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Invariant domains in complex symmetric spaces

By Gregor Fels at Essen and Laura Geatti at Roma

0. Introduction

Let X be a Stein manifold and K be a compact Lie group acting on X by holo-
morphic transformations. In this setting, K-invariant domains Q = X are natural objects
to investigate. Basic questions regard the structure of the automorphism group Aut(f2), the
extendability of automorphisms of 2 beyond the boundary and the equivalence problem.

The group K is said to act on X without invariant holomorphic functions if the
algebra

OX) = {feOX)|fok™'=f,VkeK}

consists of the constant functions alone. A result by Heinzner [HN 1] states that if K acts
on an n-dimensional Stein manifold X with a fixed point and without invariant holomorphic
functions, then there exist a linear representation ¢: K - GL(C") and an open holo-
morphic embedding ¢: X — C" such that ¢(k - x) = 9(k) ¢ (x) for all xe X and ke K.
In this way, the study of K-invariant domains Q in manifolds X satisfying the above
assumptions can be reduced to the study of domains in C" which are invariant under a
suitable complex linear action. For example, if X is the torus group S*, one is led to study the
domains in C" which contain the origin and are invariant under the S!-action given by

(Zgy-esz)) > (A™Mzy, ., A™2,),

with A€ S' and m;e N, , for i =1,...,n. These “generalized circular domains” in C"
were investigated by Kaup in [KA]. Recently, his results were generalized to an arbitrary
compact group by P. Heinzner. In [HN 3] Heinzner proved the following theorems:

Let K be a compact Lie group acting on C" by a complex linear representation and
without invariant holomorphic functions.

(1) Let Q = C" be a bounded K-invariant Stein domain containing the origin. Then
Aut(Q) has a finite number of connected components. If G is an arbitrary closed subgroup
of Aut(Q) containing K, then the G-orbit of the origin G-0 is a connected complex
submanifold of Q.
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(2) Let 2, and 2, be bounded K-invariant Stein domains in C” containing the origin.
Then Q, and 2, are biholomorphically equivalent if and ony if there exists a polynomial
automorphism @ : C" —» C" such that ¢(Q,) = Q,.

In this paper we study K-invariant domains in Stein manifolds of the form K¢/L¢,
where K acts by left translations. Here K € and L denote the universal complexifications of
the compact groups K and L < X (see [HO]). In general, due to topological obstructions,
these domains are not biholomorphically equivalent to domains in C". We mainly work
under the assumption that K and L form a compact symmetric pair [HE 1]. In this case, we
call K¢/ L€ a complex symmetric space. Our principal results can be summarized in the
following theorems:

Theorem 0.1. Let Q = K/ LC be a relatively compact K-invariant Stein domain in a
complex symmetric space. Then

(a) Q contains a minimal orbit of type K/L;
(b) Aut(Q) stabilizes a minimal K-orbit of type K/L;
(c) Aut(Q) is a compact group.

Theorem 0.2. Let Q, and Q, be relatively compact K-invariant Stein domains in
K€/ LE. Assume that Qf = QS = K¢/ L and that Aut(Q,) stabilizes a minimal K-orbit in Q,.
Then Q, and Q, are biholomorphic if and only if there exists Fe Aut(K /L") such that

Here Q¢ denotes the K-complexification of a K-manifold Q defined by Heinzner in
[HN 2] (see also section 1.2).

The paper is organized as follows. In section 1 we recall some preliminary material. In
section 2 we prove Theorem 0.1 for K-invariant Stein domains Q = = K¢/L€ under the
assumption that K/L is an orientable compact symmetric space. In section 3 we conclude
the proof of Theorem 0.1 by discussing the non-orientable case. In section 4 we exhibit
another Stein manifold X = K¢/L° for which an analogue of Theorem 0.1 holds. This is
when K - [L¢] is the unique minimal orbit in K ¢/L°. Finally, in section 5, we consider the
equivalence problem for K-invariant Stein domains in K¢/ L°.

We wish to thank P. Heinzner and A. Huckleberry for useful discussions.

1. Preliminaries

1.1. Mostow Decomposition Theorem and complex symmetric spaces. Let K be a
compact connected Lie group and L = K be a closed subgroup. The coset space K/L is a
compact homogeneous manifold, where K acts by left translations, and L is the isotropy
subgroup in K of the point x, = [L]. In the following, we shall assume the action of K on
K/ L to be almost effective. If Z denotes the center of K, this implies that L Z is a finite
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group. Denote by K € and L€ the universal complexifications of K and L (see [HO]). The

complex coset K¢/L® is a K “-homogeneous manifold and, by a result of Matsushima
[MA], it is a Stein manifold.

Denote by f and [ the Lie algebras of K and L, by Adg the adjoint representation
Adg : K - GL(f), and by Ad, its restriction to L. Then there exists an Ad, -invariant vector
space p < I such that f = [ @® p. The space p can be naturally identified with the tangent
space to K/L at x, = [L] and, under this identification, the isotropy representation of L
at x, is equivalent to the adjoint representation Ad, : L — Gl(p). Denote by I =t @ it
and 1 =1@ il the Lie algebras of K¢ and L. Then one has the Ad,c-invariant decom-
position £¢ = [“@ p%, where p© = p + ip. Since the subspace p = p® is Ad,-invariant, the
same is true for ip.

Define K x,,4, ip to be the quotient space of KX ip by the following equivalence
relation: (k,v) ~ (k’,v’) if there exists /€ L such that (k’,v’) = (k/~*, Ad, ({)v). The group
K acts on KXx,, ip on the left by - [k,v]:=[hk,v] and with the natural projection
K x4, ip = K/L the space K X,4, ip is a K-equivariant vector bundle.

Lemma 1.1 (Mostow Decomposition Theorem [MO]). Let x, = [Lc] in K€/LE.
Then the map W : K X,q ip - K¢/LS, given by [k,v]— kexp(v)x, is a K-equivariant
diffeomorphism.

Remark 1.2. Recall that the K-orbit types (equivalence classes of K-orbits up to
K-equivariant diffeomorphisms) in K¢/L® can be given a partial ordering as follows:
Typx (K/S) < Typx (K/T) if there exists a K-equivariant surjective map of K/T onto
K/S (see [BR]). By the above Lemma, for every xe K¢/L, the bundle projection
K x4, ip - K/Linduces a K-equivariant surjective map K - x — K/ L. It follows that every
K-orbit in K¢/L€ can be compared to K/L and that K/L is a minimal orbit in K¢/L€.
Furthermore, the set of minimal K-orbits in K ¢/ L¢ is parametrized by the Ad, -fixed points
in ip.

