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Abstract

In this paper we prove that the connected isometry group of a non
symmetric (non compact) irreducible Damek-Ricci space has a surjec-
tive exponential map if and only if the center of the associated Heisen-
berg type algebra has dimension less than or equal to 5. This result
is analogous to (and extends) the results proved by the second author
concerning the exponential map of the connected isometry group of
an irreducible, rank one, classical, symmetric space of non compact
type and that of the authors of [9] in the case of the Cayley plane to
all irreducile non compact DR spaces.

Let G be a non compact, connected, centerless, real rank 1, simple Lie
group. With low dimensional overlaps, these are SO0(n, 1), n ≥ 2, the ad-
joint groups of SU(n, 1) and SP(n, 1), n ≥ 1 and the single exceptional adjoint
group of F4,−27. In [12] together with [13], using the geometry of the asso-
ciated symmetric space G/K, where K is a maximal compact subgroup of
G, the second author of the present paper proved that the classical, i.e. non
exceptional, Ad(G)’s have surjective exponential maps. These groups are,
respectively, the isometry groups of the classical irreducible non compact
symmetric spaces of constant negative curvature (real hyperbolic space) and
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the other two are the identity components of isometries of spaces of negative
curvature which are bounded and bounded away from zero (complex hyper-
bolic space and quaternionic hyperbolic space), the exceptional one being
the connected component of the isometries of the Cayley plane. This last
was proved to have a non surjective exponential map around the same time
as the positive results, by Djokovic and Thang in [9]. (For the classification
of all real, simple, non compact, (higher rank) Lie groups with surjective
exponential map we refer to Wüstner [18]).

This suggests there may be other non compact, simply connected Rieman-
nian manifolds of non positive curvature whose connected isometry groups
might have a surjective exponential map, if they resemble the classical irre-
ducible non compact rank 1 symmetric spaces sufficiently closely, and a non
surjective exponential map otherwise. A particularly promising such family
is the irreducible Damek-Ricci (DR) spaces which actually include all non
compact, rank 1, irreducible symmetric spaces (see [2]). Our purpose here
is to investigate when their connected isometry groups have a surjective ex-
ponential map, with the objective of supplementing and unifying the results
obtained in [12], [13] and [9] for the irreducible non compact, rank 1, sym-
metric spaces. We remark that the reason DR spaces are closely connected
to the non compact rank 1 symmetric spaces is that both of them admit an
Iwasawa decomposition g = k⊕ a⊕ n with dim a = 1, where g and k are the
Lie algebras of G and K respectively, n is the nilpotent part (of Heisenberg
type) and a is the abelian part.

A word of caution: The connected isometry groups of the irreducible,
non compact, symmetric spaces G/K are non compact real simple Lie groups,
Ad(G), while the connected isometry groups of the non symmetric DR spaces
are amenable groups because (see Section 2) they admit a semidirect product
decomposition with a compact connected group acting on a connected solv-
able group. Since the classes of connected, non compact simple groups and
connected amenable groups are disjoint, our present results on the surjectiv-
ity, or not, of the exponential map of the connected isometry group of a DR
space are independent of those concerning symmetric spaces in [12], [13] and
[9] in that neither implies the other. Thus in this paper, the geometric argu-
ments used in [12], [13] will be replaced by an algebraic study of the relevant
Clifford modules (see [1] and [11]). Just as in the symmetric space case these
arguments also depend on the dimension m of the center z of the associated
Heisenberg type algebra, whereas here m ranges over all the positive integers
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(see pg. 101 of [2]). Our present results retain a striking similarity to the
symmetric space case in that there is a cut off below which the exponential
map is surjective and above which it is not. Our result is the following:

Theorem. Let G0 be the connected isometry group of a non symmetric
irreducible Damek-Ricci space. Then G0 has a surjective exponential map if
and only if the dimension of the center of the associated Heisenberg type
algebra is less than or equal to 5.

Since as remarked above, the same is also true of symmetric irreducible
DR spaces, the conclusion of our theorem actually applies to all irreducible
DR spaces.

Corollary. Let G0 be the connected isometry group of an irreducible
Damek-Ricci space S. Whether S is symmetric or not, G0 has a surjective
exponential map if and only if the dimension of the center of the associated
Heisenberg type algebra is less than or equal to 5.

Because of the decomposition mentioned above, DR spaces can be mod-
eled on S, a connected, simply connected, solvable group extension of a
connected, simply connected, nilpotent group of Heisenberg type N , where
N , the nil-radical of S, is of codimension 1 so that S = NA, and A is 1-
dimensional (and of course abelian). They all have non positive sectional
curvature [5] and most of them are non symmetric (for the complete picture
of these spaces see [2], pg. 23).

Groups of Heisenberg type were discovered by Aroldo Kaplan in the 1980’s
in [10], extending earlier results on the Heisenberg group itself. An impor-
tant observation of his is that while the Heisenberg Lie algebra is usually
presented as a subalgebra of M(3,R) it can also be defined by regarding C
as an associative R-algebra and considering its purely imaginary elements.
Other important real two step nilpotent Lie algebras are based on other alge-
bras over R and considering their “purely imaginary” elements, namely the
quaternions and even the (non associative) Cayley numbers. DR spaces were
first constructed by E. Damek and F. Ricci in [7] to disprove a conjecture of
Lichnerowicz by showing that non compact harmonic manifolds need not be
symmetric.
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1 Preliminaries

