GEOMETRY OF HERMITIAN SYMMETRIC SPACES UNDER
THE ACTION OF A MAXIMAL UNIPOTENT GROUP

LAURA GEATTI AND ANDREA TANNUZZI

ABSTRACT. Let G/K be a non-compact irreducible Hermitian symmetric
space of rank r and let NAK be an Iwasawa decomposition of G. The
group N acts on G/K by biholomorphisms and the real r-dimensional subset
A-eK intersects every N-orbit trasversally in a single point. Moreover A-eK
is contained in a complex r-dimensional submanifold of G/K biholomorphic to
H", the product of r copies of the upper half-plane in C. This fact leads to
a ono-to-one correspondence between N-invariant domains in G/K and tube
domains in H". In this setting we prove a generalization of Bochner’s tube
theorem. Namely, an N-invariant domain D in G/K is Stein if and only if
the base  of the associated tube domain is convex and “cone invariant”.

We also prove the univalence of N-invariant holomorphically separable Rie-
mann domains over G/K. This yields a precise description of the envelope of
holomorphy of an arbitrary N-invariant domain in G/K. Finally, we obtain
a characterization of several classes of N-invariant plurisubharmonic funtions
on D in terms of the corresponding classes of convex functions on €. As
an application we present an explicit Lie group theoretical description of all
N-invariant potentials of the Killing metric on G/K and of the associated
moment maps.

1. INTRODUCTION

The classical Bochner’s tube theorem states that the envelope of holomorphy of
a tube domain R"+1¢2 in C” is univalent and coincides with its convex envelope
R™+ i conv(§2). Moreover, there is a one-to-one correspondence between the class
of R™-invariant plurisubharmonic functions on a Stein tube domain in C" and
the class of convex functions on its base in R™ (cf. [Gun90], Thm.13, p.111).

In this paper we obtain generalizations of the above results in the setting
of irreducible Hermitian symmetric spaces of the non-compact type, under the
action of a maximal unipotent group of holomorphic automorphisms.

Any such space can be realized as a quotient G/K of a non-compact real
simple Lie group G over a maximal compact subgroup K. Let g=n®a®t be
an Iwasawa decomposition of g, where n is a maximal nilpotent subalgebra, a
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is a maximal split abelian subalgebra and £ is the Lie algebra of K. The integer
r:=dima is by definition the rank of G/K.

Let NAK be the corresponding Iwasawa decomposition of G, where A :=
expa and N := expn. The group N acts on G/K by biholomorphisms and
every N-orbit in G/K intersects the smooth, real r-dimensional submanifold
A - eK transversally in a single point.

As the space G/K is Hermitian symmetric, the Lie algebra g of G contains a
subalgebra which is the direct sum of r pairwise commuting copies of s[(2,R).
The orbit of the base point eK € G/K under the corresponding subgroup of G is
a closed complex submanifold of G/K which contains A-eK and is biholomorphic
to the product of r copies of the upper half-plane H in C. This biholomorphism,
which restricts to a diffeomorphism between A -eK and the positive imaginary
octant in C", determines a one-to-one correspondence between N-invariant do-
mains D in G/K and tube domains R" + €2 in H" (cf.Sect.3). If D is an
N-invariant domain in G/K, then the properties of D and of the N-invariant
functions on D can be best described in terms of 2. Define the cone

_J(®R=Y)", in the non-tube case,
| (R*%)"=1 x {0}, in the tube case.

A set Q ¢ R" is C-invariant if y € Q0 implies y + v € €, for all v e C. Our
generalizion of Bochner’s tube thorem is as follows.

Theorem 3.4. Let G/K be a non-compact irreducible Hermitian symmetric
space of rank r. Let D be an N-invariant domain in G/K and let R" + i€ be
the associated r-dimensional tube domain. Then D is Stein if and only if € is
convex and C-invariant.

We also show that a holomorphically separable, N-equivariant, Riemann do-
main over GG/K 1is necessarily univalent (cf. Prop. 3.7). This implies the following
corollary:.

Corollary 3.8. The envelope of holomorphy D of an N-invariant domain D
in G/K coincides with the N-invariant domain whose associated r-dimensional

tube is R" + i@, where Q is the convex, C-invariant hull of ).

A first proof of Theorem 3.4 is obtained by realizing G/K as a Siegel domain
and by combining some results from the theory of normal .J-algebras with some
convexity arguments. An alternative proof relies on the special features of the
smooth N-invariant plurisubharmonic functions on G/K. There is a one-to-one
correspondence between N-invariant functions on D and functions on €2, and
such correspondence preserves regularity.

Let f : O —> R be a function defined on a C-invariant domain in (R>°)" and
let C' be the closure of the cone C. T hen ]? is said C-decreasing if for every
y € Q and v € C the restriction of f to the half-line {y +tv : t > 0}
is decreasing. The following theorem is a generalization to our setting of the
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well known correspondence between R"-invariant plurisubharmonic functions on
a tube domain and convex functions on its base (see. Thm.5.11 for a detailed
statement).

Theorem. Let D be a Stein, N-invariant domain in a non-compact, irreducible
Hermitian symmetric space G/K of rank r. Let Q be the base of the associated
r-dimensional tube domain.

An N-invariant function f: D — R is (strictly) plurisubharmonic if and only
if the corresponding function f: Q — R is (stably) convex and C-decreasing.

In particular, every N-invariant plurisubharmonic function on D is continuous.

In the smooth case, an important ingredient for the proof of the above theorem
is the computation of the Levi form of an N-invariant function f: D — R in
terms of the Hessian and the gradient of f: 2 — R (cf. Prop.4.1). This is done in
a Lie theoretic way, with no use of explicit models nor of the classification of the
symmetric spaces G/K. Instead, we use a simple moment map identity which
enables us to maximally exploit the symmetries at hand. In the non-smooth
case, the result is obtained by adapting to our context a classical approximation
method.

As an application of the above theorem, we determine all the N-invariant
potentials of the Killing metric on G/K in a Lie theoretical fashion.

The paper is organized as follows. Section 2 contains the preliminaries. In
Section 3 we prove Theorem 3.4. In Section 4 we compute the Levi form of a
smooth N-invariant function on G/K. In Section 5 we investigate N-invariant
plurisubharmonic functions on Stein N-invariant domains in G/K. In Section
6 we determine all the N-invariant potentials of the Killing metric and their
associated moment maps. In Section 7 we give an alternative proof of Theorem
3.4 by using N-invariant plurisubharmonic functions.

We wish to thank the referee for carefully reading the manuscript and for giving
us precious advise.

2. PRELIMINARIES

Let G/K be an irreducible Hermitian symmetric space, where G can be as-
sumed to be a real non-compact simple Lie group and K is a maximal compact
subgroup of GG. Let g and £ be the respective Lie algebras. Let g = ¢ @ p
be the Cartan decomposition of g with respect to €, with Cartan involution 6.
Denote by B(-, ) both the Killing form of g and its C-linear extension to g°.

Let a be a maximal abelian subspace in p. The dimension of a is by definition
the rankr of G/K. Let g = m@a®@P . g¢ be the restricted root decomposition
of g determined by the adjoint action of a, where m denotes the centralizer of
a in €. For a simple Lie algebra of Hermitian type g, the restricted root system
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is either of type C,. (if G/K is of tube type) or of type BC, (if G/K is not of
tube type), i.e. there exists a basis {ey,...,e.} of a* for which a positive system
¥F is given by

Y ={2¢, 1<j<r epte, 1<k<i<r}, fortype Cp,

Yt ={e;, 2¢;, 1<j<r e te, 1<k<l<r}, fortype BC,.

The roots 2eq, ... ,2e, form a maximal set of long strongly orthogonal posi-
tive restricted roots. The root spaces g2, ..., g% are one-dimensional and one
can choose generators E7 € g*% such that the sl(2)-triples {EY, 0F7, H; :=

[0E7, E7]} are normalized as follows
[Hj, El] = jZQEl, for j,l: 1,...,7’. (1)

Denote by Iy the G-invariant complex structure of G/K. By changing sign of the
generators EY if necessary, we may assume that Io(E? —0FE?) = H;. By the strong
orthogonality of 2eq, ..., 2e,, the vectors Hy,..., H, form a B-orthogonal basis
of a, dual to ey,...,e, of a*, and the associated sl(2)-triples pairwise commute.