Another consequence of Lemma 1.1 is that the L-invariant subset exp (ip) x, < K¢/L°
intersects all the K-orbits. Moreover, two points x = exp(v,) X, and y = exp (v,) x, lie on
the same K-orbit in K¢/LC if and only if v, and v, lie on the same Ad,-orbit in ip. It
follows that a subset exp(S) X, is a geometric slice for the K-action on K ¢/L€ if and only
if S  ip is a geometric slice for the Ad,-action on ip. We shall give an explicit description of
one such slice S in the case when K/L is a compact symmetric space.

We say that K/ L is a compact symmetric space if K is a compact connected Lie group,
L c K is a closed subgroup and there exists an involutive automorphism ¢ of K such that

Fix (6)° < L = Fix(0) .

Here Fix (o) and Fix(c)° respectively denote the fixed point set of ¢ in K and its con-
nected component of the identity. Under these conditions, a K-invariant Riemannian
structure can be given on K/L, which turns it into a Riemannian globally symmetric space
(cf. [HE1], Prop. 3.4, p. 209).
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When K/ L is a compact symmetric space, the decomposition f = [ @ p coincides with
the decomposition of f into the +1 eigenspaces induced by the differential of ¢ at the
identity. By the universality property of K ¢, the automorphism ¢ extends to an involutive
automorphism o€ of K¢, satisfying Fix (6€)° = L€ = Fix(¢¢). We call K/L a complex
symmetric space.

Let 3 denote the Lie algebra of the center Z of K. Then one has
=301,

where I’ a maximal compact semisimple subalgebra of f. From the assumption that X acts
almost effectively on K/L, it follows that [n3 = 0 and one has

3cp, Ilct, p=3@9p/,

where p’=pnt. Fix a maximal abelian subalgebra t, in p. All such subalgebras are

mutually conjugate under the Ad; -actionand ( ) Ad, (/)(t,) = p. The real dimension of t,is
leL
by definition the rank of K/ L. Fix a maximal abelian subalgebra t of f containing t,. Then

t=tni®t, and t,=3Ot,,

where t, = t, N1’ is a maximal abelian subalgebra of p’. For simplicity of notations we shall
write a, a’, a, and a; for it, it’, it, and it, respectively. Then a = a’@ i3 and a, = a, D i3
Denote by 4 the root system determined by (t€, %) in a’, identified with its dual by the
Killing form. Choose a linear order on a’ compatible for 4 with respect to o (see [TA],
p.450). Denote by 4™ the corresponding system of positive roots.

In order to determine a geometric slice for the Ad,-action on ip, we need the notion
of Weyl chamber associated to 4*. The open Weyl chamber associated to 4% is the open
cone

a'"={Hea'|a(H)>0,Yaed*}.
The inclusion a; < a’ yields the projection
n:(a)* - (a))*.

Set X :=m(4)\{0}. This is a possibly non-reduced root system in a,, called the restricted
root system. Denote by Z* the system of positive restricted roots induced by the above
linear order. Then the positive Weyl chamber associated to X is the (non-empty) open
cone

a," :=={Heaq,|a(H)>0,VaeZ*}.
Finally define

+ s '+ ¥ . pyEa
a, ==i3@a,” and a;:=i3@a,".

Then a] = {Hea)|a(H) = 0,Vae Z*} and also coincides with the topological closure of
a; in a,. We call o (resp. E;f) the open (resp. closed) positive Weyl chamber in a,.
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The restricted Weyl group of a, is defined by W(a,) = N.(a,)/Z,(a,), where N, (a,)
and Z; (a,) are the normalizer and the centralizer of a, in L. Observe that, W(a,) a priori
depends on the group L. On the other hand, W(a,) turns out to be generated by the
reflections in the hyperplanes determined in a, by the root system X and hence only

depends on the Lie algebras f and [. Putting together the above facts with Prop.7.2.2 in
[HE1], one gets

Lemma 1.3. Let K/L be a compact symmetric space and let Ad, : L — GL(p) be the

isotropy representation of Lonp = p' @ 3. Then every L-orbit in p intersects a, in exactly one
point.

Now, we are able to define two slices in K¢/L®: the thick slice and the geometric
slice, both of which are basic for what follows. Let x, = [L] € K¢/ L and let T “ (resp. T.F)
be the complex torus corresponding to the Lie subalgebra t© =t @ a (resp. t=t,®a,).

Definition 1.4. The “thick slice” in K©/L° associated to af is defined by
D:=T xo=TF x,.
The “geometric slice” in K¢/ L€ associated to a; < af is defined by
D* = exp (@) - %o = ST o

Lemma 1.1 and Lemma 1.3 justify the name ‘“‘geometric slice” for D™, for every K-
orbitin K ¢/L¢ intersects D™ in exactly one point. The “thick slice” D is the smallest closed
complex subvariety of K¢/ L® intersecting every K-orbit; in the complex setting D is more
suitable to work with than D*. The next identities may be viewed as an improvement of
Mostow Decomposition Theorem for complex symmetric spaces. If x, = [Lc] e K¢/LE,
then

1.1) KC/LS =KD xy=KD" - x,.

Remark 1.5. By Definition 1.4, one has that D = T.7/T,* L€, Since t,n1 =0, the
intersection T.°n L = (T, n L) is a finite group. Hence D is isomorphic to (C*)", where
r equals the rank of K/L.

Remark 1.6. As we observed, the minimal K-orbits in K€/ L¢ are parametrized by
the Ad,-fixed points in ip. If K¢/L® is a complex symmetric space, they are also para-
metrized by the W(a,)-fixed points in a, = a, @ i3 < ip.

The following is a technical Lemma.

Lemma 1.7. Let K€/L® be a complex symmetric space and let X be a complex K ©-
homogeneous manifold with diim, X = dimg K€/L®. Let n : X — K©/L® be a K “-equivariant
holomorphic mapping. Then the map w establishes a 1:1 correspondence between K-orbits
in X and K-orbits in K €| L€, the restriction of m to every K-orbit in X is a covering map with
the same multiplicity.
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Proof. It is easy to see that X=K¢/(L,)¢, for some group L, satisfying
L°c L, c L (here L° denotes the connected component of the identity of L). In parti-
cular, 7 is a covering map of multiplicity equal to the cardinality of L/L,.

Observe that the groups L and L, have the same Lie algebra [. Therefore one can
choose the same positive Weyl chamber EpT in a, as a geometric slice for both their adjoint
actions on ip (cf. Lemma 1.3). Since n is K “-equivariant, it induces an identification
between exp(a;) - x,, which is a geometric K-slice in X = K¢/(L,), and exp(a;) - x,,
which is a geometric K-slice in K ¢/L€. In particular, = sets a 1: 1 correspondence between
K-orbits in X and K-orbitsin K ¢/L°. Now it is clear that the restriction of © to each K-orbit

is a covering map with the same multiplicity as =.