The construction and the classification of irreducible DR spaces are closely
related to those of Heisenberg type groups. A Heisenberg type algebra is a
Lie algebra n = v⊕z equipped with an inner product 〈 , 〉 such that 〈v, z〉 = 0
and whose Lie bracket satisfies [v, v] ⊂ z and [v, z] = [z, z] = 0. In addition,
the map J : z→ End(v), defined by 〈JzU, V 〉 = 〈[U, V ], Z〉, for U, V ∈ v and
Z ∈ z, satisfies

J2
Z = −〈Z,Z〉Idv. (1)

Let n be a Heisenberg type algebra and let a be a 1-dimensional vector space
with an inner product. Let s = n⊕a = v⊕z⊕a be a Lie algebra with an inner
product such that 〈a, n〉 = 0 and whose Lie bracket satisfies [H, V ] = 1

2
V and

[H,Z] = Z, for H ∈ a, V ∈ v and Z ∈ z. A Heisenberg type group (H-type
group) is a simply connected Lie group N with Lie algebra n. A Damek-Ricci
space (DR space) is a simply connected solvable group S with Lie algebra s
and with the left-invariant metric induced by the inner product on s.

The classification of H-type groups and of DR spaces follows from that
of real Clifford modules. Let m = dim z. The map (1) extends to a repre-
sentation of the real Clifford algebra Cm := Cl(z, q), where q = 〈 , 〉|z×z, and
turns v into a real Cm-module. Conversely, a real Clifford module determines
a map J : z→ End(v) satisfying (1) and hence an H-type group.

If m 6≡ 3 mod 4, then, up to equivalence, there exists exactly one ir-
reducible real Cm-module d and v ∼=

∑k
i=1 d. We denote by N(m, k) the

corresponding H-type group and by S(m, k) the corresponding DR space.

If m ≡ 3 mod 4, then, up to equivalence, there exist two irreducible
real Cm-modules d+ and d−, and v ∼= ⊕k+i=1d+

⊕
⊕k−i=1d−. We denote by

N(m, k+, k−) the corresponding H-type group and by S(m, k+, k−) the cor-
responding DR space. Most of DR spaces are non symmetric. Among them,
the only symmetric ones are in fact

S(0, k), S(1, k), S(3, k+, 0) ∼= S(3, 0, k−), S(7, 1, 0) ∼= S(7, 0, 1), (2)

for k, k+, k− ∈ Z≥1. (cf.[2], pg. 23). If S is a non symmetric DR space, then
the isometry group of S is given by the semidirect product G = K ×φ S,
where K is the group of automorphisms of S whose differential at e ∈ S
preserves the inner product 〈 , 〉s, the group S is identified with the group
of left translations and K acts on S by conjugation (cf. [6], Thm. 4.4). Note
that the differential of K at e acts trivially on a and necessarily preserves n.
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Our goal is to determine when the connected component of the identity
G0 = K0 ×φ S of the isometry group G of a non symmetric irreducible DR
space S has a surjective exponential map. Since the roots of S are real,
the roots of Ad(S) being quotients of those of S are also real. So by the
Dixmier-Saito theorem ([8], [16], or [2], pg. 81), S is of exponential type,
i.e. it is diffeomorphic to its Lie algebra via the exponential map, and we
can apply some necessary and sufficient criteria for the surjectivity of the
exponential map of G0 developed by Moskowitz and Wünster in [14] and
[15]. It turns out that G0 has a surjective exponential map if and only if for
every maximal torus T in K0, the isotropy subgroupo Tx is connected for
every x ∈ n.

In order to apply the above criterion, we need an explicit description of
the real Cm-module v and of the T -action on n = v⊕ z, when m varies. The
real irreducible Cm-modules d are obtained from the complex irreducible Cm-
modules, which are constructed by an inductive procedure. For the reader’s
convenience, we briefly recall the main steps.

Let m be a positive integer. The Clifford algebra Cm is the algebra
generated by 1, e1, . . . , em under the relations e2i = −1, and eiej = −ejei, for
all i, j = 1, . . . ,m.

For m even there is a unique (up to equivalence) complex irreducible Cm-
module Sm; for m odd, there are two of them, namely Sm and S ′m, the latter
given by the same underlying space Sm, but with the negative action. We
follow [1] and [11] for an inductive construction of the modules Sm. Remark
that an algebra homomorphism γm : Cm → End(Sm) is determined by the
images γm(ei) of the generators ei, for i = 1, . . . ,m.

Fix the two 1-dimensional C1-modules S1 and S ′1, determined by γ1(e1) =
i and γ′(e1) = −i, respectively, and the 2-dimensional C2-module S2 deter-

mined by γ2(e1) =

(
0 −1
1 0

)
and γ2(e2) =

(
0 −i
−i 0

)
. Then for m ≥ 3, one

has

Sm = S2 ⊗ Sm−2, and γm(ei) :=

{
γ2(ei)⊗ 1Sm−2 , for i = 1, 2

ε2 ⊗ γm−2(ei−2), for i = 3, . . . ,m,

(3)
where εn = (−i)n/2γn(e1) · . . . · γn(en), for n ∈ N≥2.