Let g = n® a@® ¢t be the Iwasawa decomposition subordinate to X%, where
N = @uex+0%, and let G = NAK be the corresponding Iwasawa decomposition
of G. Then § = NA is a real split solvable group acting freely and transitively
on G/K. In particular, the tangent space to G/K at the base point eK can be
identified with the Lie algebra s = n® a.

The map ¢: s — p, given by ¢(X) := (X —0X), is an isomorphism of vector
spaces. As a consequence,

(X,Y) = B(6(X),0(Y)) = —3B(X,0Y), (2)

for X, Y € s, defines a positive definite symmetric bilinear form on s. Moreover,
the map J: s — s, given by

JX = ¢ tolyop(X), (3)

defines a complex structure on s, such that ¢(JX) = [yp(X). The complex
structure J permutes the restricted root spaces of s (cf. [RoVeT73]), namely

JCl — @926]" Jgej—el — 96j+6l, Jgej — g€j . (4)
7j=1

In order to obtain a precise description of J on s, we recall a few more facts. Let
a“=pod® uen 9 be the root decomposition of g& with respect to a maximally
split Cartan subalgebra h = b @ a of g, where b is an abelian subalgebra of m.
Let o be the conjugation of g© with respect to g. Let 6 denote also the C-
linear extension of § to g¢. One has fo = of. Write Z := oZ, for Z e gC.
As o and 6 stabilize b, they induce actions on A, defined by a(H) := u(H)
and Ou(H) := wp(0(H)), for H € b, respectively. Fix a positive root system
AT compatible with ¥*, meaning that ul, = Re(u) € T implies p € A*.
Then AT = AT,
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Given a restricted root a € X, the corresponding restricted root space g*
decomposes into the direct sum of ordinary root spaces with respect to the Cartan
subalgebra b as follows

= ( ® o o)

HEA, pkp
Re(p)=o

where A € A is possibly a root satisfying A = A = a. The next lemma is obtained
by combining Lemma 2.2 in [Gela22] with (3).

Lemma 2.1. (the complex structure J on ).
(a) Forj=1,...,r, let H; € a and E’ € g* be elements normalized as in (1).
Then JE7 = %Hj and JH; = —2E7.
(b) Let X = ZF + Zr e g%, where p € A is a root satisfying Re(u) = e; — ¢
and Z" € gt (if i = p, we may assume Z" = Z¢ and set X = Z"). Then
JX = [E', X] e gvte.
Let X = ZF 4+ Zr € g%, where ;1 € A" is a root satisfying Re(p) = e; + ¢
and Z* € gt (if i = p, we may assume Z* = ZF and set X = Z"). Then
JX = [0F', X] e g%,
(c) Let X = ZM + Zr € g%, where u is a root in A" satisfying Re(u) = e; and
ZM e gt (as dim g® is even, one necessarily has fi + p). Then JX = iZF +iZF €
g
Remark 2.2. (a J-stable basis of s) In view of Lemma 2.1, one can choose a
J-stable basis of s, compatible with the restricted root decomposition.
(a) As a basis of a®Ja, take pairs of elements H;, JH; = —2E7, forj =1,...,r,
normalized as in (1).
(b) As a basis of g~ @ gt take 4-tuples of elements

X=zr+2Zr, X' =izt+izr, JX =[F,X], JX =[E X,
parametrized by the pairs of roots p + i € A" satisfying Re(p) = e; —e; (with no
repetition), with Z" a root vector in g". For u = i, one may assume Z" = Z*
and take the pair X = Z*, JX = [E', X].
(¢) As a basis of g% (non-tube case), take pairs of elements

X=2r4+7Z0  JX =il +iZk,

parametrized by the pairs of roots j + i € A" satisfying Re(p) = e; (with no
repetition), with Z" € g'.

The next lemma contains some identities which are needed in Section 3. Its
proof is essentially contained in [Gela22], Lemma 2.4.

Lemma 2.3. Let p1€ A" be a root satisfying Re(p) = e; —e; and let Z* a root
vector in gt. Let X = Z! +Z"eg% @ and JX = [E', X]egv*e. If i+ p,
let X' =iZF+iZt and JX' = [E', X']. Then
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(a) [JX,X] =[JX',X'] = sE?, for some seR, s +0;
(b) [JX', X] = 0.

Let p1 be a root in A*, with Re(u) = e; (non-tube case) and let Z" be a root
vector in g". Let X = ZF + 2" and JX =iZ" +iZ”. Then

(c) [JX,X] =tE?, for some te R, t £ 0.

Hermitian symmetric spaces and Siegel domains. Let S = N A be the real
split solvable group arising from the Iwasawa decomposition of G subordinate to
¥*. The group S acts simply transitively on G/K. With the complex structure
J described in (3) and the linear form fy € s* defined by fo(X) := B(X, Zy),
where Zy € Z(#) is the element inducing the complex structure on p, the Lie
algebra s = n® a of S has the structure of a normal J-algebra (see [GPSV68],
p-49, [PS69], Sect. 3, p.51, and [RoVe73], Sect. 5, A).

This means in particular that w(X,Y) := —fo([X,Y]) is a non-degenerate
skew-symmetric J-invariant bilinear form on s and that the symmetric bilinear
form (X,Y) := —fo([JX,Y]) is the J-invariant positive definite inner product
on s defined in (2).

The adjoint action of a on s is symmetric with respect to (-, -) and decomposes
s into the orthogonal direct sum of the restricted root spaces. Moreover, the
adjoint action of the element Hj := %Z ; Hj € a decomposes s and n as

§ = 59D 6512 D s, n=ny@npdn,
where n; =nns; and

e;—e € 2e; ej+e
so=a® P g9, s1p=® __ 087 s51=0__0' @D gt

1<j<i<r 1<j<i<r

Set Ey := >, E’. The orbit
V.= Adexp50E0

is a sharp convex homogeneous selfadjoint cone in s; and
1
F:s1y X 8519 > 87 1= 8 +is5;,  F(W,W') = Z—l([JW’, W] —i[W, W),

is a V-valued Hermitian form, i.e. it is sesquilinear and F'(W, W) € V (the closure
of V'), for all W € sy/5. The group S acts on S D /2 by affine transformations,
given by

g (Z,W) = (AdsZ + £ + 21F(Ad W, () + iF((,C), Ad;W + (), (5)

where g = exp(exp& expo, where ( € 513, § € 51, 0 € 509, and s = expo. Then
the Hermitian symmetric space G/K =~ S - eK is biholomorphic to the Siegel
domain given by

D\V,F)={(Z,W)es{@®sip | Im(Z)— F(W,W) eV},
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via the map

L:S-eKw— D(V,F), s-eKws-(iEy,0). (6)

If 510 = {0} (if and only if the restricted roots system of g is of type C,),
then G/K is of tube type, otherwise it is of non-tube type. If dimgs; = n and
dimg 51/ = 2m, then s¢ @ s1/2 can be identified with C**™ and D(V, F') with an
open convex affinely homogeneous domain therein.

3. N-INVARIANT STEIN DOMAINS IN G/K

The goal of this section is to obtain a characterization of N-invariant Stein do-
mains in an irreducible non-compact Hermitian symmetric space G/K of rank r.
To an invariant domain D we associate an r-dimensional tube domain in H".
Then we prove that D is Stein if and only if the base of the associated tube is
convex and satisfies an additional geometric condition.

For this we exploit the realization of G/K as a Siegel domain (cf. Sect.2). We
also prove the univalence of holomorphically separable, N-equivariant, Riemann
domains over G/K. This result yields a precise description of the envelope of
holomorphy of an N-invariant domain in G/K.

Consider the unipotent abelian subgroup of G, isomorphic to R", defined by
R :=expJa (cf. (4)). The R-invariant set
Rexp(a) - eK

is an r-dimensional closed complex submanifold of G/K, intersecting all N-orbits
in G/K. Consider the positive octant Ja* := {dypE* | yp > 0,k = 1,...,7}
in Ja. One easily verifies that if £ € Ja*, then

AdexpoE = Ja* and iJa" =expa- (iEp,0),
where (iEp,0) is the base point of D(V, F') (see (5)). The map L restricts to a
biholomorphism
Rexp(a)-eK — Ja®iJa™,
given by

eXp(Zj ejEj) exp(2 hiHy) K Zj ejEj + iAdeXP(Zk he ) Eo- (7)

In particular Ljexpayx determines a diffeomorphism

Lia—Ja*, ) hpHy = Adexps, nom Eo = Y e E. (8)
- .