1.2. General properties of K-invariant domains in K“/L¢. Let X be a complex K-
space. A complex K¢-space X ¢ is called a K-complexification of X if it satisfies the
following properties (cf. [HN2]):

(i) there exists a K-equivariant holomorphic map i: X —» X ¢;

(ii) for every K-equivariant holomorphic map f: X — Y, where Y is a complex K °-
space, there exists a unique K “-equivariant holomorphic map f¢: X ¢ — Y, satisfying
fCoi=f Itis easy to see that, if X exists, it is unique up to K “-equivariant biholo-
morphism.

Let K be a compact connected Lie group, and let L = K be a closed subgroup. Let

Q be a K-invariant domain in K€/L€. It has been shown in [HN2] (sect. 4.1) that the K-
complexification Q€ of Q exists, is K °~-homogeneous and the map i: 2 —» Q€ is an open
embedding. In general, Q¢ does not coincide with K¢/L® but there is a commutative
diagram

Q — Q°

i A

KC / LC

where i and j are K-equivariant holomorphic open embeddings and = is a K “-equivariant
holomorphic covering. In particular, Q€= K¢/L{, for some group L, satisfying
L°cL,cL.

If Q is a K-invariant Stein domain in K€/L¢ and K¢/L® = QF, then Q is orbit con-
vex in K¢/L€ (see [HN2]). By definition, this means that for every x € 2 and v e if such
that exp(v) - x € 2, one has that exp(tv) - x € @, for ¢ € [0, 1]. Orbit convexity is a property
which has remarkable consequences for the K-invariant strictly plurisubharmonic func-
tions on Q. In the next Lemma we recall the ones which will be repeatedly used in this paper,
referring to [HN 2] for their proofs.

Lemma 1.8. Let Q< K /L® be a K-invariant orbit convex domain and let
¢:Q - [0, + o[ be a K-invariant strictly plurisubharmonic function. Then

(1) if xeQ is a critical point of ¢, then K - x is a minimal K-orbit;
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(ii) if the minimum set of ¢ is not empty, then it consists of a unique minimal K-orbit;
(iii) the critical set of ¢ coincides with the minimum set of ¢.

Remark 1.9. Let Q be a K-invariant domain in K ¢/L¢. Let Q denote the envelope
of holomorphy of 2 and Q€ the K-complexification of Q. An easy generalization of some
results by Rossi [RO] yields that Q exists and is a K-invariant Stein domain in Q¢ satisfy-

ing Q = Q < Q. Furthermore, Q¢ = Q€ and the automorphism group Aut () is a closed
subgroup of Aut(Q).

We conclude this preliminary section by a proposition collecting some general

properties of K-invariant domains in K /L. As we shall see, these properties are a direct
consequence of Lemma 1.8.

Proposition 1.10. Let Q be a K-invariant domain in K €/ L. Denote by Q the envelope
of holomorphy of Q and by Q°F its K-complexification.

() If Q¢ = KC/LS, then Q < K¢/ L€ contains a minimal K-orbit K - x and the orbit
K- x is a deformation retract of Q.

(i) If K€/L® is a complex symmetric space, then Q¢ = K¢|L".

Proof. (i) As we observed in Remark 1.9, Q is a K-invariant orbit convex Stein
domain in K¢/LC Let ¢:Q — [0, + o[ be a strictly plurisubharmonic K-invariant
exhaustion function of Q. The minimum set of ¢ is not empty and consists of a unique
minimal orbit K- x = Q (Lemma 1.8).

Since the minimum set of ¢ coincides with its critical set (Lemma 1.8), by Morse
theory [MI], Thm. 3.1, p. 12, the domain Q can be smoothly deformed into K - x along the
gradient flow of ¢.

(i) Let Q€ be the K-complexification of Q. One then has the following commutative
diagram

Q — Q°=KL)"
li =
KC/LC
where 7 is a K ®-equivariant holomorphic covering map. Since i is injective and K €ILE is

a complex symmetric space, by Lemma 1.7 the map = is injective and hence a biholo-
morphism.

Corollary 1.11.  All minimal K-orbits in  are homologous. In this way, one can say
that the minimal orbit K| L is a generator for the homology of Q.

Remark 1.12. When K¢ /L€ is a complex symmetric space, part (i) of Proposition
1.10 also follows from [LA]. There, the K-invariant Stein domains Q< K¢/L® are




104 Fels and Geatti, Invariant domains

characterized as the domains of the form Q = K- exp(w), where ® is an open, linearly
convex and W(a,)-invariant set in a,.

The retraction of Q to K/L can be constructed explicitly. It is the restriction to Q of
the map

F: KXy, ip%[0,1] - KX,q, ip

given by ([k,v], )+t - [k, v] = [k, tv].

2. The case of an orientable minimal orbit
The aim of this section is to prove Theorem 0.1 for K-invariant Stein domains
Qcc KL,

when K/L is an orientable compact symmetric space (Theorem 2.10). The proof of the
Theorem is based on the existence of an Aut(Q)-invariant strictly plurisubharmonic
exhaustion function ¢ of Q together with Lemma 1.8. Such an exhaustion function ¢ is
directly related to the Bergman kernel of €.

2.1. A canonical K-invariant volume form on 2 and the associated Hilbert space H%(£2).
Let K and L = K be compact Lie groups such that K/L is a compact orientable n-dimen-
sional manifold. The K-invariant differential k-forms on K/L (resp. K ®-invariant holo-
morphic (k, 0)-forms on K ¢ /LF) are in one-to-one correspondence with the Ad,-invariant
skew-symmetric R-linear maps p X ... X p — R (resp. the Ad, c-invariant skew-symmetric
C-linear maps p¢x ... x p© - C). In particular, the following fact holds.

Remark 2.1. If y is a K-invariant volume form of K/L then p extends to a K°-
invariant holomorphic (r,0)-form u€ on K¢/LF€. The form € is uniquely determined by p
and is nowhere vanishing on K¢/L€.

Observe that any two such u (resp. u€) only differ by a multiplicative constant.