Moreover, whenm is odd, the negative algebra homomorphism γ′m : Cm →
EndC(Sm) is defined by γ′m(ei) := −γm(ei), for i = 1, . . . ,m.
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We follow [1] and [11] also for an inductive construction of the real and
quaternionic structures on the modules Sm. Denote by Sm the module Sm
with the conjugate action. For m = 1, identify S1 with C and define J1 : S1 →
S
′
1 by J1(z) = z̄. One can easily verify that J1γ1 = γ′1J1. Then

J̃1 =

(
0 J−11

J1 0

)
: S1 ⊕ S ′1 → S1 ⊕ S ′1, (z, w) 7→ (w̄, z̄)

satisfies J̃2
1 = id and defines a real structure on S1 ⊕ S ′1, commuting with

the C1-action, with C1-invariant real form {(z, z̄)} ∼= S1. For m = 2, identify
S2 with C2 and define a quaternionic structure J2 : S2 → S2, by J2(a, b) =
(−b̄, ā). One has J2γ2 = γ2J2. For m = 3, define J3 := J2 ⊗ J1. Then
J3 : S2⊗S1 → S2 ⊗ S1 satisfies J2

3 = −Id and defines a quaternionic structure
commuting with the C3-action both on S3 = S2⊗S1 and on S ′3. If m = 2k+1
is odd, with k ≥ 2, define inductively

Jm :=

{
J2 ⊗ J2k−1, for m ≡ 3, 7 mod 8 (for k ≡ 1, 3 mod 4, odd)

ε2J2 ⊗ J2k−1, for m ≡ 1, 5 mod 8 (for k ≡ 0, 2 mod 4, even).

One can verify that Jm defines on Sm a quaternionic structure for m ≡ 3
mod 8 and a real structure for m ≡ 7 mod 8. For m ≡ 1, 5 mod 8, from
Jm : Sm → S ′m , one obtains a real structure

J̃m =

(
0 J−1m
Jm 0

)
on Sm ⊕ S ′m, with real form {(z, z̄), z ∈ Sm} ∼= Sm. For m = 2k + 2, with
k ≥ 1 even, define inductively

Jm := J2 ⊗ ε2kJ2k : S2k+2 → S2k+2.

One can verify that, for m ≡ 2, 4 mod 8 (for k ≡ 1, 4 mod 4), Jm defines
a quaternionic structure on Sm = S2 ⊗ S2k, while it defines a real structure,
for m ≡ 6, 8 mod 8 (for k ≡ 2, 3 mod 4).

As a result of the above inductive constructions, the linear maps Jm : Sm →
S ′m, for m odd, and Jm : Sm → Sm, for m even, commute with the respective
Clifford algebra actions, i.e.

Jmγm = −γmJm (m odd), Jmγm = γmJm (m even).
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The real irreducible Cm-modules d are obtained from Sm as follows:

(a) if m ≡ 2, 4 mod 8, then d = Sm, equipped with the quaternionic struc-
ture Jm;
(b) if m ≡ 3 mod 8, then d+ = Sm and d− = S ′m, both equipped with the
quaternionic structure Jm;
(c) if m ≡ 6, 8 mod 8, then d = Fix(Jm, Sm) is the real form of Sm deter-
mined by the real structure Jm;
(d) if m ≡ 7 mod 8, then d+ = Fix(Jm, Sm) and d− = Fix(Jm, S

′
m) are the

real forms, determined by the real structure Jm of Sm and S ′m, respectively;
(e) if m ≡ 1, 5 mod 8, then d = Fix(J̃m, Sm⊕S ′m) is the real form of Sm⊕S ′m
determined by the real structure J̃m.

The connected component K0 of K was determined in [17], Thm.1: for a DR
space S(m, k) or S(m, k+, k−),

K0 ∼= Spin(m)U0/Γ,

where U = O(v) ∩EndCm(v) and Γ is a finite subgroup of Spin(m)U0. Pre-
cisely, from [17], Thm. 6, pg. 408 (up to some typos), one has that U0 is one
of the groups below

(a) Sp(k), for m ≡ 2, 4 mod 8
(b) Sp(k+)× Sp(k−), for m ≡ 3 mod 8
(c) SO(k), for m ≡ 6, 8 mod 8
(d) SO(k+)× SO(k−), for m ≡ 7 mod 8
(e) U(k), for m ≡ 1, 5 mod 8.

The Spin(m)U0-module v is respectively given by

(a) v = d⊗H Hk,
(b) v = d+ ⊗H Hk+

⊕
d− ⊗H Hk− ,

(c) v = d⊗R Rk,
(d) v = d+ ⊗R Rk+

⊕
d− ⊗R Rk− ,

(e) v = d⊗C Ck,

where Spin(m) acts on d by the spin representation, i.e. by the restriction
of the Cm representation, and U0 acts by the standard representation. On z,
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the group U0 acts trivially, while Spin(m) acts via the vector representation,
i.e. via the double covering of SO(m).

A maximal torus in K0 is, up to finite quotient, the product T = T1×T2,
where T1 and T2 are maximal tori in Spin(m) and in U0, respectively. A
maximal torus T1 of Spin(m), embedded in the Clifford algebra Cm, is given
by the elements of the form

(cos θ1 + e1e2 sin θ1) · . . . · (cos θr + em−1em sin θr), if m is even (4)

(cos θ1 + e1e2 sin θ1) · . . . · (cos θr + em−2em−1 sin θr), if m is odd (5)

where θ1, . . . , θr ∈ [0, 2π] and r = [m/2]. The action of T1 on v can be
explicitly determined from (4), (5) and (3).

Notation. In what follows we fix on H the structure of a right C-module
and identify it with C2 as follows

q = x+ iy + ju+ kv 7→ z + jw, (6)

where z = x+iy, w = u+iv, x, y, u, v ∈ R. Under the above identification,
left multiplication by a quaternion h = α+jβ, with α = a+ib and β = c+id,
is given by

Lh(q) =

(
α −β̄
β ᾱ

)(
z
w

)
. (7)

We identify Ck with R2k equipped with the block diagonal complex structure
I, consisting of k blocks

(
0 −1
1 0

)
, or equivalently via the map

t(z1, . . . , zk) 7→ t(x1, y1, . . . , xk, yk).

