Definition. The Γ -function $\Gamma(s)$ is defined for $s \in \mathbb{C}$, $\operatorname{Re}(s) > 0$ by

$$\Gamma(s) = \int_0^\infty e^{-t} t^s \frac{dt}{t}.$$

Proposition (9.1).

- (i) For every $s \in \mathbb{C}$, Re(s) > 0 one has that $\Gamma(s+1) = s\Gamma(s)$.
- (ii) The Γ -function admits a meromorphic extension to \mathbb{C} with poles at $0, -1, -2, \ldots$ of order 1. The residue at -k is $(-1)^k/k!$.
- (iii) $\Gamma(s)\Gamma(1-s) = \pi/\sin(\pi s)$ for $s \in \mathbf{C} \mathbf{Z}$.

Proof. The first part follows easily by partial integration. Using the functional equation $\Gamma(s+1) = s\Gamma(s)$ one can extend $\Gamma(s)$ meromorphically to all of \mathbf{C} . For every $k \in \mathbf{Z}_{\geq 0}$ one has that

$$\Gamma(s) = \frac{1}{(s + (k-1)) \cdot \ldots \cdot (s-1)s} \Gamma(s+k)$$

which easily implies (ii).

(iii) Write $F(s) = \Gamma(s)\Gamma(1-s)$. By (ii) the function F(s) has poles of order 1 at the integers. For $s \in \mathbb{C}$, 0 < Re(s) < 1 one has that

$$F(s) = \int_0^\infty \int_0^\infty e^{-t-x} \left(\frac{t}{x}\right)^s dx \frac{dt}{t}$$

and, making the substitution t = zx, we find that

$$F(s) = \int_0^\infty z^s \int_0^\infty e^{-(z+1)x} dx \frac{dz}{z} = \int_0^\infty \frac{z^{s-1}}{z+1} dz.$$

Using the Residue Theorem it is rather easy to show that the last integral is equal to $\pi/\sin(\pi s)$. See Exer.9.A for the details. This proves the proposition.

Definition. For $x \in \mathbb{R}_{>0}$ we let

$$\theta(x) = \sum_{n \in \mathbf{Z}} e^{-\pi n^2 x}$$

denote the θ -function.

This θ -function is a minor modification of the well known Jacobi Θ -function $\Theta(z) = \sum_{n \in \mathbf{Z}} e^{2\pi i n^2 z} = \theta(-2iz)$ (Jacobi, German mathematician 1804–1851). The Θ -function is defined for z in the upper halfplane. It is a modular form (weight 1/2, for some $\Gamma \subset SL_2(\mathbf{Z})$). See the books by N. Koblitz [36] and S. Lang [40] for more about Θ -series and modular forms.

Proposition (9.2). (Carl Jacobi, German mathematician 1804–1851) Let $x \in \mathbb{R}_{>0}$. Then

$$\theta\left(\frac{1}{x}\right) = \sqrt{x}\theta(x).$$

Proof. Let $f: \mathbf{R} \longrightarrow \mathbf{C}$ be a rapidly decreasing C^{∞} -function i.e. for all $n \in \mathbf{Z}$ one has that $f(x)x^n \to 0$ when $x \to \pm \infty$. The basic example will be $e^{-\pi Ax^2}$ for A > 0. We define the Fourier transform of f by

$$\hat{f}(t) = \int_{\mathbf{R}} f(x)e^{2\pi itx} dx.$$

The proof will be a consequence of the Poisson summation formula:

$$\sum_{n \in \mathbf{Z}} f(n) = \sum_{n \in \mathbf{Z}} \hat{f}(n).$$

This formula can be deduced as follows: consider

$$g(x) = \sum_{k \in \mathbf{Z}} f(k+x)$$
$$= \sum_{m \in \mathbf{Z}} c_m e^{2\pi i mx}$$

The second expression is the Fourier expansion of the *periodic* function g(x). The Fourier coefficients c_m are given by

$$c_m = \int_0^1 g(x)e^{-2\pi i mx} dx$$
 for all $m \in \mathbf{Z}$.

The coefficients c_m can be evaluated explicitly as follows:

$$c_{m} = \int_{0}^{1} \sum_{k \in \mathbf{Z}} f(k+x)e^{-2\pi i m x} dx = \int_{0}^{1} \sum_{k \in \mathbf{Z}} f(x)e^{-2\pi i m(x-k)} dx$$
$$= \int_{\mathbf{R}} f(x)e^{-2\pi i m x} dx = \hat{f}(m)$$

We conclude that

$$\sum_{k \in \mathbf{Z}} f(k) = g(0) = \sum_{m \in \mathbf{Z}} c_m = \sum_{m \in \mathbf{Z}} \hat{f}(m)$$

as required.