Set #:=i" u€ A u€. The form # is a K-invariant volume form on K¢/LC. If Q is a
relatively compact domain in K ¢/L¢, denote by 7, the restriction of 5 to 2 and choose a
normalization of u so that | n, = 1. Denote by L?(£2) the corresponding Hilbert space of

Q

square summable functions on Q with the inner product given by
fey=[f@e@)dng(2).
Q

Let H2(Q) = L?*(2) N O(R). Since Q is a relatively compact domain in a Stein manifold,
H?(Q) is an infinite-dimensional separable Hilbert space. Denote by K,,: Q x Q — C the
corresponding Bergman kernel and set k,(2) :== K, (z, 2). If {e,},cn is an arbitrary ortho-
normal basis of H?(Q), then [RA]

ko(2) =} le,(2)I*.
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It follows that k, is a smooth, real valued, non-negative plurisubharmonic function. The

inclusion of O(K®/L®) into H?(Q) implies that kg, is strictly plurisubharmonic. Denote
the topological boundary of Q by Q.

Lemma 2_.2. Let Q be a relatively compact domain in a complex manifold and let
p€0Q. Then lim ky(2) = + 0o if and only if for every sequence x, — p in Q, there exists a
z—p

function fe H*(Q) such that lim |f(x,)| = + 0.

n—= +wo

Proof. Recall that (cf. [RA])

2.1) VzeQ, ko(2) =sup{|f(DI*| fe H* Q)| L2y <1} -

Suppose that lim k,(z) = 4+ 0. Fix x, - p in Q and assume by contradiction that

z—2p

sup | f(x)| = Cy s

for all fe H?(Q). Here C; is a non-negative constant depending on f. By the Banach-
Steinhaus Theorem, it follows that

sup | fx)I S C, VfeH?* (@), | fllz =1,

where the constant C is independent from f. The above inequality and (2.1) imply that
kqo(x,) < C, yielding a contradiction.

The converse follows directly from (2.1).

2.2. Boundary behaviour of k, for Stein Reinhardt domains. Let C* denote the set of
non-zero complex numbers. Let Re(z) denote the real part of a complex number z.

Proposition 2.3. Let Q be a relatively compact Stein Reinhardt domain in (C*)". Then
for every pe dRQ, one has lim kg(z) = + o0.

z=p
Proof. LetpedQ. We begin by showing that there exist an open neighbourhood U,
of p in (C*)" and a function fe H 2(U‘,r\ Q) such that lim | f(z)| = + co0. Denote by w the
logarithmic image of e

w=={x=(xl,...,x,)eR’|x,.=10g|z,.I, i=1,...,r,z=(2,...,2,)€ Q}.

Since Q is a relatively compact domain in (C*)" and is Stein, w is a bounded convex region
in R". Let p = (29, ...,2°) € 0Q. Then there exists a linear function

h:R" - R, h(x,....,x)= ) ax;+c,

i=1
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such that A(log(|z?]), ...,log(]z°])) = 0 and A(x) <0, for all x € w. Define

H:(C* > R by H(z):=1/2), alog|z;|*+c.
i=1

It is easy to see that H is pluritharmonic, H(p) =0, dH % 0 and H(z) <0 for all ze Q.
Hence there exist a small neighbourhood U, of p in (C*)" and a holomorphic function
Fe O(U,) such that Re F= H on U,. Moreover F(p) =0, dF(p) +#0 and F(z) # 0 on
U,n Q. Define G(z) == log(F(z)). Then G is well defined and holomorphic on U, and
satisfies lim |G(p)| = + co. We claim that G € H?(U,n Q). Since F(p) = 0 and dF(p) + 0,

z=p
one can define a biholomorphism ¢ = (F,y,, ..., y,) of U, (or some V' < U,) onto a small
polydisk P(0,¢) around 0 in (C*)". Let w,,...,w, be the coordinates on P(0, €), where
w, = F. Since the function logw, is square integrable on (U, Q) with respect to any
locally bounded volume form, the function G(z) is square integrable on U, Q. Lemma 2.2
now implies that

lim kgy,(z) = +00.

z—p

By Prop.1.1 in [DFH], if Q = < C" is a Stein domain, z,€ 0Q and U, c < U, are small
open neighbourhoods of z,, there exists a constant C > 0 such that

2.2 C ™ kgny,(2) S ko(2) < kgny, (@),
for all ze 2 U,. The inequality (2.2) implies the desired result.

2.3. Boundary behaviour of k, for K-invariant Stein domains in complex symmetric
spaces. Our next goal is to show that an analogue of Proposition 2.3 holds for K-invariant
Stein domains Q « = K¢/L¢, when K/L is an orientable compact symmetric space. Note
that we don’t make any assumption on the boundary of Q.

We first need to recall some prerequisites. Let r be the rank of the symmetric space
K/L. Then one may identify the thick slice D =TS x, =T x, in K¢/L® with the
group (C*)" (Remark 1.5). Denote by X(T €) (resp. X (D)) the characters on T¢ (resp. on
D). In a natural way, X (D) can be considered as a subgroup of X (7 €). Denote by X *(T°)
the semi-group of positive characters of 7€ with respect to a given choice of the Weyl
chamber a® (Sect.1.1) and by X *(D) the intersection X(D)nX *(T°). A result of
Takeuchi ([TA], Thm. 2.4) asserts the following:

Theorem (Takeuchi). Let K and L = K be compact Lie groups, such that K/L is a
compact symmetric space, and let L€ = K be their universal complexifications. Let y be a
character in X * (D). Then there exists a complex irreducible representation g K ¢ > GL(V)),
with highest weight y and such that Fix (L€, V,) is 1-dimensional.

The representation g, is also referred to as a “class-one representation” of the pair
(K€ L°). Let ye X *(D) and let g, : K - GL(V¥,) be the corresponding class-one repre-
sentation of (K€, L). The restriction of g, to T € decomposes V, into a direct sum of one-
dimensional weight spaces. Fix a K-invariant hermitian inner product (,) on ¥,; then fix
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an orthgnormal basis {01, .., v} of ¥, formed by weight vectors and such that v, belongs
to the highest weight space. Sometimes we shall write v, = v;. Choose a vector vl of length
one in Fix(L¢, ¥,) and define y,: K/L¢ - v, by

v, (L) :=0,(gL") - v~

The map v, is holomorphic and its first component v, , (g L) = (¢, (g L®) v*, v,) defines a
holomorphic function on K/L®. Finally, define ¢,: K¢/L® - C by

Cy._ 1
(2.3) ¢, (gLE) = @h) v,.1(gLY).

By [WA], Vol. 1, p. 211, for every x € X *(D), the quantity (v, v,) is non-zero. As a conse-
quence, the function ¢, is well defined and holomorphic on K ¢/L¢; furthermore

(2.4) $,1D=1.
Denote by C,(X) the set of continuous functions with compact support on a space X.