The above identification gives rise to a map M(k, k,C) → M(2k, 2k,R),
associating to an element mij = aij + ibij the 2× 2 matrix

(
aij −bij
bij aij

)
.

2 Proof of the Theorem

We now begin the proof of our theorem which devolves to the assertion that
for m = 1, . . . , 5 all isotropy subgroups of n = v ⊕ z under the action of a
maximal torus T of K0, the maximal compact subgroup of G0, are connected,
while for m ≥ 6 there are points with disconnected isotropy subgroup. We
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treat the cases m = 1, . . . , 6 separately. Later we prove the existence of
disconnected isotropy subgroups for m > 6 by reducing to the case m = 6.

• m = dim Rz = 1.
The real irreducible C1-module d is the real form of S1 ⊕ S ′1

∼= C ⊕ C de-
termined by the real structure J1(z, w) = (w̄, z̄). If v is the direct sum
of k copies of d, then we coordinatize n = v ⊕ z as (v, z), where v =
(u1, . . . , uk, ū1, . . . , ūk) ∈ C2k and z ∈ R. A maximal torus T of K0 is just a
maximal torus in U(k). If we choose as T = T (φ1, . . . , φk) the diagonal torus
in U(k), then it acts on v⊕ z as

T (v, z) = (eiφ1u1, . . . , e
iφkuk, e

−iφ1ū1, . . . e
−iφk ūk, z).

From the above formulas, one immediately obtains the next lemma.

Lemma 1. The isotropy subgroup of an arbitrary point in v⊕ z is a subtorus
of T , and it is connected.

• m = dim Rz = 2.
The real irreducible C2-module d is just the complex irreducible module
S2
∼= C2, endowed with the quaternionic structure J2(u, v) = (−v̄, ū). Under

the identification (6), J2 corresponds to right multiplication by j. If v is the
direct sum of k copies of d, then we coordinatize n = v ⊕ z as (v, z), where
v = (u1, v1, . . . , uk, vk) ∈ C2k and z = (z1, z2) ∈ R2.
We fix the maximal torus T1 = T1(θ) in Spin(2) described in (4) and the
diagonal maximal torus T2 = T2(φ1, . . . , φk) in Sp(k). By (7) and the fact
that the T2-action must commute with J2, the torus T = T1 × T2 acts on n
by

T (v, z) = (ei(θ+φ1)u1, e
i(−θ+φ1)v1, . . . , e

i(θ+φk)uk, e
i(−θ+φk)vk, R2θz),

where Rθ denotes the rotation of an angle θ in R2.

Lemma 2. Let m = 2. For every (v, z) ∈ v⊕ z, the isotropy subgroup T(v,z)
is connected.

Proof. Let (v, z) ∈ v⊕ z.
(a) If z 6= 0, then either θ ≡ 0 or θ ≡ π mod 2π. If for some j either uj 6= 0
or vj 6= 0, then φj ≡ θ mod 2π. If uj = vj = 0, then φj is arbitrary. It
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follows that T(v,z) is a subtorus of T , of dimension equal to the number of
indices j for which uj = vj = 0.
(b) Let z = 0. If ujvj 6= 0 for some j, then θ ≡ 0, π and φj ≡ θ mod 2π.
Thus we are back in case (a). If for all j, at most one of uj and vj is 0, then
either φj ≡ ±θ mod 2π or φj is arbitrary. In all cases, T(v,z) is a connected
torus.

• m = dim Rz = 3.
There are two real irreducible C3-modules d+ and d−. They are respectively
given by S3

∼= C2 and S ′3
∼= C2, each equipped with the quaternionic structure

J3(u, v) = (−v̄, ū). If the real C3-module v is the direct sum of k copies
of d+ and h copies of d−, then we coordinatize n = v ⊕ z as (v, z), with
v = (u1, v1, . . . , uk, vk, u

′
1, v
′
1, . . . , u

′
h, v
′
h) ∈ C2k+2h and z = (z1, z2, z3) ∈ R3.

We fix T1 = T1(θ) the maximal torus in Spin(3) described in (5) and T2 =
T2(φ1, . . . , φk, ψ1, . . . , ψh) the product of the diagonal maximal tori in Sp(k)
and Sp(h). Then by (7) and the fact that the T2-action must commute with
J3, the torus T = T1 × T2 acts on n by

T (v, z) =
(
ei(θ+φ1)u1, e

i(−θ+φ1)v1, . . . , e
i(θ+φk)uk, e

i(−θ+φk)vk,

ei(θ+ψ1)u′1, e
i(−θ+ψ1)v′1, . . . , e

i(θ+ψh)u′h, e
i(−θ+ψh)v′h, R2θ(z1, z2), x3)

)
.

Lemma 3. Let m = 3. For every (v, z) ∈ v⊕ z, the isotropy subgroup T(v,z)
is connected.

Proof. The argument is similar to the one used for m = 2. Here the condi-
tions z = 0 or z 6= 0 are replaced by the conditions z lies or z does not lie on
the rotation axis in z, respectively. The conclusion is that T(v,z) is connected
for all (v, z) ∈ v⊕ z.