J

N-invariant domains in G/K and tube domains in H". In view of the above
discussion, the following facts hold true.
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(i) An N-invariant domain D in G/K is uniquely determined by a domain D
In a via

D:=NexpD-eK.

(ii) The intersection of D with the closed complex submanifold Rexp(a)-eK is
given by Rexp(D) - eK .

(iii) A tube domain Ja + i€2 in Ja + iJa™ determines a unique N-invariant
domain in G/K via

D = Nexp(D)-eK, where D= L"Q).

Definition 3.1. The r-dimensional tube domain associated to D 1is the image of
the set Rexp(D) - eK under L, namely

Ja+iQ,  where Q:= L(D).

Remark 3.2. (i) If we identify Ja + iJa with R” + iR" (by sending E’ into the
4t vector of the canonical basis of R”, for j = 1,...,r), then the set Ja+iJa" is
identified with H", where H is the upper half-plane in C. In particular, the tube
domain associated to D is just a tube domain in H".

(ii) If the domain D is Stein, then Rexp D-eK is Stein and so is the tube domain
associated to D. In particular, by Bochner’s theorem, its base €2 is convex.

We are going to give a precise characterization of the open convex sets (2 arising
from Stein N-invariant domains in G/K.

Assume that the symmetric space G/K is realized as a Siegel domain D(V, F'),
and let D be an N-invariant domain therein. Then

D={(ZW)eD\V,F)|Im(Z)—-FW,W) e Q},
where €2 is the Adexpn,-invariant open subset in V', determined by
12 =D NV,
and, by (6), (7) and (8), the base of the associated tube is
Q=QnJa".
Define a cone in Ja as follows

Co C,, in the non-tube case,
' C,_1, in the tube case,

where

C.:=cone(E',...,E") = Ja* and C,_;:=cone(E",...,E"") x {0}.

Definition 3.3. A set Q < Ja is C-invariant if E € Q0 implies E + C < ()
Equivalently, of E € Q implies E + C < ), where C' denotes the closure of C.
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The characterization of N-invariant Stein domains in G/K can be stated as
follows.

Theorem 3.4. Let G/K be a non-compact irreducible Hermitian symmetric
space of rank r. Let D be an N-invariant domain in G/K and let R" + iQ) be
the associated tube domain. Then D s Stein if and only if Q) is conver and
C-invariant.

In order to prove the above theorem, we need some preliminary results. For
this we separate the tube and the non-tube case.

The tube case. Denote by conv(€2) the convex hull of € in s;. Since € is

Adexpny-invariant and the action is linear, then also conv(§2) is Adeypn,-invariant.

Denote by p: s; — Ja the projection onto Ja, parallel to @g%¢. Denote by
(BHY*, ... (E")* (10)

the elements in the dual n* of n, with the property that (E9)*(E') = d; and
(E7)*(X*) =0, for all X* € g with a € X7\{2ey,...,2¢,}.

Lemma 3.5. The following statements hold true
(i) Let E =Y xpE* € Ja*, where 1, e R™Y, for k =1,...,r. Then
P(Adexpn ) = E + Cp1.
In particular, the coordinate x, of E remains unchanged under the Adexpn,-

action.

(ii) Let X € g%~“ be a non-zero element. Then [[E', X],X]| = sE7, for
some s € R70,

(iii) One has p(conv(§2)) = conv(p(§2)).

Proof. (i) Let E € Ja® and let hy € expng, where ny = @ g“~%. By

I<i<j<r

Theorem 4.10 in [RoVe73], for every 1 < i < j < r there exists a basis {EZ} of
g%~ with coordinates {};},, such that
(Ei)*(AdhoE) = xi(l + Zp,j% (;pi’])2)

(formula (4.13) in [RoVe73]). Since i < r, one has p(AdexpxE) = E +C,_1, as
claimed. In particular the r" coordinate of E does not vary under the Adexpn,-
action.

(i) Let X € g%~ be a non-zero element. Then exptX € expngy and ad (F) €
g~ = {0}. Tt follows that the curve

Adepix By = exp adix (Ey) = Eo + t[X, E'| + L[ X, [X, E']], t e R,
is contained in V. By Lemma 2.3 (a), its projection onto Ja is given by

P(Adexpex Bo) = (B7)*(Adexpex Bo) BV = (1 + £5)EY,
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for some s € R, s £ 0. By (i) the quantity 1 + %s > 0, for all t € R. Therefore
s > 0, as claimed.

(iii) We prove the two inclusions. By the linearity of p, the set p(conv(2)) is
convex and contains p(£2). Hence, p(conv(2)) o conv(p(R2)). Conversely, let Z €
conv(§2). Then there exist ¢y € (0,1) and X,Y € Q such that Z = ¢, X +(1—¢)Y.
Since p(Z) = top(X) + (1 — to)p(Y), one has p(conv(§2)) < conv(p(§2)). O

The non-tube case. Denote by p: st @ 512 — tJa the projection onto ¢Ja
parallel to s; @ i(Dg ) D 51/2.
Lemma 3.6. Let E € Jat. Then p(N - (iE,0)) = i(E +C,).

Proof. The N-orbit of the point (iE,0) € s¢ @ 512 is given by
N - (iE,0) = exp 512 exp s1 expng - (i2,0)

= {(§ + i(Adexpny £ + F((,€)), ) | § € 51, (€ 51po} (11)
By (11) and Lemma 3.5 (i), one has p(N - (i££,0)) = i(E + Cr—1 + p(F (512, 51/2)))-
In the symmetric case, g% + {0}, for all j = 1,...,r. Moreover, by Lemma

2.3(c), for every X # 0 in g%, the element [JX,X]| = F(X,X) E_Vm Ja
is a positive multiple of E. It follows that {[J(,(], ¢ € 812} = Ja*, and
P(N - (iE,0)) = i(E + C,), as claimed. O

Proof of Theorem 3.4. The tube case. An N-invariant domain D in a symmetric
tube domain D(V) is itself a tube domain with base the Adey,n,-invariant set 2.
Hence all we have to prove is that 2 is convex if and only if 2 is convex and
Q + CT,1 c Q.

Assume that €2 is convex. Then {2 is convex, being the intersection of £ with
the positive octant Jat. To prove that €2 is C-invariant, let £ = Zj z; B € Q,
where z; > 0, for j = 1,...,7, and let X € g%~“ be a non-zero element. One has
ad% (E) € g*~¢ = {0}. Hence, for every t € R,

AdexthE =F+ t%l[X, El] + %thl[X, [X, El]]

lies in €2. As € is convex, by replacing ¢ with —¢ and adding terms, one has that
also E + 25X, [ X, E']] = E + t*sx, £ lies in €, for some s > 0 (cf. Lemma 3.5
(ii)). This argument applied to all j = 1,...,r — 1 and the convexity of {2 imply
that Q + C,_; < €, as desired.

Conversely, assume that ) convex and C-invariant. We prove the convexity of
Q by showing that conv(2) < €. From Lemma 3.5 (ii) and the C-invariance of
(), one has

P(2) = P(Adexpny2) = Q2+ Crq < L
Moreover, from Lemma 3.5 (iii), the above inclusion and the convexity of 2, one
has
conv(Q2) N Ja < p(conv()) = conv(p()) < Q.
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Finally, from the Adeypq,-invariance of conv(§2) it follows that
conv () = Adexpn, (conv(§2) N Ja) © Adexpn,S2 = .
This completes the proof of the theorem in the tube case.

The non-tube case. Let D be an N-invariant domain in a symmetric Siegel
domain D(V, F). Denote by conv(D) the convex hull of D in sT ®s15. As N
acts on D by affine transformations, also conv(D) is N-invariant.
If D is Stein, then D n {W = 0} is a Stein tube domain in 5% with base Q. By
Theorem 3.4 for the tube case and Lemma 3.6, the set € is convex and Q+C, < €.
Conversely, assume that  is convex and C-invariant, i.e. Q + C, < Q (see
Def. 3.3). We are going to prove that D is convex. By Lemma 3.6, one has

P(D)=p(N-Q) =i(Q+C,) < if.
Moreover,
conv(D) niJa < p(conv(D)) = conv(p(D)) < ifQ.
By the N-invariance of conv(D), one obtains
conv(D) = N - (conv(D) niJa) = N -i€2 = D.