Lemma 2.4 (Integral formula). Let K/L be an orientable compact symmetric space.
Then there exists a normalized left invariant measure d(gL®) on K€/ L€ such that

[ f(eL%)d(gL?) = | | f(kexp(a) L)d(a)dadk,

K€/L¢ K a}

for every function fe C,(K€/L®). Here da denotes the Lebesgue measure on a,, dk the Haar
measure on K and 6(a) is a continuous function on a,, independent from f.

Proof. Let p be a K-invariant volume form on K /L and let u© be the K “-invariant
holomorphic (n, 0)-form on K ¢/L¢ extending u (see Remark 2.1). Then n = i" u€ A u® is
a K “-invariant positive volume form on K /L€ and, up to a constant factor, it is unique
[HE2], Thm.1.9. If K/L is a semisimple symmetric space (that is if K is semisimple), the
above integral formula is contained in Theorem 8.1.1 in [SK]. Its proof is based on the fact
that the map

Y:K/Z;(a,)xay - K¢/L®, (kz,a) kexp(a)L®

where x, = [L¢]e K®/LS, is a diffeomorphism of K/Z, (a,) X a; onto an open dense
subset of K€/L°. Here Z,(a,) is the centralizer of a, in L. The function J(a) which
appears in the right hand side of the integral formula is the jacobian determinant of ¥ at a
point (kz, a). As we already saw in section 1, a map like ¥ exists in the general case as well
(cf. (1.1)). In order to obtain the integral formula, we only need to compute the jacobian
determinant of ¥ at (kz,a)e K/Z,(a,) X aj.

The tangent space to K/Z, (a,) X a, at (kz, a) can be identified with

t/3.(00@a,=3D1/3.(a,)Da,Di3
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while the tangent space to K€/L® at x, = [L®] with p¢ =p @ ip. If (X,Y) is a vector
in t/3,(a,) @ a,, the differential d¥,;,, ,(X,Y) is given by the projection of Ad,-. X +Y
onto p€ (cf. [SK]). Then it is easy to see that d ¥, , restricted to 3 = f or to i3 < a, is the
identity map. Hence the jacobian determinant of ¥ only depends on the “semisimple part”
of f and is the same function é on a, as in the semisimple case.

As we already observed, for every x € X, (D), the function ¢, defined in (2.3) is a
holomorphic function globally defined on K ¢/ L¢. In particular, if Q is a relatively compact
domain in K¢/LF, the restriction of ¢, to 2 belongs to H*(Q). Let Q, = QD be the
intersection of  with a thick slice D in K€/LE.

The following lemma relates the norm of ¢,|Q in H?(Q) with the norm of ¢, |2, in
H*(2p).

Lemma 2.5 (Basic estimate). Let Q be a relatively compact K-invariant Stein domain
in K€/ L%, where K|L is an orientable compact symmetric space. Set Qp, = QN D. Then
there exists a constant M > 0 such that

H<leliz(m = M“X”IZ,Z(QD) >
for all ye X * (D).
Proof. The main ingredient in the proof of the above estimate is the integral formula

stated in Lemma 2.4. Let 5, again denote the volume form i"*u€ A u€ of K€/LE restricted
to Q. Then, by Lemma 2.4, for every continuous function f on 2, one has

s{f(gLC)an(ch)=Cj § f(kexp(a)L€)d(a)dadk ,

+
K og

where wg:={aea;|exp(a)eQ,} and C is a constant only depending on the normali-
zation of the measure on K ¢/ L¢. By a straightforward application of the preceding formula
and of the definition of ¢, we obtain the following identities:

(0%, v,)|? ;[ |6,(gLE)|>dng(gL®)
= [ (e, (gL)v",v,) | dngo(gLe)
Q

=C [ 3(a) [ 1(e,(K)e,(exp(@)v*, v,)|* dkda
K

+
Do

=C | 6@ | I(g,(exp(@)v", ¢, (k) v,)|* dkda .
w}', K
Recall that, up to a constant factor, there exists a unique K-invariant positive measure

d(kL) on K/L such that
[f)ydk= [ [f@eDdldkD),

K/L L

for every continuous function f on K/L (see [HE2], Thm. 1.9, p. 91). Hence the above
chain of identities can be continued as follows:
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I+ 8(a) | |(e,(exp(a))v", ¢, (k)v,)|* dkda
04 K
=’ j; é@) | | |(Ql(exp(a))v’“, o, ([k] l)vx)lzdld(kL)da
oh KL L

=C" | (@) [ (e (exp(@)v*, g, ((kDv")I?| (v",v,)|*d(kL)da.

0h K/L

Here we used the fact that the fixed point set Fix (L, ¥;) has dimension 1 and therefore

{Qx(l)vxdl = (v,, v")0".

The constant C’' only depends on the normalization of the measure on K /L. By the
Schwarz inequality and the fact that ||v~|| = 1, one has that

| (e, (exp (@) v", 0, ([K])v")|* £ |lg, (exp (@) o™ 1> .
It follows that

C' [ o [ (e (exp(@)v, e, ((kD)v")I1*|(v",v,)|*d (kL) da

0h K/L

<105)17C [ 6@ | llg,(exp(@)v*lI*d(kL)da

o} K/L

<105 0)PC" | 3(@)lx(exp(a)|*da

< (" v)1*sup|8(a)C" | | 2(exp(a))|*da .

If wg:={aea,lexp(a) ey}, then () w-wy is an open dense subset of w,. Hence
weW(up)

J 1x(exp(@)I2da =W (a)| ™" [ 1z(exp(@)|*da

i n dz Andz
= W) [ 1@ T
Q2p

where | W (a,)| denotes the cardinality of the Weyl group W(a,) and C" is a constant only
depending on the normalization of the measure on Q,,. Putting everything together we finally
get the desired result:

|0", 0 ) P bl = |05, 01 £I¢x(gLC)|2dﬂg(ch)

dz Adz
= MIGH )P | 1P
2p

= M| (" v)* 1 lF2@p) »

where M = CC'C" sup |6(a)||W (a,)|” ! is a constant not depending on y.

2

8 Journal fiir Mathematik. Band 454
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Lemma 2.6. Let Q be a relatively compact K-invariant Stein domain in K |L€, where
K/L is an orientable compact symmetric space. Let D be a thick slice in K€/L® and let
Q,=QnD. Let pedQ,,. Then for every sequence x, — p in 2, there exists a function
Fe H*(Q) such that

lim |F(x,)| =+o0.

n— + o

Proof. Let pedQp,=0QR2nD and let x, —» p in Q,,. Since £, is biholomorphic to a
relatively compact Reinhardt domain in (C*)", by Proposition 2.3 and Lemma 2.2 there
exists a function fe H?(Q),) satisfying

lim |f(x,)|=+o0.

n— + o

We are going to extend f to a function Fe H?*(Q). Let

f@= % a:z"

ne Z"

be the Laurent series development of f on ©,,. Viewing the monomials z" as characters on

D, we can rewrite the above seriesas f(z) = ). a, x(z). Without loss of generality, we can
actually assume xeX(D)
f@= 3% ax@
xeX+(D)

for a suitable choice of the positive Weyl chamber a*. Now define F: Q — C formally by

FZ)= ) a,¢,(2),

xeX* (D)

where the functions ¢, are those defined in (2.3). It is immediate that F satisfies
F|Q,=f.