• m = dim Rz = 4.
The real irreducible C4-module d is just the complex irreducible module S4

∼=
C4, endowed with the quaternionic structure J4(x, y, u, v) = (v̄, ū,−ȳ,−x̄).
If v is the direct sum of k copies of d, then we coordinatize n = v⊕z as (v, z),
with

v = (x1, y1, u1, v1, . . . , xk, yk, uk, vk) ∈ C4k and z = (z1, z2, z3, z4) ∈ R4.
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We take the maximal torus T1 = T1(θ1, θ2) in Spin(4) described in (4) and
the diagonal maximal torus T2 = T2(φ1, . . . , φk) in Sp(k). Then the action
of T = T1 × T2 on v is given by k blocks of the form

T (xj, yj, uj, vj) = (ei(θ1+θ2+φj)xj, e
i(θ1−θ2+φj)yj, e

i(−θ1+θ2+φj)uj, e
i(−θ1−θ2+φj)vj),

for j = 1, . . . , k, and on z is given by

T (z1, z2, z3, z4) = (R2θ1(z1, z2), R2θ2(z3, z4)).

Lemma 4. Let m = 4. For every (v, z) ∈ v⊕ z, the isotropy subgroup T(v,z)
is connected.

Proof. Let (v, z) ∈ v⊕ z. We need to distinguish several subcases.
• Assume z 6= 0.
(1) If z satisfies (z1, z2), (z3, z4) 6= (0, 0), then Tz = z implies θ1, θ2 ≡ 0, π
mod 2π.
(1.a) If v = 0, then all the φj’s are arbitrary and T(v,z) is a connected torus.
(1.b) Assume v 6= 0. If for an index j at least one of the coordinates
xj, yj, uj, vj is non zero, then the condition Tv = v implies that one or
more equations of the system below hold true

θ1 + θ2 + φj ≡ 0

θ1 − θ2 + φj ≡ 0

−θ1 + θ2 + φj ≡ 0

−θ1 − θ2 + φj ≡ 0

mod 2π. (8)

In particular, φj ≡ θ1 + θ2 mod 2π and T(v,z) acts as the identity on the jth

irreducible component of v. If xj = yj = uj = uj = 0, then the angle φj is
arbitrary and on that irreducible component T(v,z) acts as a 1-dimensional
torus. It follows that the isotropy subgroup T(v,z) is either trivial or a con-
nected torus.
(2) If z satisfies (z1, z2) 6= (0, 0), (z3, z4) = (0, 0), then the condition Tz = z
implies θ1 ≡ 0, π mod 2π.
(2.a) If v = 0, then θ2 and all the φj’s are arbitrary and T(v,z) is a connected
torus.

11



(2.b) If v 6= 0, fix j with the maximum number of non zero coordinates
among xj, yj, uj, vj. Then Tv = v implies that one or more equations of the
systems below hold true

θ1 ≡ 0

θ2 + φj ≡ 0

−θ2 + φj ≡ 0

or


θ1 ≡ π

θ2 + φj ≡ π

−θ2 + φj ≡ π

mod 2π. (9)

It follows that either θ2 = 0, π or θ2 is arbitrary. If θ2 = 0, π, then by arguing
as in case (1.b) we conclude that T(v,z) is connected. If θ2 is arbitrary, then
all the angles φi are arbitrary as well, and T(v,z) is connected.

If z satisfies (z1, z2) = (0, 0), (z3, z4) 6= (0, 0), then just exchange θ1 and θ2 in
the arguments above and analogous statements will follow.
• Assume z = 0.
In this case the condition Tz = z imposes no restrictions on θ1 and θ2.
(3) Assume v 6= 0.
(3.a) If for some j one has xjyjujvj 6= 0, then on the jth irreducible compo-
nent of v the condition Tv = v is equivalent to the system (8) and implies
(θ1, θ2) ≡ (0, 0), (π, π), (π, 0), (0, π) mod 2π. The same conclusion holds true
if at most one of the coordinates xj, yj, uj, vj is equal to zero (any three equa-
tions out of system (8) have (θ1, θ2) as above as solutions). Now by arguing
as in case (1.b) we conclude that T(v,z) is connected.
(3.b) Assume that for every j = 1, . . . , k, at most two of the coordinates
xj, yj, uj, vj are non zero. Fix i with two non zero coordinates. Then the
condition Tv = v yields 6 possible systems of two independent equations{

θ1 − θ2 + φi ≡ 0

−θ1 − θ2 + φi ≡ 0

{
θ1 + θ2 + φi ≡ 0

−θ1 + θ2 + φi ≡ 0
mod 2π, (10)

{
θ1 + θ2 + φi ≡ 0

θ1 − θ2 + φi ≡ 0

{
−θ1 + θ2 + φi ≡ 0

−θ1 − θ2 + φi ≡ 0
mod 2π, (11)

{
θ1 − θ2 + φi ≡ 0

−θ1 + θ2 + φi ≡ 0

{
θ1 + θ2 + φi ≡ 0

−θ1 − θ2 + φi ≡ 0
mod 2π. (12)

The systems in (10) imply θ1 ≡ 0, π and θ2 ≡ ±θ1 + φi mod 2π, with φi
arbitrary; the systems in (11) imply θ2 ≡ 0, π and θ1 ≡ ±θ2 + φi mod 2π,
with φi arbitrary; the systems in (12) imply either θ1−θ2 = 0, π and φi ≡ θ1−
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θ2 or θ1 +θ2 = 0, π and φi ≡ θ1 +θ2 mod 2π, with θ2 arbitrary. Substituting
the above solutions in the formulas of the T -action, we find that the isotropy
subgroup T(v,z) acts on the ith irreducible component as the identity on two
of the coordinates and as a rotation on the other two. If in addition, for all
indices j 6= i, none or at most one of the coordinates xj, yj, uj, vj is non zero,
then the corresponding φj’s are arbitrary and T(v,z) is connected.
It remains to check the isotropy subgroup of points with two non zero coor-
dinates for at least two indices. Let i 6= j be a pair of such indices. Then the
condition Tv = v determines a system of four equations, union of a system
from (10), (11), (12) involving φi and a system from (10), (11), (12) involving
φj. If the system has rank 4, then (θ1, θ2) = (0, 0), (π, π), (π, 0), (0, π) and,
by arguing as in case (1.b) one concludes that T(v,z) is connected. If all such
systems have rank 3, then by arguing as in (2.b) one concludes that T(v,z) is
connected.