Hence D is convex and therefore Stein (cf. [Gun90], Vol.1, Thm.10, p. 67). This
concludes the proof of the theorem. O

Remark. If D is an N-invariant Stein domain in G/K, then the associated
tube domain R" + €2 is Stein, being biholomorphic to the intersection of D with
a closed submanifold in G/K. In particular its base ) is an open convez set.
Theorem 3.4 shows that R™ +1€2 is not an arbitrary Stein tube domain, as 2 must
also be C-invariant.

We conclude this section with a univalence result for holomorphically separable,
N-equivariant, Riemann domains over G/K.

Proposition 3.7. A holomorphically separable, N -equivariant, Riemann domain
w: Z — G/K is univalent, i.e. the holomorphic map m is globally injective.

Proof. Let w: Z — G/K be a holomorphically separable, N-equivariant, Rie-
mann domain over G/K . By [Ros63], Thm.4.6, Z admits a holomorphic, N-
equivariant open embedding into its envelope of holomorphy, which is a Stein
N-equivariant, Riemann domain over G/K . Hence, without loss of generality,
we may assume that Z is Stein.

Let 7(Z) = N exp(D)-eK be the image of Z under 7. Define ¥ := exp(D)-eK

and 3 := 7~ 1(¥). Note that 3 is a closed submanifold of Z.

Claim. The map qg: Nx3— Z, given by (n,x) — n - x, is a diffeomorphism.
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Proof of the claim. Since ¥ = w(Z) nexp(a) - eK is a closed real submanifold

of m(Z) and 7 is a local biholomorphism, the restriction | : > — % is a local
diffeomorphism. Moreover there is the commutative diagram

N xS 7

Idx(wi)l \Lﬂ'

NxY—2 NexpD-eK

where the maps Id x (r|s) and 7 are local diffeomorphisms, and ¢ is a global
diffeomorphism. Hence the map gz~5 is a local diffeomorphism.

To prove that qu5 is surjective, let z be an arbitrary element in Z. Note that
7(z) = nexp(H)K, for some n € N and H € D. Then the element w :=n~'-z € &
satisfies n - w = z, implying the surjectivity of q~5

To prove that 5 is injective, assume that n-w = n’-w’, for some n, n’ € N and
w, w' € . From the equivariance of 7 it follows that n-7(w) = n/-7(w'). As ¢
is bijective, it follows that n = n’ and 7(w) = w(w'). Thus w = (n™'n') - w' = W',
implying the injectivity of 5 and concluding the proof of the claim.

Now, to prove the univalence of =, it is sufficient to show that the restriction
s > 5 X of 7 to X is injective. For this, consider the closed complex
submanifold R-% = 77 Y(R- %) of Z, where R = expa. As Z is Stein, so is
R-3. Hence the restriction s R > — R-X defines an R-equivariant, Stein,
Riemann domain over the Stein tube R -3>. As R is isomorphic to R", from
[CoLo86], p. 60, it follows that 7|, is injective. Hence the same is true for 7l
and 7, as wished. 0

Corollary 3.8. The envelope of holomorphy D of an N -invariant dOTrAzam D
in G/K s the smallest Stein domain in G/K containing D. Namely, D is the
N -invariant domain such that the base €2 of the associated tube is the convex

C-invariant hull of €.

4. THE LEVI FORM OF AN N-INVARIANT FUNCTION ON G/K

Let G/K be a non-compact, irreducible Hermitian symmetric space of rank 7.
Let f: D — R be an N-invariant function. Then f is uniquely determined by
the functions

~

f(H) := f(exp H - eK), (12)

and

~ ~

F(y) == flexp(L™(y)) - eK) = f(L™'(y)) (13)
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where He D andy = L(H) € Q < (R>%)", according to the following commuta-
tive diagram

Q ~
e N
f
D—s1R.
e
exp
D

Since the N-action on D is proper and every N-orbit intersects transversally
the smooth slice exp(D) - eK in a single point, it is easy to check that the
map [ — ]? is a bijection between the class C°(D)¥ of continuous N-invariant
functions on D and the class C°(D) of continuous functions on D. By Theorem
4.1 in [Fle78], such a map is also a bijection between C*(D)Y and C*(D).
Analogous statements hold true for the map f — ]?

The goal of this section is to express the real symmetric J-invariant bilin-

ear form
hf('? ) = _ddcf(’ﬂ]'):

of a smooth N-invariant function f on D, in terms of the first and second deriva-
tives of the corresponding function f on D (Prop.4.1). Recall that a function
f on D is plurisubharmonic (resp. strictly plurisubharmonic) if and only if the
Levi form

L5 (Z, W) =2(hy(X,Y) + ih(X, JY))
is positive semidefinite (resp. positive definite), where Z = X —iJX and W =
Y —iJY are vectors of type (1,0).

Since L‘}: is positive semidefinite (resp. positive definite) if and only if hy is
positive semidefinite (resp. positive definite), the calculation of hy will enable
us to characterize smooth N-invariant plurisubharmonic functions on a Stein N-
invariant domain D in G/K by suitable conditions on the corresponding functions

FfonDand fon Q (cf. Thm. 5.1).

If f is N-invariant, then so is hy. Therefore it will be sufficient to determine
h; along the slice exp(D) - eK.

For X e g, denote by X the vector field on (G/K induced by the left G-action.
Its value at z € G/K is given by

v . d .
X = goloexpsX -z

Let X € g2, for « € X% U {0} (here X € a, when a = 0). If z = aK, with
a =exp H and H € a, then the vector field X can also be expressed as

~

X, =e Mg X (14)

Set
b:= B(H,, H,) = ... = B(H,, H,), (15)
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which is a real positive constant only depending on the Lie algebra g.

Proposition 4.1. Let D be an N-invariant domain in G/K andlet f: D — R
be a smooth N-invariant function. Fix a = exp H, with H = Zj hjH; € D.
Then, in the basis of s defined in Remark 2.2, the form hy at 2 = aK € D 1is
given as follows.
(i) The spaces aza, asJa, a,g“ %, a,g9"" and a,gv are pairwise hy-
orthogonal.

(ii) For H;, H; € a one has
N .
hy(a.Hj,a.Hy) = =20 5L (H) + %(H).

On the blocks a.g®~“ and a.g% the restriction of hy is diagonal and the only
non-zero values are given as follows.

(iii) For X, X' € g%~“ as in Remark 2.2(b), one has

2 ~F "2 Af
hy(a.X,a.X) = 255 80(H),  hp(a.X a.X) = 205550 (H).

(iv) (non-tube case) For X € g% as in Remark 2.2(c), one has

h¢(a. X, a. X) = —2@%}:(}1)-

On the remaining blocks the form hy is determined by (4), its J-invariance, (i)
and (i) above.

Proof. Let f: G/K — R be a smooth N-invariant function. The computation
of hy uses the fact that, for X € n, the function ,ujf: G/K — R, given by

pf(2) = d°f (X.), is N-equivariant and satisfies the identity
Ay = —13ddf, (16)

~

where d°f := dfoJ (see [HeSc07], Lemma 7.1). We begin by determining d°f(X.,),
for X e n and z € G/K. By the N-invariance of f and of J one has

def(Xp2) = d°f(Ad, 1 X,), (17)

for every z € G/K and n € N. Thus it is sufficient to take z = aK € exp(D)-eK.
Let H = > h;jH; € D and a = exp H. Then

N 1o—2h; o (1 for X — EJ e q2¢
dcf(Xz) _ {26 ahj< )7 or €9 (18)

0, for X € g%, with a € ¥\{2ey,...,2¢,}.
The first part of equation (18) follows from (14) and Lemma 2.1 (a):

~

A ((B7).) = e UDdf (a, JB9) = Se2m | F(H + sHj) = e 2L (H).
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For the second part, let X € g, with a € ¥*\{2e¢,,...,2¢,}. Then JX € g’ with
f € X*. By (14) and the N-invariance of f, one obtains the desired result

d°f(X,) = e oU+BH)gF(JX,) = 0.