Observe also that, if Fe L%(R), then automatically Fe H?(Q2). This follows from the fact
that the functions ¢, belong to H?(Q) and H?(Q) is a closed subspace of L?(£2). There-
fore, to conclude the proof of the lemma, we are left to show that F belongs to L*(2).

If x, and x, are non-equivalent characters in X *(D), they are orthogonal elements
in H2(Qp). This observation and the estimate of Lemma 2.5 yield

I Fllf2@ S 210,12 1112200 = M X 1@, 1211 xIIE2i00) = M IS 12000 -
x X

completing the proof of the lemma.

Corollary 2.7. Let Q be a relatively compact K-invariant Stein domain in K€/LE,
where K| L is an orientable compact symmetric space. Let p € 0Q2. Then for every sequence
x, = pin Qp

lim kg(x,)=+.

n— +ow
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Proof. The corollary follows directly from Lemma 2.6 and Lemma 2.2.

2.4. An Aut(£2)-invariant strictly plurisubharmonic exhaustion function of 2. As we
already mentioned, the basic ingredient in the proof of the main result of this section
(Theorem 2.10) is the existence of an Aut(2)-invariant strictly plurisubharmonic exhaus-
tion function of Q. The construction of such an exhaustion function is based on a technique
developed by E. Bedford [BD], which we briefly recall.

Let M be a complex manifold of complex dimension » and let 4, (M) be the Hilbert
space of L? holomorphic (n, 0)-forms on M

n,0

A,(M)={ne \M)ldn =0, |Inll7:00 =1 [ nATI< +00}.
M
Let H,(M, R) denote the n-th homology group of M with real coefficients. Define a map
Ayt H,(M, R) > R by
Au((¥D = sup Re|n,

nednM) 5
[Inll=1

where y’ is a representative of [y]. It is easy to check that 4,, does not depend on the choice

of y’ and that it defines a seminorm on H,(M, R). This seminorm is a biholomorphic
invariant of the manifold. If 1: M - M’ is a holomorphic injection, and

1, H,(M,R) - H,(M', R)
is the induced map between the homology groups, then for all [y] € H,(M, R)

A [v]) = Ap([vD) -

Let [y]e H,(M, R) with A,,([y])> 0. Then there exists a unique holomorphic form
0, € A,(2), with ||op, |l 2 = 1, such that

(2.5) n(yD = Iw[y] .

If f: M — M’ is a biholomorphic map, and f* denotes the pull-back mapping induced by
f on the differential forms, then 4, (f, [7]) = Ay ([y]) >0 and

(2.6) WOy = f*Op1y -

Now let Q be a relatively compact Stein domain in K€/ L€, where K/L is a compact
orientable space. Then by the topological simplicity of €2, the above technique yields an
invariant volume form on Q. Let 7, be the K-invariant volume form on £ introduced in
section 2.1.

Lemma 2.8. Let Qc < K¢/LC be a K-invariant Stein domain, where K/L is a com-
pact orientable space. Then 1, is an Aut(2)-invariant volume form on Q.
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Proof. By Proposition 1.10 and Corollary 1.11, the domain Q contains a minimal
orbit K/L and the corresponding homology class [y] := [K/L] is a generator of the homo-
logy group H,(2, Z) = Z. Since Ao(y) = Re [ u®> 0, there exists a unique holomorphic

K/L. .
(n,0)-form w,; € 4,() with || @y, ||z =1 satisfying Aq([y]) = | o,
v

Observe that wy,; is K-invariant, because [y] is and by (2.6); moreover, for every
¢ € Aut(Q),

2.7 P* oy, = T oy,.

It follows that w,; A @y,; is an Aut(Q)-invariant volume form on Q. By our choice of the
normalization, w,; = u®|Q and 7, is an Aut(Q)-invariant volume form on , as required.

As in section 2.1, let H2 () be the space of square summable holomorphic functions
with respect to the volume form #,. Denote again by k,(z) := K, (z, z) the corresponding
Bergman kernel function. As the next lemma shows, kg, is the Aut(Q)-invariant exhaustion
function of Q we needed.

Lemma 2.9. Let Q< <= K®/L® be a K-invariant Stein domain, where K/L is a com-
pact orientable space. Then kg, is a smooth Aut(§2)-invariant non-negative strictly plurisub-
harmonic function of Q. If furthermore K| L is symmetric, then k, is an exhaustion function.

Proof. As we already observed in section 2.1, the function k, is a smooth non-
negative strictly plurisubharmonic function on Q. In order to show the Aut(Q)-invariance
of k,, observe that by Lemma 2.8 the group Aut(2) acts isometrically on H?(£2) by

fofod™t,

where fe H2(Q) and ¢ € Aut(Q). Then, the property of being an orthonormal basis of
H?(Q) is invariant under pullbacks by elements of Aut(®) and this implies the Aut(£)-

invariance of k,,. If K/ L is symmetric, the exhaustion property of &k, follows from Corollary
2.7.

2.5. The proof of Theorem 0.1 for orientable minimal orbit.

Theorem 2.10. Let Q = K¢/L€ be a relatively compact K-invariant Stein domain.
Assume K| L is an orientable compact symmetric space. Then

(a) Q contains a minimal K-orbit of type K/L;
(b) Aut(R) stabilizes a minimal K-orbit of type K| L;
(c) Aut(R2) is a compact group;

(d) Q is complete for the Bergman metric.
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Proof. The proof of (a) is contained in Proposition 1.10 or Remark 1.12.

(b) Let ¢ denote the Aut(Q)-invariant strictly plurisubharmonic exhaustion function
of & constructed in Lemma 2.9. Denote by M the minimum set of ¢. By Lemma 1.8, the
set M consists of a unique Aut(Q)-invariant minimal K-orbit of type K/L in Q.

(c) Since Qis hyperbolic, Aut(Q) acts properly on . Then the compactness of Aut(£2)
follows directly from (b).

The assertion (d) follows directly from Theorem B in [DFH] and the fact that
O(K€/L®) embeds in H%(Q) as a dense subset.