• m = dim Rz = 5.
The real irreducible C5-module d is the real form of S5 ⊕ S ′5

∼= C4 ⊕ C4

determined by the real structure J̃5 =

(
O J−15

J5 O

)
, where J5 : S5 → S ′5

is given by J5(x, y, u, v) = (v̄,−ū, ȳ,−x̄). Suppose that v is the direct
sum of k copies of d. Then we coordinatize n = v ⊕ z as (v, z), with
v = (. . . , xj, yj, uj, vj, v̄j,−ūj, ȳj,−x̄j, . . .) ∈ C8k, for j = 1, . . . , k, and
z = (z1, z2, z3, z4, z5) ∈ R5. We take the maximal torus T1 = T1(θ1, θ2) in
Spin(5) described in (5) and the diagonal maximal torus T2 = T2(φ1, . . . , φk)
in U(k). Then on the jth irreducible component of v the action of T = T1×T2
is given by

T (xj, yj, uj, vj, v̄j,−ūj, ȳj,−x̄j) =

= (ei(θ1+θ2+φj)xj, e
i(θ1−θ2+φj)yj, e

i(−θ1+θ2+φj)uj, e
i(−θ1−θ2+φj)vj,

e−i(−θ1−θ2+φj)v̄j,−e−i(−θ1+θ2+φj)ūj, e−i(θ1−θ2+φj)ȳj,−e−i(θ1+θ2+φj)x̄j),

for j = 1, . . . , k, and on z is given by

T (z1, z2, z3, z4, z5) = (R2θ1(z1, z2), R2θ2(z3, z4), z5).

Lemma 5. Let m = 5. For every (v, z) ∈ v⊕ z, the isotropy subgroup T(v,z)
is connected.
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Proof. Let (v, z) ∈ v⊕z. Write v = (w1, J5w1, . . . ,wk, J5wk). Then Tv = v
if and only if Tw = w, where w = (w1, . . . ,wk). Moreover Tz = z if and
only if R2θ1(z1, z2) = (z1, z2) and R2θ2(z3, z4) = (z3, z4). Comparing the above
conditions with the one arising form = 4, it is clear that the statement follows
directly from Lemma 4.

• m = dim Rz = 6.
The real irreducible C6-module d is the real form of S6

∼= C8 determined the
real structure J6, which happens to coincide with J̃5. Suppose that v is the
direct sum of k copies of d. We coordinatize n = v⊕ z as (v, z), with

v = (. . . , xj, yj, uj, vj, v̄j,−ūj, ȳj,−x̄j, . . .) ∈ C8k, z = (z1, z2, z3, z4, z5, z6) ∈ R6.

If v = d is irreducible, then T2 is trivial and a maximal torus T of K0 is just
a maximal torus T1 = T1(θ1, θ2, θ3) of Spin(6). If we choose T1 as in (4), then
the T action on d is given by

T (x, y, u, v, v̄,−ū, ȳ,−x̄) =

= (ei(θ1+θ2+θ3)x, ei(θ1+θ2−θ3)y, ei(θ1−θ2+θ3)u, ei(θ1−θ2−θ3)v,

e−i(θ1−θ2−θ3)v̄,−e−i(θ1−θ2+θ3)ū, e−i(θ1+θ2−θ3)ȳ,−e−i(θ1+θ2+θ3)x̄). (13)

In general, if v consists of k copies of the irreducible module d, then T1 acts
as above on each copy of d. If we choose a block diagonal maximal torus
T2 of SO(k) with [k/2] rotations as blocks, then each rotation Rφ acts on a
block d⊕ d as

(v,v′) 7→ (cosφv − sinφv′, sinφv − cosφv′), for (v,v′) ∈ d⊕ d. (14)

On the jth block d⊕ d, write

vj = (xj, yj, uj, vj, v̄j,−ūj, ȳj,−x̄j), v′j = (x′j, y
′
j, u
′
j, v
′
j, v̄
′
j,−ū′j, ȳ′j,−x̄′j)

(15)
and set

Xj =

(
xj
x′j

)
, Yj =

(
yj
y′j

)
, Uj =

(
uj
u′j

)
, Vj =

(
vj
v′j

)
. (16)

Then on each such block the T -action is determined by the maps

Xj 7→ ei(θ1+θ2+θ3)RφjXj, Yj 7→ ei(θ1+θ2−θ3)RφjYj (17)
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Uj 7→ ei(θ1−θ2+θ3)RφjUj, Vj 7→ ei(θ1−θ2−θ3)RφjVj. (18)

The T action on z is given by

(z1, z2, z3, z4, z5, z6) 7→ (R2θ1(z1, z2), R2θ2(z3, z4), R2θ3(z5, z6)).

Lemma 6. Let m = 6. There exist points (v, z) ∈ v ⊕ z whose isotropy
subgroup T(v,z) is disconnected.