(i) Orthogonality of the blocks. Let X € g® and Y € g7, where o € ¥7
and v € {0} U (X¥"\{2e1,...,2¢,}) are distinct restricted roots (here Y € a, when
7 =0). Then JY € g°, for some 3 € ¥. By (14) and (16), one has

hy(a,X,a,Y) = —ddf(a, X, a, JY) = —e* DB qqe f(X. JY )
= o(H)+BHE) g X (JY ) = eH)+B(H )4 ol (expsJY - 2)
_ ea(H)+ﬁ(H)% S_Odcf(XexszY»Z) e (H)+B(H )ds o~ odcf(Ade;(?;Y)Xz)
= eI | e f(X, — s[JY, X], + o(s?))

ds
— o UFBI e ([ TY, X1.). (19)

The brackets [JY, X] lie in g*™?. Since a # v, one sees that a+ 3 =+ 2ey, ..., 2e,.
Then, by (18), the expression (19) vanishes, proving the orthogonality of a,g*
and a.g”, for all & and v as above. The J-invariance of hy implies that a.a is
orthogonal to a,g”, for all 3 € ¥+, and concludes the proof of (i).

Next we determine the form hy on the essential blocks.
(ii) The form hy on a.a.
Let H;, H; € a. Since JH; = —2E', one has

hy(a,Hj, a,Hy) = —2dd f(a. B, a.Hj) = —2¢21 0 dde f((ED).., (H).)
= QeQel(H)duEl((}?) ) = 262€l(H)%}t=0uEl(exp tH; - 2)

= 2€2el ‘t Odcf(( )exptAj~Z)7
which, by (18), becomes

€ —Z€ 0 aN aQN
el d|  Lle-2a(ti+tH;) f(H+tH) = —2a—,£(H)51j T ahjafhl (H).

This concludes the proof of (ii).

(iii) The form h; on a.g% .
Let X, X’ € g% “ be elements of the basis given in Remark 2.2 (b). Then
JX, JX"e g¥*e. From (19), (18) and Lemma 2.3(a) one has

h(a. X, a.X) = —dd°f(a.X, a, JX)
—elesre)(ele—ed(H) e f([TX, X].)
et (sdef((B9).)) = —3 5L(H), (20)
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for some s € R\{0}. By Lemma 3.5 (ii), one has s > 0. By the comparison of
(20) with the formula obtained in Remark 6.2, one deduces the exact value of s,

4|.x]?
b

namely s = . Therefore, one has

hy(a.X,0,X) = 25520 (H),  hy(a.X,0.X") = 2250 (),
as stated. From (19) and Lemma 2.3(b), one obtains hy(a.X,a,X’) = 0. From
(19), the skew symmetry of dd°f and the fact that 2(e; — ¢;) ¢ ¥, one obtains
hy(a.X,a.JX) = hy(a.X,a,JX') = 0. Finally, let X = Z* + Z¢, and Y =
7V 4 Z¥ be elements of the basis of g%~ given in Remark 2.2 (b), for u, v € A*
distinct roots satisfying v £ p, fi. Then, by (19) and Lemma 2.1(b) one has

hy(a,X,a,Y) = 2D f([TY, X],) = 0,

since no non-real roots in A have real part equal to 2e;. This completes the proof
of (iii).

(iv) The form hs on a.g%.

Let X = Z* + Zr and JX = iZ" 4 iZ* be elements of the basis of g% given in
Remark 2.2 (¢). Then, from (19) and Lemma 2.3 (c), one obtains

hy(a,X,a,X) = —e2 e f([JX, X].)

=~ Mide f((ED).) = ~4 5L (H), (21)
for some ¢ € R\{0}. Since for all { € 51/, the form F(¢,() = [J(, (] takes values in
the cone JaT, then t > 0. By the comparison of (21) with the formula obtained

4]x]?
b

in Remark 6.2, one deduces the exact value of ¢, namely ¢t = and

-
hy(a,X, a.X) = hy(a.J X, a, ] X) = 25520 (1),

Finally, let X = Z# + Z# and Y = Z” + Z¥ be elements of the basis of g& given

in Remark 2.2 (¢), for u, v € A" distinct roots satisfying v + p, ji. Then, by (19)

and Lemma 2.1(c) one has h¢(a,.X,a.Y) = 0. This concludes the proof of (iv)

and of the proposition. O

Remark 4.2. Statement (i) in Lemma 3.5 suggests why in Prop.4.1 (iii) no

i+ of
conditions appear on ;-
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5. N-INVARIANT PSH FUNCTIONS VS. CONVDEC FUNCTIONS

Let D be a Stein, N-invariant domain in a non-compact, irreducible Hermitian
symmetric space G/K of rank r. By Theorem 3.4, the base € of the associated
r-dimensional tube domain is a open convex, C-invariant set.

In this section, we characterize the N-invariant plurisubharmonic functions on
D in terms of the associated functions on 2. We begin with the smooth case.
From Proposition 4.1, we obtain a one-to-one correspondence between the class
of smooth N-invariant plurisubharmonic functions on D and the class of smooth
convex functions on 2 which satisfy an additional monotonicity condition. Later
we obtain an analogous statement for arbitrary N-invariant plurisubharmonic
functions. As a result, N-invariant plurisubharmonic functions on D are neces-
sarily continuous. Define

_ {(R>O)T, in the non-tube case,

(22)

(R=%)=1 x {0}, in the tube case.
The above cone C' coincides with the one defined in (9), when Ja + iJa™ is
identified with H". Definition 3.3 can be reformulated accordingly.
Denote by “-” the standard inner product on R". Let fand fbe the functions
associated to an N-invariant function f: D — R introduced in (12) and (13).

Theorem 5.1. Let D be an N-invariant Stein domain in G/K and let f: D —
R be a smooth, N-invariant, plurisubharmonic function. Then the following
statements are equivalent:

(i) f is plurisubharmonic (resp. strictly plurisubharmonic) at z = akK, with
a=exp(H) and H =%, hjH; € D;

(i) the form

(— 200 2L (H) + 524 (H) )

in Proposition 4.1(ii) is positive semidefinite (resp. positive definite) and

j,l=1,...,7‘

~

gradf(H)-v <0 (resp. <0), for all ve C\{0};

(iii) the Hessian of ]? is positive semidefinite (resp. positive definite) at'y =
(yla s 7yr) = L(H) and

~

gradf(y)-v <0 (resp. <0), for all ve C\{0}; (23)

Proof. The equivalence (i) < (ii) follows directly from Proposition4.1.
(i1) < (iii) Since L™ (y1,...,y,) = (3In(y1),...,3In(y,)) (see (8)), one has

~

f(hy,y .. hy) = f(e%l, ..., €Y Therefore

of of ,
ij(hl, o hy) = 2%@%1,...,@2%)62% (24)
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2~ N .
%(H) = 4055 (e th,...,thr)Gth€2hl + 4%(62h1,...,62h’7')62h‘7 il - (25)
By combining formulas (24) and (25) one obtains
PF2hip2h)  _ (_&F of
(4ay oy € e l)j,l = (6hj6hl T4 n jl)j,l' (26)

Also, by (24), the same monotonicity conditions hold both for f and for f O

Definition 5.2. A functwn f Q — R, defined on a convex set, is conver if
fltx+ (1 =t)y) <tf(x)+ (1 —t)f(y), for allx, y € Q and t € [0,1].

Remark 5.3. (i) If f is smooth, then it is convex if and only if its Hessian is
positive semidefinite.

(ii) A smooth function is stably convex if its Hessian is positive definite.

Definition 5.4. Let Q be a convex, C-invariant domain in (R™°)". A function
f Q — R is C-decreasing (resp strictly decreasing) if for every y € Q and

v e C\{0} the restriction of f to the half-line {y +tv : t =0} is decreasing
(resp. strictly decreasing).

Remark 5.5. (i) If f : 0 — R is smooth, then it is C-decreasing if and only if
gradf(y) - v <0 forevery ye Q and ve C.

(ii) A smooth, stably convex function f ) — R is C-decreasing if and only if
grad]?( )-v < 0, for every y € Q and v € C\{0}. This follows from the fact
that the directional derivatives gradf ( ) v of a stably convex, C-decreasing
function f never vanish. In particular f is automatically strictly C-decreasing.

In view of the above definitions, we introduce the following classes of smooth
functions:

- ConvDec™*(€): smooth, stably convex, C-decreasing functions on €,

- ConvDec®(§): smooth, convex, C-decreasing functions on €,

- Psh®™*(D)N: smooth, N-invariant, strictly plurisubharmonic functions on D,
- Psh®(D)N: smooth, N-invariant, plurisubharmonic functions on D.