3. The case of a non-orientable minimal orbit

The aim of this section is to complete the proof of Theorem 0.1, that is to extend the
results of Theorem 2.10 to the case when K/ L is a non-orientable compact symmetric space
(Theorem 3.2). Since a non-orientable manifold admits no nowhere vanishing volume form,
the techniques introduced in section 2 cannot be applied directly. What we shall do in this
case is to reduce ourselves to the orientable situation.

We begin by briefly recalling some facts about the 2 : 1 orientable covering of a non-
orientable manifold. Let M be a non-orientable manifold of real dimension » and let
p: F(M) - M be the associated principal frame bundle. The fibre of F(M) over a point
m e M consists of all ordered bases of T'(M),,, the tangent space to M at m. The group
GL (n, R) acts on the fibers of F(M) by right translations. Denote by GL(n, R)° the
connected component of the identity of GL (n, R) and define M := F(M)/GL(n, R)°. Then
M is a connected orientable manifold and, with the projection p:M - M,is a 2:1
covering of M. Moreover, M has a nice lifting property. If ¢ is a diffeomorphism of M,
then the differential d¢ of ¢ defines a bundle map of F(M). Since d¢ commutes with the
right GL (n, R)°-action on F(M), it induces a diffeomorphism of M, which we denote by
$. The map ¢ — @ is an injective group homomorphism Diff (M) — Diff(#), and for all
¢ e Diff (M) the corresponding element ¢ € Diff (M) satisfies po ¢ = ¢ o p. If M = K/Lis
a K-homogeneous manifold, the same is true for M and there exists a subgroup L, = L
such that M = K/L,. In particular, if M = K/L is a compact symmetric space, M = K/L,
is symmetric as well. The projection p:K/L, - K/L is K-equivariant and likewise
pC:KC¢/LS - K€/LC is a K “-equivariant 2 : 1 holomorphic covering.

If Q is a relatively compact K-invariant Stein domain in K ¢/L€, then Q,:=(p®)~}(Q)
is a relatively compact K-invariant Stein domain in K¢/L{ and p©:Q, - Q is a K-
equivariant holomorphic 2 :1 covering.

Lemma 3.1. Let Q< < K°/LC be a K-invariant Stein domain, where K/ L is a non-
orientable compact symmetric space. Let K|L, be the 2 :1 orientable covering of K|L and
let Q, be the domain in K€|LS covering Q. Then there exists a subgroup G = Aut(Q) of
finite index, with the property that for all g € G there exists § € Aut(Q,) such that
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Proof. Consider p©: Q, —» Q as a principal Z,-bundle and denote by [2,] the cor-
responding class in H'(, Z,). For g € Aut(Q), denote by g* the pull-back isomorphism
g*:H'(Q,Z,) > H'(R,Z,). Then the map g+ g* defines a representation

*: Aut(Q) » GL(H' (@, Z,)).

Denote by H the image of Aut(Q) in GL(H'(Q, Z,)) and by Hj, , the stabilizer of [Q, ]
in H. Set G:=(x)""'(Hg,). By definition, G is the group formed by those elements
g € Aut(©2) such that the pull-back bundle g*Q, is equivalent to Q,. Therefore, for all
g € G there exists § € Aut(Q2,) such that p©o § =g o p©. Since H' (2, Z,) ~ H*(K/L, Z,)
is a finite dimensional vector space over Z,, the group G is of finite index in Aut(Q), and
this completes the proof of the lemma.

Theorem 3.2. Let Q = K€/ L€ be a relatively compact K-invariant Stein domain in a
complex symmetric space. Then

(@) Q contains a minimal orbit of type KL,

(b) Aut(Q) stabilizes a minimal K-orbit of type K/L;

(c) Aut(Q) is a compact group.

Proof. The proof of (a) is already contained in Proposition 1.10 or Remark 1.12.

If K/L is a compact orientable symmetric space, the asserts (b), (c) and (d) have been
proved in Theorem 2.10. So it remains to discuss the case when K/ L is non-orientable. Let
K/L, be the 2:1 orientable covering of K/L and let Q, be the domain in K “/L¢ covering
Q. Recall that Q, is a relatively compact K-invariant Stein domain in K°/L¢ and hence
satisfies the hypotheses of Theorem 2.10.

By Lemma 3.1, there exists a subgroup G € Aut(2) of finite index whose elements all
lift to automorphisms of €,. Since Aut(£2,) stabilizes a minimal K-orbit in Q, (by Thm.
2.10), so does G. It follows that G is compact and Aut(€2) itself is compact. To prove the
existence of an Aut(Q)-invariant minimal K-orbit in €, take an arbitrary strictly
plurisubharmonic exhaustion function of Q. Since Aut(£2) is compact, an Aut({)-invariant
strictly plurisubharmonic exhaustion function ¢’ of 2 can be obtained from ¢ by a standard
averaging process. By Lemma 1.8, the minimum set of ¢’ is an Aut(2)-invariant minimal
K-orbit in Q.

Corollary 3.3. Let Q< K/L® be a relatively compact K-invariant domain in a
complex symmetric space. Then Aut(Q2) is a compact group (cf. Remark 1.9).
4. The case of a unique non-symmetric minimal orbit

In this section we exhibit another situation where an analogue of Theorem 3.2 holds.
It is when the manifold K €/ L€ satisfies the following condition:
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(©) K- xq, for xy = [L], is the unique minimal K-orbit in K€/LE.

Again, we first consider the case when the minimal orbit K - x, = K/L is orientable.
In this case, if Q is a relatively compact K-invariant Stein domain in K€ /L€, we can apply
Bedford techniques to construct a smooth Aut(Q)-invariant strictly plurisubharmonic
function on €. In contrast with the symmetric case, this function may not be an exhaustion
function. So we need to show directly that its critical set is not empty. ’

Lemma 4.1. Let L be a compact Lie group acting linearly on C" with the origin as a
unique fixed point. Let B < C" be an L-invariant ball centered at 0. If ¢ : B — [0, + o[ is
a smooth L-invariant function, then 0 is a critical point of ¢.

Proof. Identify the tangent space to B at 0 with C" and denote by Hom(C", C) the
space of R-linear functionals on C". The L-action on C" induces an L-action on
Hom(C" C) by I - x(v):= x (I - v). The fact that 0 is the unique L-fixed point in C" implies
that the zero functional is the only L-fixed point in Hom(C", C). Since the differential of
the function ¢ at 0 defines an L-invariant element in Hom(C", C), the Lemma follows.

Theorem 4.2. Let Q < = K¢/L® be a K-invariant Stein domain with Q€ = K°/LE.
Set xo = [L®] and assume that K - x, = K /L is the unique minimal orbit in K/LE. Then

(a) Q contains the minimal orbit K | L;
(b) Aut(Q) stabilizes K/ L,
(c) Aut(Q) is a compact group.

