Thm. 2.9, p. 54) and
in particular it is not Stein. �

Lemma 7.2. Let Ω be a convex, C-invariant domain in pRą0qr. For ε ą 0 let
Ωε :“ ty P Ω : dΩpy ą εu, as in Lemma 5.9. Then the following facts hold true.

(i) Let δε :“ ´ ln 3ε and pu :“ ´ ln dΩ. The sublevel set rΩε :“ ty P Ωε :
pu`ε pyq ă δεu is convex and C-invariant.
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(ii) The boundary of rΩε in pRą0qr coincides with ty P Ωε : pu`ε pyq “ δε u
and it is smooth.

(iii) As n P N increases, the sequence of convex, C-invariant subdomains with

smooth boundary rΩ1{n exhausts Ω.

Proof. (i) follows by applying (ii) of Lemma 5.9 to pu. Since the function pu`ε is

convex, then the domain rΩε is convex. Moreover, as pu is C-decreasing, it follows

that pu`ε is C-decreasing. Hence rΩε is C-invariant, as desired.
(ii) For y close to BΩε “ tz P Ω : dΩpzq “ ε u, a rough extimate shows that

dΩpy ` εwq ă 3ε, for every w P B1p0q. Therefore pu`ε pyq ą puεpyq ą ´ ln 3ε,

implying that the boundary of rΩε is contained in Ωε and it is given by BrΩε “

ty P Ωε : pu`ε pyq “ δε u. Concerning the smoothness of BrΩε, the rank one case is
trivial. So assume r ą 1.

Let py P BrΩε. Set v :“ p1, . . . , 1q, in the non-tube case, and v :“ p1, . . . , 1, 0q,
in the tube case. Since v lies in the cone C and pu`ε is strictly C-decreasing, for γ
small enough the real function g : p´γ, γq Ñ R, defined by gptq :“ pu`ε ppy` tvq, is
strictly decreasing. By the stable convexity of pu`ε , it is also stricltly convex and
g1p0q ă 0. As g1p0q is a directional derivative of pu`ε in py, the differential dpu`ε |py
does not vanish and the boundary of rΩε is smooth.

(iii) For m ą n , the inclusion Ω1{n Ă Ω1{m and the inequality pu`1{n ą pu`1{m
imply that rΩ1{n Ă

rΩ1{m. This concludes the proof of the lemma. �

Proof of Theorem 3.4: the general case. Let D be an arbitrary Stein, N -
invariant domain in G{K. By Remark 3.2 (ii), the base Ω of the associated tube
domain is necessarily convex. Assume by contradiction that Ω is not C-invariant,
i.e. there exist y P Ω and z P py ` Cq X BΩ. By the convexity of Ω, the open
segment from y to z is contained in Ω. Moreover, the vector v “ z´y lies in the
cone C and points to the exterior of Ω. Let Bεpyq be a relatively compact ball in
Ω and define

tmax :“ maxt t ą 0 : Bεpy ` tvq Ă Ω u .

Then there exists w P BBεpy ` tmaxvq X BΩ, and by construction

xw ´ py ` tmaxvq,vy ą 0.

Let n “ pn1, . . . , nrq be the outer normal to BBεpy ` tmaxvq , given by n :“
w ´ py ` tvq. Then nj ą 0, for some j P t1, . . . , ru in the non-tube case and
nj ą 0, for some j P t1, . . . , r´1u, in the tube case. From the result of the theorem
in the smooth case, it follows that the N -invariant subdomain N exppL´1pBεpy`
tmaxvqqq ¨ eK, with smooth boundary, is not Levi pseudoconvex in exppLpwqqK.
Then Lemma 7.1 implies that D is not Stein, contradicting the assumption.

Conversely, assume that Ω is convex and C-invariant. By Lemma 7.2, the
domain Ω can be realized as the increasing union of the convex C-invariant sets

with smooth boundary rΩ1{n. The the domain D can be realized as the increasing
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union of the N -invariant domains D1{n :“ N exppL´1prΩ1{nqq ¨ eK. By the result
of the theorem in the smooth case, the domains D1{n are Stein and so is their
increasing union D. This completes the proof of the theorem. �
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[CoLo86] Coeuré G., Loeb J.-J. Univalence de certaines enveloppes d’holomorphie. C. R.
Acad. Sci. Paris Sér. I Math. 302 (1986) 59–61.

[Fle78] Flensted-Jensen M. Spherical functions of real semisimple Lie groups. A method
of reduction to the complex case. J. Funct. Anal. (1) 30 (1978) 106–46.

[GeIa22] Geatti L., Iannuzzi A. Invariant plurisubharmonic functions on non-compact Her-
mitian symmetric spaces. Math. Zeit. 300, 1 (2022) 57–80.

[GPSV68] Gindikin S., Pyatetskii-Shapiro I., Vinberg E. Homogeneous Kähler mani-
folds. In Geometry of bounded domains, CIME 1968, Ed. Cremonese, Roma 1968,
3–87.

[Gun90] Gunning R. C. Introduction to Holomorphic Functions of Several Variables, Vol I:
Function Theory. Wadsworth & Brooks/Cole, 1990.

[HeSc07] Heinzner, P., Schwarz G. W. Cartan decomposition of the moment map. Math.
Ann. 337 (2007) 197–232.

[Hör94] Hörmander L. Notions of convexity. Birkhäuser, Basel–Boston–Berlin, 1994.

[PS69] Pyatetskii-Shapiro I. I. Automorphic Functions and the Geometry of Classical
Domains Gordon and Breach, New York, 1969.

[Ran86] Range R. M. Holomorphic Functions and Integral Representations in Several Com-
plex Variables. GTM Vol. 108, Springer-Verlag, New York, 1986.

[Ros63] Rossi H. On envelopes of holomorphy. Comm. Pure Appl. Math. 16 (1963) 9–17.

[RoVe73] Rossi H., Vergne M. Representations of Certain Solvable Lie Groups On Hilbert
Spaces of Holomorphic Functions and the Application to the Holomorphic Discrete
Series of a Semisimple Lie Group. J. Funct. Anal. 13 (1973) 324–389.

[Wol72] Wolf J.A. Fine structure of Hermitian symmetric spaces. in Boothby, W., Weiss,
G. Eds., Symmetric spaces. Short Courses, Washington University, St. Luis (MO),
1969-1970, Pure and App. Math. Vol. 8, Dekker, New York, 1972, pp. 271-357.

Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della
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