Theorem 5.1 establishes a one-to-one correspondence between ConvDec™ ™" (€2)
and Psh® ™ (D)N, and between ConvDec® () and Psh®(D)Y. It shows that the
function f associated to a smooth N-invariant plurisubharmonic function on a
Stein domain D < G/K is not an arbitrary smooth convex function on €, as it
must satisfy the additional monotonicity conditions (23).

The rest of this section is devoted to obtaining analogous results in the non-
smooth case. To this aim we adapt to our purposes the notion of a plurisubhar-
monic function given in [Gun90], Def. 1, p. 118.
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Consider the smooth, stably convex, positive, strictly C-decreasing function

~

h: (R*%)" — R>Y defined by
h(y) =34 (27)

and let h be the N-invariant strictly plurisubharmonic function on G/K associ-
ated to h.

Definition 5.6. A function f: Q — R is stably conver and é-decreﬁsing non-
smooth case by saying that if for every point in €2 there exist a conver C-invariant

neighborhood W and € > 0 such that f — eh is a convex, C-decreasing function
on W.

Definition 5.7. An N-invariant function f: D — R s strictly plurisubhar-
monic if for every point in D there exist an N -invariant neighborhood U and
€ >0 such that f —eh s an N-invariant plurisubharmonic function on U.

In the smooth case, the above notions coincide with the ones introduced earlier.
Now define the following spaces of functions:

- ConvDect(2): stably convex and C-decreasing functions on €2;
- ConvDec(Q): convex, C-decreasing functions on 2;
- Psh™(D)N: strictly plurisubharmonic, N-invariant functions on D;

- Psh(D)": plurisubharmonic, N-invariant functions on D.

In order to prove our main theorem, we adapt a classical approximation method
to the class of convex, C-decreasing functions on convex, C-invariant domains
in (R>9)".

For a domain €2 in R", denote by dg: 2 — R the distance function from the
boundary. If y € Q, then dq(y) is by definition the radius of the largest open ball
of center y contained in 2.

Lemma 5.8. Let ) be a proper, convez, C-invariant subdomain of R". Then the
function

U= —Indq

1s convex and C-decreasing.

Proof. By a well known characterization of convex domains, the function « is
convex. If for some y € Q the open ball B,(y) of center y and radius p is
contained in 2 then, by the C-invariance of 2, also the ball B,(y+ V) is contained
in Q, for all v e C. It follows that do(y+v) = do(y) and consequently u(y+v) <
i(y), for all v e C. Hence @ is C-decreasing, as claimed. O

Fix a smooth, positive, radial function ¢ : R” — R (only depending on R? =
|w|?), with support in B4 (0), such that ¢’(R*) <0 and {,, o(w)dw = 1.
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For ¢ >0, let Q. := {y € Q : dao(y) > €}. Given a convex, C-decreasing
function f Q — R, deﬁne fE Q. - R by

SR7 (y +ew)o(w)dw = % §,, f(z)a(z*y)dz.

The functions fa are clearly smooth.

Lemma 5.9. Let Q be a convex, C-invariant domain in (R>°)". Then the fol-
lowing facts hold true.

(i) For every € > 0, the domain . is conver and C-invariant.
(ii) The functions
f&=fy) +ehly),
are smooth, stably convexr, C-decreasing and, for € \, 0, they decrease to
f, uniformly on compact subsets of 2.

Proof. (i) Let y and y + v be elements of Q.. Then B.(y) and B.(y + v) are
contained in Q and, by the convexity of 2, the same is true for B.(y + tv), for
every t € [0,1]. This shows that €2, is convex. Moreover, as 2 is C-invariant, if
B.(y) is contained in €2 and v is an element of the cone C, then also the open
ball B.(y + v) is contained in €. This shows that 2. is C-invariant.

(ii) As f is convex, for y, y + ve Q and t € [0, 1], one has

Fy+tv):= | fly+tv+ew)o(w)dw
Rr

< JT ((1 — t)f(y +ew) + tf(y +ew + v))a(w)dw =(1- t)]?a(y) + tﬁ-(y + V),

showing that the smooth function J?E is convex. Since h is smooth and stably
convex, it follows that fF := f.(y) + eh(y) is smooth and stably convex as well.
The inequality

fly+v)= | Jy+vrewo(widw < | fly+ewlo(widw = (),

for every y € Q. and v e C\{0}, shows that fj is C-decreasing.
Finally, as convexity implies subharmonicity, the remaining part of statement
(ii) follows from [Hor94], Thm 3.2.3(ii), p.143. O

Remark 5.10. By (ii), the smooth functions fj(y) are stably convex. This is
not necessarily the case for the functions f-(y).

The next theorem summarises our results and should be regarded as a gener-
alization of the well known statements for Stein tube domains in C".
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Theorem 5.11. Let D be a Stein N -invariant domain in a non-compact, irre-
ducible Hermitian symmetric space G/K of rankr. The map f — f is a bijection
between the following classes of functions

(i) Psh®*(D)Y and ConvDec™"(Q),

(i) Psh®(D)N and ConvDec®(9),

(iii) Psh(D)N  and ConvDec(f),

(iv) Psh*(D)Y and ConvDec"(9).
In particular, N-invariant plurisubharmonic functions on D are necessarily con-
tinuous.

Proof. As we already remarked, (i) and (ii) follow from Theorem 5.1 and Re-
mark 5.5.

(iii) Let f be a function in Psh (D)Y. Since the r-dimensional submanifold
Rexp(D) - eK < D is biholomorphic to a Stein tube domain R” x i€} and the
restriction of f to Rexp(D) - eK is plurisubharmonic and R-invariant, then
]? is necessarily convex. Assume by contradiction that f is not C-decreasing.
Then there exists s € R such that the sublevel set {f < s} is not C-invariant
and the corresponding N-invariant domain {f < s} is not Stein (cf. Thm.3.4).
This contradicts [Car73], Thm.B, p.419, asserting that the sublevel sets of a
plurisubharmonic function in a Stein domain in C" are necessarily Stein. Hence
f belongs to ConvDec(f2), as claimed.

A

For the converse, let f in ConvDec(€2). By Lemma 5.9(ii), the functions

A~

fj are in ConvDec™*(Q.) and, for £ N\, 0, they decrease to f uniformly on
compact subsets of €2. It follows that the corresponding N-invariant functions
f decrease, uniformly on the compact subsets of D, to the N-invariant function
f corresponding to J? By (i) each fF belongs to Psh®™™(D)". Hence f €
Psh (D)N, as wished.

(iv) follows directly from the definition of Psh*(D)Y and of ConvDect ().

Finally, from the inclusions
ConvDec™(2) < ConvDec(Q) < C°%Q)

v v
ConvDec™*(Q) < ConvDec® ()

it follows that all the above functions on €2 are continuous, and so are the corre-
sponding N-invariant plurisubharmonic functions on D. 0

6. APPLICATIONS: THE N-INVARIANT POTENTIALS OF THE KILLING METRIC.

Let G/K be a non-compact, irreducible Hermitian symmetric space of rank r.
The Killing form B of g, restricted to p, induces a G-invariant Kéahler metric
on G/K, which we refer to as the Killing metric. This metric coincides, up to a
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positive multiplicative constant, with the Bergman metric of G/K. In this section
we exhibit an N-invariant potential of the Killing metric and the associated
moment map in a Lie theoretical fashion. Later, we determine all the N-invariant
potentials of such metric.

Let f: G/K — R be a smooth N-invariant function. The map p;: G/K — n*,
defined by

pr(2)(X) = d°f(X2), (28)
where X € n, is N-equivariant and satisfies (16). If f is strictly plurisubharmonic,
then it is referred to as the moment map associated with f.

Proposition 6.1. Let z = naK € G/K, where n € N, a = expH € A and
H =5 hjH;€a. Let b be the constant defined in (15).

(i) The N-invariant function p: G/K — R defined by

p(naK) = _%Z;:1B(H» Hj)=-2(hi+ - +h),
1s a potential of the Killing metric.
(it) The moment map p, : G/K — n* associated with p is given by
pp(naK)(X) = = 21 e 2hi (EN*(Ad,1 X) = B(Ad, X, Ad,Zy) , (29)
where X € n, and the (E?)* are defined in (10).