Proof. The proof of (a) is contained in Prop.1.10. We proof (b) and (c) in the case
where the minimal orbit K /L is orientable. The non-orientable case follows from the
orientable one as in Theorem 3.2.

(b) Let ¢ be the Aut(Q)-invariant strictly plurisubharmonic function on Q con-
structed in Lemma 2.9. We claim that the minimal orbit K/L < Q coincides with the
minimum set of ¢ and in particular it is Aut(£2)-invariant. We begin by showing that the
critical set of ¢ is not empty; more precisely, that x, = [L®] is a critical point of ¢. If we
consider K ¢/L° as an L-space, then x, is an isolated fixed point of L. The L-action can be
locally linearized around x,, that is there exist an L-invariant neighbourhood U of x, in
K€/LF¢ a ball B< C" centered at 0 and a biholomorphic map F: U, — B, such that
F(xy) =0and F(/- x) = iy(I) F(x), for all xe U, and /e L. Here i, denotes the isotropy
representation of L at x,. Since the function

¢lUgo F~ !
satisfies the assumptions of Lemma 4.1, it has a critical point at 0, which is equivalent to ¢
having a critical point at x,. Since Q is orbit convex in K ¢/LE, the point x, is also a mini-

mum point of ¢ and the minimal orbit K- x, = K/L is precisely the minimum set of ¢.

(c) follows from (b) as in Thm. 2.10.
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5. The equivalence problem

In this section we consider the equivalence problem for relatively compact K-
invariant Stein domains in K ¢/ L®. As a by-product we obtain a result on the extendability of
automorphisms of such domains beyond the boundary.

Lemma 5.1. Let K, L, G, H be compact Lie groups such that K< G, H<= G and
L =KnH. Assume that G|H is connected and G/|H = K/L. Then G¢/ H® is connected
and G¢/H® = K€|LF.

Proof. Since G® and G have the same number of connected components, the
connectedness of G/H implies that of G¢/H . The inclusion K = G induces the inclusion
K€<=GC So K€ acts naturally on G¢/H€ by left translations. Set x, = [H¢]e G/ HE.
Since G- x, = G/H is a totally real submanifold of G¢/H¢ of maximal dimension and
K- x,= K/L = G/H, one has that dim; K¢ x, = dim.G*/H . It follows that K- x, is
open in G¢/HC. In order to conclude that K¢/L® = G/ H we need to show that K- x,
is closed in G ¢/ H®. This can be done using an argument by [HN 2] (page 649) which we
recall for the sake of completeness. By a consequence of the Peter and Weyl theorem, there
exist a real vector space ¥ and a linear action of G on V, such that G - v = G/ H for some
veV (see [BR]). The complexification G € acts holomorphically on the complexification
V' ® C and there exists a G-invariant hermitian inner product on ¥ ® C whose restriction
to V is a G-invariant scalar product on V. Denote by F: V® C — R the corresponding
norm on ¥V @ C, which is a G-invariant strictly plurisubharmonic function. Since G - v is
perpendicular to the line Rv, the point v is a critical point for the restriction of F to the
G “-orbit G- v. By [KN] and [PS], the orbit G®- v is closed in ¥ ® C and is biholo-
morphic to G¢/HE.

Consider now the restriction of the G-action on ¥V ® C to K. By the same argu-
ment, the orbit K¢ v is closed in ¥ ® C and is biholomorphic to K¢/LC. Since G ¢/H ¢
is closed in ¥ ® C, the orbit K€ v is closed in G¢/H€ as well.

Theorem 5.2. Let Q,, Q, be relatively compact K-invariant Stein domains in K €/ L.
Assume that QF = Q5 = K€/L® and that Aut(Q,) stabilizes a minimal K-orbit. Let
F:Q,— Q, be a biholomorphic map. Then there exists F€e Aut(K®/L) such that
FC|Q,=F.

Proof. Let G:= Aut(R2,) and let K/L be the minimal K-orbit stabilized by G in 2,.
Then G is a compact Lie group and K/L = G/H for some compact subgroup H < G.
Since K/L is connected, by Lemma 5.1 one has that K¢/L¢ = G¢/H® and the domain
Q, can be viewed as a G-invariant domain in G ¢/ H €. The biholomorphic map F: Q, —» Q,
is K-equivariant, if we let K act on ©, by

5.1) k-w=FokoF Y(w),
for ke K and we Q,. Since G is the full group of automorphisms of Q,, the K-action
given in (5.1) is defined on the whole space G ¢/ H €. In this way, G ¢/ H € can be considered

both as a K and a K -space for such an action. Since K¢/L¢ = Qf and the map

F:Q, - Q,cG°/HE
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is K-equivariant, there exists a unique K “-equivariant holomorphic map

FC:Qf =KC/L® - G°/HE®,
which makes the following diagram commutative.

Q, —5 Qf=KCLC
e T

G¢/H®¢
Similarly, the K-equivariant map
F1:Q,cQf=KL° =G /H® > Q,c KC/L®
yields a unique K “-equivariant holomorphic map (F ~')¢: G¢/H® - K¢/ L, satisfying
(F~1H6|Q,=F1.

By the identity principle (F ~!)¢ = (F¢)~! and the map F € is an automorphism of K¢/L¢
satisfying F¢|Q, = F.

Remark 5.3. Let Q, and Q, be relatively compact K-invariant Stein domains in
K€/LE. Assume that Qf = Qf = K¢/L® and that Aut(Q,) stabilizes a minimal K-orbit.
Then, given a biholomorphic map F:Q, - Q,, there exist Aut(£2;)-invariant minimal
K-orbits M, in Q,, for i =1, 2, such that F(M,) = M,.

Proof. Since Aut(£2,) stabilizes a minimal K-orbit, it is a compact group. Let ¢ be
an Aut(,)-invariant strictly plurisubharmonic exhaustion function of Q,. Then ¥:=¢ o F
is an Aut(Q,)-invariant strictly plurisubharmonic exhaustion function of Q,. Its minimum
set is not empty and, by Lemma 1.8, it is a minimal K-orbit M, in €,. Clearly, F(M,) is the
minimum set of ¢ and is an Aut(£2,)-invariant minimal K-orbit in Q,.

Applying Theorem 5.2 to the case when Q, = Q,, we obtain the following extension
result for automorphisms of domains in K ¢/L®:

Corollary 54. Let Q< < K®/L® be a K-invariant Stein domain. Assume that
Q¢ = K€/L® and that Aut(Q) stabilizes a minimal orbit. Then every automorphism of Q
extends to an automorphism of K|L®.
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