Proof. We distinguish two cases.
(1) Assume that v = d⊕d⊕. . .⊕d⊕d decomposes as the sum of k blocks d⊕d.
Consider the point

(v, 0) = ((v1,v
′
1, . . . ,vk,v

′
k), 0) ∈ v⊕ z,

where

(v1,v
′
1) = ((i,−i,−i, i,−i,−i, i, i), (1, 1, 1, 1, 1,−1, 1,−1)) , vj = v′j = 0,

for all j > 1. In the notation (15) and (16),

X1 =

(
i

1

)
, Y1 =

(
−i
1

)
, U1 =

(
−i
1

)
, V1 =

(
i

1

)
,

Xj = Yj = Uj = Vj =

(
0

0

)
, for all j > 1.

Then by (17) and (18), the condition T (v, z) = (v, z) is equivalent to

TX1 = X1, TY1 = Y1, TU1 = U1, TV1 = V1. (19)

Observe that eiλRφ has a non zero fixed point in C2, i.e. an eigenvector Z of
eigenvalue 1, if and only if φ ≡ −λ mod 2π and Z ∈ C

(
i
1

)
or φ ≡ λ mod 2π

and Z ∈ C
(−i

1

)
. Then conditions (19) are equivalent to the linear system

mod 2π 
θ1 + θ2 + θ3 + φ1 ≡ 0

θ1 + θ2 − θ3 − φ1 ≡ 0

θ1 − θ2 + θ3 − φ1 ≡ 0

θ1 − θ2 − θ3 + φ1 ≡ 0

⇔


θ1 + θ2 + θ3 + φ1 ≡ 0

−2θ2 − 2φ1 ≡ 0

−2θ3 − 2φ1 ≡ 0

−4φ1 ≡ 0.

(20)
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Modulo 2π and modulo ineffectivity, the solutions of the above system are

(θ1, θ2, θ3, φ1, . . . , φr) = (0, 0, 0, 0, φ2, . . . , φr), φj ∈ R, j > 1, (21)

(θ1, θ2, θ3, φ1, . . . , φr) = (
π

2
,−π

2
,−π

2
,
π

2
, φ2, . . . , φr), φj ∈ R, j > 1. (22)

The elements of T(v,z) corresponding to (21) act as the identity on the first
block d⊕ d, as

Xj 7→ RφjXj, Yj 7→ RφjYj, Uj 7→ RφjUj, V1 7→ RφjVj

on the jth block d ⊕ d, for j > 1 and as the identity on z. The elements of
T(v,z) coming from (22) act as

X1 7→
(

0 i
−i 0

)
X1, Y1 7→

(
0 −i
i 0

)
Y1,

U1 7→
(

0 −i
i 0

)
U1, V1 7→

(
0 i
−i 0

)
V1

on the first block d⊕ d, as

Xj 7→ −iRφjXj, Yj 7→ iRφjYj, Uj 7→ iRφjUj, V1 7→ −iRφjVj,

on the jth block d⊕ d, for j > 1, and as −Id on z. As a result, the isotropy
subgroup T(v,z) ∼= Z2 × (S1)r−1 and it is disconnected.

(2) Assume that v is the sum of an odd number of irreducible components d.
Let (0, z) ∈ v⊕z be a point satisfying (z1 · . . . ·z6) 6= 0. The condition Tv = v
poses no restrictions, while Tz = z if and only if θi ≡ 0, π mod 2π, for i =
1, 2, 3. As a consequence, ei(±θ1±θ2±θ3) = ±1, depending on whether θ1+θ2+θ3
is 0 or π mod 2π. If v = d is irreducible, then T(v,z) = {(±Id, Id)} ∼= Z2

and it is disconnected. If v decomposes in an odd number of irreducible
components, then

T(v,z) ∼= Rφ1 × . . .×Rφh × {±Id}, h = [k/2],

and it is disconnected.

Finally, in the next two lemmas, we deal with the cases m > 6.
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Lemma 7. Let m ≡ 1, 2, 3, 4, 5 mod 8. There exist points (v, z) ∈ v ⊕ z
whose isotropy subgroup T(v,z) is disconnected.

Proof. We begin with the case when v is irreducible. Recall that Spin(m)
acts on the complex Cm-module Sm via the spin representation. We fix
T1 = T1(θ1, . . . , θr) the maximal torus of Spin(m) described in (4) and (5),
where r = [m/2], and T2 the diagonal maximal torus of U0.

• Let m ≡ 2, 3, 4 mod 8.
The real Cm-module d coincides with Sm or S ′m endowed with the quater-
nionic structure Jm and T = T1 × T2 acts on Sm with weights i(±θ1 ± . . .±
θr + φ) and one-dimensional weight spaces. Consider a point (v, z) ∈ d⊕ z,
with z = (0, . . . , 0, z7, . . . , zm) satisfying z7 · . . . · zm 6= 0 and v all of whose
coordinates are zero except the ones corresponding to the weights

θ1 + θ2 + θ3 + ω, θ1 − θ2 − θ3 + ω, − θ1 − θ2 + θ3 + ω, − θ1 + θ2 − θ3 + ω,

where ω =
∑

j>3 θj. Then Tz = z if and only if θj ≡ 0, π mod 2π, for all
j ≥ 4, and Tv = v if and only if θ1, θ2, θ3, φ satisfy one of the linear systems
mod 2π 

φ+ θ1 + θ2 + θ3 ≡ α

φ+ θ1 − θ2 − θ3 ≡ α

φ− θ1 + θ2 − θ3 ≡ α

φ− θ1 − θ2 + θ3 ≡ α,

for α ≡ 0 or α ≡ π. From the discussion of the case m = 6, it follows that
the isotropy subgroup T(v,z) is a finite group. In order to conclude that T(v,z)
is disconnected, we show that it contains at least an element different from
the identity: indeed, by taking φ = θ1 ≡ −π/2 and θ2 = θ3 ≡ π/2, we obtain
an element acting on z as

(z1, z2, z3, z4, z5, z6, z7, . . . , zm) 7→ (−z1,−z2,−z3,−z4,−z5,−z6, z7, . . . , zm).