Proof. (i) Let naK € G/K, where a = expH and H = }; h;H;. The function
p:a— R associated to p is given by p(H) = —%Z;zlth(Hj, H;) (cf.(12)). In
order to obtain (i), we first prove the identities (29). By (28) and (18), one has

~

pp(aK)(X) = d°p(Xax) = =5 2y e (BY)*(X).
By (2), one has
(E7)*(X) = B(X,0E7)/B(E’,0E7) = 2B(X, 1(E7 + 0E7))/B(E?,0E7).
Since
b := B(H,, H;) = B(IH;, I,H;) = B(E — 0E9, ) — 0F) = —2B(E,0E)
and Zy = Sp + %ZJ FE7 + 0F7, for some Sy € m (cf.[Gela22], Sect.2), one obtains
—B e (BN (X) = =53 e B(X, 5 (E + 0F7)/B(E’,0E)
=30 B(X, Ad, (B + 0E%)) = B(X, Ad, Z),
and (29) follows from the N-equivariance of j,.

Next we are going to show that on p x p one has

hp(a*'7 CL*') :B('7 )
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Every X € s decomposes as X = (X — ¢(X)) + ¢(X) e £Dp (see Sect. 2). Since
the projection ¢ : s — p is a linear isomorphism, the above identity is equivalent
to

hy(a: X, a,Y) = hy(a.6(X), a:6(Y)) = B(¢(X), ¢(Y)) = —3B(X, 0Y),  (30)

for all X, Y in s. By Proposition 4.1(i), it is sufficient to consider X, Y both
in the same block a.a, a,g% ¢, and a,g>%.
Let H;, H; € a, be as in (1). Then, by (ii) of Proposition 4.1, one has

h,(a.H;,a.H;) = 6;B(H,;, H) = B(H;, H)) .
Let X, Y € g%, with o = ¢; —¢; or @ = ¢;. Then JY € ¢°, for B =e; +¢ or
= ej, respectively. From (19) and (i) one obtains
hy(a,X, a,Y) = —e* 5 aep([JY X1 )
=~ B([JY, X], AdyZy).

From the invariance properties of the Killing form B, the decomposition of X

and JY in €@ p and the identity ¢(J-) = lyo(:) (cf. (3)), one has
B([JY, X], Ad,Zy) = B(Ad,1[JY, X], Zy) = e~ @E+BHEN B([JY, X], Z)
= e~ UDHIDN(B([TY = ¢(JY), X — ¢(X)]. Zo) + B([6(JY), 6(X)], Zo))
= e I B([Zo, 9(Y)], 9(X)]. Zo) = e~ @I B(§(X), [ Zo, [Zo, 9(Y)]])
= _@—(Q(H)+5(H))B(¢(X),¢(Y)) = e—(a(H)+6(H))B(X, 0Y).
It follows that

1
2

h,(a. X, a.Y) = —1B(X, 6Y), (31)
as desired. This concludes the proof of (i).

(ii) The identity (31) implies that the N-invariant function p is strictly plurisub-
harmonic. Hence p, is the moment map associated to p. Note that the plurisub-
harmonicity of p also follows by applying Proposition 5.1(iii) to the function

ﬁ(y177y7‘):_32]\/% O

Remark 6.2. Combining (20) and (21) in Proposition 4.1 with (30), we obtain
the exact value of the positive quantities s and t

_Axpe ej—e _ 4x]
=5, for Xegv ™, —and t=-5

2

, for X e g®%.

Remark 6.3. The map pe : G/K — g* given by pa(9K)(-) :== B(Ady-1 -, Zp)
is a moment map for the G-action on G/K. The moment map p, in (i) of

Proposition 6.1 coincides with the restriction of pc(nakK) to n. Namely, for
X en and naK € G/K one has

pp(naK)(X) = pa(nak)(X) = B(Adpeg 1 X, Zo).
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In the next remark, all N-invariant potentials of the Killing metric are deter-
mined.

Proposition 6.4. Let p: G/K — R be the potential of the Killing metric given
in Proposition 6.1 and let o be another N-invariant potential. Let p and o be
the corresponding functions on (R™°)" defined in (13).

(a) In the non-tube case, one has ¢ = p + d, and therefore o = p + d, for
some d € R;

(b) In the tube case, one has o(y) = p(y) + cy, + d, for c,d € R. In particular
o(nakK) = p(nakK) + ce*™ +d,

where y = (y1,...,y.) € (R*%)", a = expH, with H = L™!(y) = > hiHj, and
c,deR.

Proof. Let f := o — p be the difference of the two potentials. Then f is a smooth
N-invariant function on G/K such that dd°f(-,J-) = 0. Let f: Q@ — R be the
associated function. R

(a) In the non-tube case, by Proposition 4.1 (iv) and (24), the function f satis-

fies af =0,forall j = 1,...r. Hence f is constant on (R>%)" and f is constant
on G/ K.
(b) In the tube case, from Proposition 4.1, (26) and (24), it follows that af =0,

for all j = 1,...r — 1, and a’; = 0 . Hence f is an affine function of the

Oy
variable y, . Equivalently, 6(y) = p(y) + cy, + d, for ¢, d € R, as claimed. O

Remark 6.5. Let D(V, F) be a symmetric Siegel domain. Then the Bergman
kernel function K(z,z), where z € G/K, is N-invariant and In K(z,z) is a po-
tential of the Bergman metric. As both the Killing metric and the Bergman metric
are G-invariant, they differ by a positive multiplicative constant. It follows that
In K(z, 2) is a positive multiple of one of the N -invariant potentials of the Killing
metric described in the above remark.

Example 6.6. As an application of Proposition 6.4, we exhibit all the N-
invariant potentials of the Killing metric for the upper half-plane in C and for
the Siegel upper half-plane of rank 2.

(a) Let G = SL(2,R) and let G/K be the corresponding Hermitian symmetric
space. Since b = 8 and r = 1, then the potential of the Killing metric given in
Proposition 6.1 is

p(naK) = —4h;.
The subgroup S = NA, where

1 b0
NZ{(O T) :meR} and Az{(eo e‘hl) :hleR},
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acts on C by linear fractional transformations. The Siegel realization of G/K is
the S-orbit of ¢, namely the upper half-plane
H = {z; + iy, € C | y; > 0}.
By (8), one has
plyr) = plexp L7} (y1) K) = In 7.
Since H coincides with its associated tube and p(z; + iy;) = In é, all the N-

invariant potentials of the Killing metric are given by

0(x1+iy1)=lnyi2+cy1+d, c,deR.
1

(b) Let G = Sp(2,R) be the real symplectic group and let G/K be the corre-
sponding Hermitian symmetric space. As b = 12, the potential of the Killing
metric defined in Proposition 6.1 is given by

p(naK) = —6(hy + hs).

Fix the Iwasawa decomposition for which

) {62}

h1
60 62) with Ay, by coordi-
nates in a with respect to the basis defined in Lemma 2.2. The Siegel realization
of G/K is the Siegel upper half-plane of rank 2

P={W =5+iTeM®22C)|'W=W, T >0},

of 2 x 2 complex symmetric matrices with positive definite imaginary part. It is
the orbit of /5 under the action of S = N A by linear fractional transformations.
The associated tube is H x H and coincides with the diagonal matrices in P.
By (8), one has

where n is unipotent, nm is symmetric and a =

ﬁ(yla y2) = p(exp L_l(yh y2>K) =In (y1;2)3'

A matrix S + T € P can be expressed in a unique way as
. ie?Mm 0
na-ily =n- 0 ie2h2 )

IfT = (2 g), a simple computation shows that " = ¢;—2/t; and €' = t,.

Hence y; = t; — t3/ty, yo = t5 and p(S +4T) = In m If o is an arbitrary
3
N-invariant potential of the Killing metric, then by Proposition 6.4,

o(S+iT) =In m + cty + d, for some ¢, d € R.
3
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7. N-INVARIANT STEIN DOMAINS IN GG/K VIA N-INVARIANT PSH FUNCTIONS.

In this section, we present an alternative proof of Theorem 3.4, which relies
on the special features of the N-invariant plurisubharmonic functions. As an
example of the role played by N-invariant plurisubharmonic functions in this
proof, consider the unit ball B™ in C", for n > 1. The N-orbits in B"™ are
real hypersurfaces, and coincide with the horospheres internally tangent to the
boundary. Since the N-invariant plurisubharmonic functions on B" decrease on
the subset expa-eK (see Thm.5.11), a horoball containing the set exp tH; - e K,
for t € (¢, ), is an N-invariant Stein domain in B". The converse holds true as
well. This shows that for an N-invariant Stein domain in the ball, the base of
the associated tube domain is a half-line.

This proof of Theorem 3.4 is divided into two parts. If D has smooth boundary,
then the argument relies on the computation of the Levi form of smooth, N-
invariant functions on D (see Sect.4).

In the non-smooth case, the result is obtained by realizing D as an increasing
union of Stein, N-invariant domains with smooth boundary. This construction is
based on Lemma 7.2, where an arbitrary open convex C-invariant set is exhausted
by an increasing union of open convex C-invariant sets with smooth boundary.

Proof of Theorem 3.4: the smooth case. The rank-1 tube case is trivial,
since every R-invariant domain in the upper half-plane H is Stein. So we deal
with the remaining cases: the rank-one non-tube case and the higher rank cases.

We resume the notation y = (yq,...,%,), for elements in R". Let D < G/K
be a Stein, N-invariant domain with smooth boundary and let R" + i€2 < C" be
its associated tube domain. By Rem.3.2 (ii), its base {2 is a convex set with
smooth boundary.

Assume by contradiction that €2 is not C-invariant, i.e.there exist y € 2 and
z € (y + C) n 0. By the convexity of €, the open segment from y to z is
contained in €. In addition, the vector v. = z —y € (' is transversal to the
tangent hyperplang T,0€) and points outwards. Therefore, given a smooth local
defining function f of 02 near z, one has

g—{,(z) = gradf(z) v > 0.

In the tube case, the above inequality and (24) imply that %(H ) > 0, for some
je{l,...,r —1}. Then, by Proposition 4.1 (iii), the Levi form of the corre-
sponding N-invariant function f is negative definite on the J-invariant subspace
.09 D a,gte of T,x(0D), the tangent space to 0D in aK. In the non-tube

case, one has %(H) > 0, for some j € {1,...,r}. Then, by Proposition 4.1 (iv),
J
the Levi form of the corresponding N-invariant function f is negative definite on

the J-invariant subspace a,g% of T, (0D). This contradicts the fact that f is a
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local defining function of the Stein N-invariant domain D and proves that (2 is
C-invariant.

Conversely, assume that () is convex and C-invariant. We prove that D is
Stein by showing that it is Levi-pseudoconvex, i.e. for all points aK € ¢D and
local defining functions f of D near ak, one has h;(X, X) > 0, for every tangent
vector X € T,x0D n JT,x0D, the complex tangent space to 0D at aK.

Let z € 002 and let aK = £7!(z). Denote by W := T, the tangent space to
o) in z. Then the complex tangent space to 0D at aK is given by

w(@ e @@ gv)d (L)W @ (L)W

Let v = (v1,...,v,) be an outer normal vector to W in R”. The convexity and
the C-invariance of {2 imply that v; < 0, for 7 = 1,...,7 in the non-tube case,
and v; <0, for j = 1,...,7 — 1 in the tube case. Otherwise the space W would

intersect y + C', for every y € €, yielding a contradiction.
Let f be a smooth local defining function of €2 near z. By the convexity of

~

2, the Hessian Hess(f)(z) is positive definite on W. Moreover, as the gradient
gradf(z) is a positive multiple of v, one has %(z) <0,forall j=1,...,r, in
J

the non-tube case, and a%(z) <0, forall j=1,...,r —1, in the tube case.

Let f be the corresponding N-invariant local defining function of D near aK =
exp L7'(z)K. By Theorem 5.1, the form hy is positive definite on (£;1),W @
J(LY,W < aya®ayJa.

In addition, by (24) and Proposition 4.1, the form hy is positive definite on
ax (@ g D@ g%). As aresult, D is Levi pseudoconvex in aK = exp L™ (z)K.
Since a K is an arbitrary point in 0 Dnexp a-eK and both D and f are N-invariant,
the domain D is Levi-pseudoconvex and therefore Stein, as desired.

For the proof of Theorem 3.4 in the non-smooth case we also need the following
results.

Lemma 7.1. Let D be a domain in a Stein manifold, let D' < D be a subdomain
with smooth boundary and let z € 0D n oD'. If D' is not Levi pseudoconvex in z,
then D is not Stein.

Proof. Under our assumption, there exists a one dimensional complex submani-
fold M through z in D with M\{z} < D’ ([Ran86], proof of Thm.2.11, p.56).
This implies that D is not Hartogs pseudoconvex ([Ran86], Thm. 2.9, p.54) and
in particular it is not Stein. 0]

Lemma 7.2. Let Q be a convex, C-invariant domain in (R>°)". For e > 0 let
Q. :={yeQ : do(y > ¢}, as in Lemma 5.9. Then the following facts hold true.

(i) Let 6. := —In3e and u := —Indg. The sublevel set Q. = {y € Q.
ut(y) < e} is conver and C-invariant.
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(ii) The boundary of Q. in (R™°)" coincides with {y € Q. : 4t (y) = 0.}
and it is smooth.

(iii) As n e N increases, the sequence of convez, C-invariant subdomains with
smooth boundary Ql/n ezhausts ().

+
3

Proof. (i) follows by applying (ii) of Lemma 5.9 to «. Since the function @t is
convex, then the domain Qa is convex. Moreover, as 4 is C-decreasing, it follows
that 4} is C-decreasing. Hence Q). is C-invariant, as desired.

(ii) For y close to 090, = {z € Q: dq(z) = £}, a rough extimate shows that
do(y + ew) < 3g, for every w € By(0). Therefore ¢t (y) > u.(y) > —1In3e,
implying that the boundary of Q). is contained in €. and it is given by o, =
{y € Q. : uf(y) =6.}. Concerning the smoothness of 0., the rank one case is
trivial. So assume 7 > 1.

Let y € 09Q.. Set v := (1,...,1), in the non-tube case, and v := (1,...,1,0),
in the tube case. Since v lies in the cone C' and 4} is strictly C-decreasing, for v
small enough the real function ¢ : (—v,v) — R, defined by ¢(t) := uf (¥ + tv), is
strictly decreasing. By the stable convexity of uZ, it is also stricltly convex and
g'(0) < 0. As ¢/(0) is a directional derivative of uf in y, the differential du |y
does not vanish and the boundary of §~2€ is smooth.

(iii) For m > n, the inclusion €/, < €/, and the inequality @f/n > @f/m

imply that (~21 n C §~21 /m- This concludes the proof of the lemma. O

Proof of Theorem 3.4: the general case. Let D be an arbitrary Stein, N-
invariant domain in G/K. By Remark 3.2 (ii), the base 2 of the associated tube
domain is necessarily convex. Assume by contradiction that € is not C-invariant,
i.e.there exist y € Q and z € (y + C) n 0. By the convexity of €, the open
segment from y to z is contained in €). Moreover, the vector v = z —y lies in the
cone C' and points to the exterior of Q. Let B.(y) be a relatively compact ball in
) and define
tmax = max{t >0 : B.(y +tv)c Q}.
Then there exists w € IB.(y + tmaxV) N 02, and by construction
(W — (¥ + tmazV),v) > 0.

Let n = (ny,...,n,) be the outer normal to IB.(y + tmaxV), given by n :=
w — (y + tv). Then n; > 0, for some j € {1,...,7} in the non-tube case and
n; > 0, for some j € {1,...,r—1}, in the tube case. From the result of the theorem
in the smooth case, it follows that the N-invariant subdomain N exp(L~!(B.(y +
tmaxV))) - €K, with smooth boundary, is not Levi pseudoconvex in exp(L(w))K.
Then Lemma 7.1 implies that D is not Stein, contradicting the assumption.
Conversely, assume that €2 is convex and C-invariant. By Lemma 7.2, the
domain €2 can be realized as the increasing union of the convex C-invariant sets
with smooth boundary ﬁl /n- The the domain D can be realized as the increasing
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union of the N-invariant domains Dy, := Nexp(Lil(ﬁl/n)) -eK. By the result
of the theorem in the smooth case, the domains D, are Stein and so is their

increasing union D. This completes the proof of the theorem. O
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