• Let m ≡ 1, 5 mod 8.
The real irreducible Cm-module d is given by Sm embedded in Sm ⊕ S ′m as
d = {(v, Jmv), v ∈ Sm}. In this case, take a point (w, z) = ((v, Jmv), z) ∈
d ⊕ z with v and z as in the previous case. Since Tw = w if and only if
Tv = v, the above discussion implies that T(w,z) is disconnected.

If v = ⊕kj=1d is the direct sum of k irreducible components, then take
a point (w, z) = ((w1, 0 . . . , 0), z) ∈ v ⊕ z with w all of whose components
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in the irreducible summands are zero except for w1. In addition, take w1

and z as w and z in the irreducible case. Since the T2 action preserves the
irreducible components of v, by the above discussion, we can conclude that
T(w,z) is disconnected.

Lemma 8. Let m ≡ 6, 7, 8 mod 8. Then there exist points (v, z) ∈ v ⊕ z
whose isotropy subgroup T(v,z) is disconnected.

Proof. If m ≡ 6, 7, 8 mod 8, then the real irreducible Cm-module d is the
real form of Sm or S ′m determined by the real structure Jm. The maximal
torus T1 of Spin(m), described in (4) and (5), acts on the complex irreducible
Cm-module Sm with weights ei(±θ1±...±θr), for r = [m/2], and 1-dimensional
weight spaces. This action commutes with the real structure Jm and leaves
invariant the real irreducible Cm-module d.

Assume v is reducible and sum of k ≥ 2 irreducible components. Then,
as we already saw for m = 6, the block diagonal maximal torus T2 of SO(k),
with [k/2] rotations as blocks, acts on a block d⊕ d as

(v,v′) 7→ (cosφv − sinφv′, sinφv − cosφv′), for (v,v′) ∈ d⊕ d. (23)

If we write v = (x1, . . . xs) ∈ d and v′ = (x′1, . . . x
′
s) ∈ d and

X1 =

(
x1
x′1

)
, . . . , Xs =

(
xs
x′s

)
, s = dim Rd, (24)

then the T1 × T2-action can be written more conveniently as

X l 7→ ei(±θ1±...±θr)RφX
l, l = 1, . . . , s. (25)

We exhibit points (v, z) ∈ v ⊕ z with disconnected isotropy subgroup, by
reducing to the case m = 6.

If v = ⊕oddd is the direct sum of an odd number of irreducible compo-
nents, then one can easily see that the point (0, z) with z1 · . . . · zm 6= 0
has disconnected isotropy subgroup. In fact, T (0, z) = (0, z) if and only if
θj ≡ 0, π. Then ei(±θ1±...±θr) = ±1 and from (25) it follows that the isotropy
subgroup

T(0,z) ∼= Rφ1 × . . .×Rφh × {±Id} × {Id}, h = [k/2]
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is disconnected.
If v = ⊕kj=1d⊕ d is the direct sum of k blocks d⊕ d, then we take a point

(v, z) ∈ v ⊕ z as follows: the vector v = (v1,v
′
1, . . . ,vk,v

′
k) ∈ v satisfies

vj = v′j = 0, for all j > 1, and the vector z = (0, . . . , 0, z7, . . . , zm) ∈ z
satisfies z7 · . . . · zm 6= 0. In addition, if we write the components of v in the
first block d⊕ d as in (24), then we take all Xj =

(
0
0

)
except for(

i

1

)
,

(
−i
1

)
,

(
−i
1

)
,

(
i

1

)
,

in correspondence with the weights

θ1 + θ2 + θ3 + ω, θ1 + θ2 − θ3 + ω,

θ1 − θ2 + θ3 + ω, θ1 − θ2 − θ3 + ω,

with ω =
∑

j>3 θj, and for their conjugates JmX
j. Then T (v, z) = (v, z)

if and only if θ4, . . . , θr ≡ 0, π mod 2π and θ1, θ2, θ3, φ1 satisfy one of the
systems 

θ1 + θ2 + θ3 + φ1 ≡ α

θ1 + θ2 − θ3 − φ1 ≡ α

θ1 − θ2 + θ3 − φ1 ≡ α

θ1 − θ2 − θ3 + φ1 ≡ α,

where α ≡ 0 or α ≡ π mod 2π. At this point the discussion of Lemma 7
applies, and implies that the isotropy subgroup T(v,z) is disconnected.

We conclude this section with the proof of our main theorem. It is based
on the results of the previous lemmas.

Proof of the Theorem. Since S is a simply connected solvable group of expo-
nential type, in order to determine whether G0 has a surjective exponential
map, or not, we first apply the criteria developed by Moskowitz and Wustner
in [14]. If T is a maximal torus in K0, then it acts linearly on s preserving
n. By Corollary 7 of [14], when m ≤ 5, G0 has a surjective exponential map
since for all x ∈ n, the isotropy groups Tx are connected. On the other hand,
suppose m ≥ 6. If K0 × S had a surjective exponential map, by Corollary
3 of [15], K0 × N would also have a surjective exponential map. However,
by Theorem 5 of [14], K0×N has a surjective exponential map iff Tx is con-
nected for each x ∈ n. Since when m ≥ 6 this is incorrect, this contradiction
tells us that for m ≥ 6, K0 × S can never have a surjective exponential map
and completes the proof of the theorem.
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