Now we give the proof of Prop.9.2: consider the, rapidly decreasing, function $h(y) = e^{-\pi y^2}$. It is well-known and easily checked that $\hat{h}(y) = h(y)$. It is convenient to calculate

the Fourier transform of $h_b(y) = h(by)$ for $b \in \mathbf{R}$. the result is that $\hat{h_b}(y) = \frac{1}{b}\hat{h}(\frac{y}{b})$. By the Poisson summation formula we have that

$$\theta(x) = \sum_{n \in \mathbf{Z}} e^{-\pi n^2 x} = \sum_{n \in \mathbf{Z}} h_{\sqrt{x}}(n) = \sum_{n \in \mathbf{Z}} \widehat{h_{\sqrt{x}}}(n),$$

$$= \sum_{n \in \mathbf{Z}} \frac{1}{\sqrt{x}} \widehat{h}(\frac{n}{\sqrt{x}}) = \frac{1}{\sqrt{x}} \sum_{n \in \mathbf{Z}} e^{-\pi (\frac{n}{\sqrt{x}})^2}$$

$$= \frac{1}{\sqrt{x}} \theta\left(\frac{1}{x}\right),$$

as required.

Proposition (9.3). The Riemann ζ -function (G.B. Riemann, German mathematician 1826–1866) has the following properties:

(i) (Euler product.)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

for $s \in \mathbb{C}$, Re s > 1. Here the product runs over the primes p.

- (ii) (Analytic continuation.) The function $\zeta(s)$ admits a meromorphic extension to \mathbf{C} . It has only a pole at s=1. This pole is of order 1 with residue 1.
- (iii) (Functional equation.) The function

$$Z(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s)$$

satisfies Z(s) = Z(1-s).

- (iv) (Zeroes) If ρ is a zero of $\zeta(s)$ then either ρ is a trivial zero, i.e. ρ is a negative even integer, or $0 \le \rho \le 1$
- (v) (Special values.) Let m be an even positive integer. Then

$$\zeta(m) = -\frac{(2\pi i)^m}{2 \cdot m!} B_m,$$

$$\zeta(1-m) = -\frac{B_m}{m}.$$

here the B_m denote Bernoulli numbers. They are defined by

$$\frac{T}{e^T - 1} = \sum_{m=1}^{\infty} \frac{B_m}{m!} T^m.$$

Finally we have that $\zeta(0) = -\frac{1}{2}$.

Proof. Part (i) has been proved in section 4. We prove (ii) and (iii) at the same time. For $s \in \mathbb{C}$, $\text{Re}(s) \geq 1$, consider the Z-function

$$Z(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s)$$

We can write

$$Z(s) = \int_0^\infty e^{-t} t^{s/2} \frac{dt}{t} \pi^{-s/2} \sum_{n \ge 1} n^{-s} = \int_0^\infty e^{-t} \sum_{n \ge 1} t^{s/2} \pi^{-s/2} n^{-s} \frac{dt}{t}.$$

Substituting $t = x\pi n^2$ in every term of the sum, we find

$$Z(s) = \int_0^\infty x^{s/2} \sum_{n \ge 1} e^{-x\pi n^2} \frac{dx}{x} = \int_0^\infty \frac{\theta(x) - 1}{2} x^{s/2} \frac{dx}{x}.$$

Next, we split the integral in two pieces: a piece from 0 to 1 and another from 1 to ∞ . In the first piece we change the variable x to 1/x and we find, using Prop.9.2, that

$$Z(s) = \int_{1}^{\infty} \frac{\theta(x) - 1}{2} x^{s/2} \frac{dx}{x} + \int_{\infty}^{1} \frac{\theta(1/x) - 1}{2} x^{-s/2} \frac{d(1/x)}{1/x},$$

$$= \int_{1}^{\infty} \frac{\theta(x) - 1}{2} x^{s/2} \frac{dx}{x} + \int_{1}^{\infty} \frac{\sqrt{x}\theta(x) - 1}{2} x^{-s/2} \frac{dx}{x},$$

$$= \int_{1}^{\infty} \frac{\theta(x) - 1}{2} \left(x^{\frac{s}{2}} + x^{(1-s)/2} \right) \frac{dx}{x} + \int_{1}^{\infty} \frac{x^{(1-s)/2} - x^{-s/2}}{2} \frac{dx}{x},$$

$$= \int_{1}^{\infty} \frac{\theta(x) - 1}{2} \left(x^{s/2} + x^{(1-s)/2} \right) \frac{dx}{x} - \frac{1}{s} - \frac{1}{1-s}.$$

Now we have an expression for Z(s) which converges for all $s \in \mathbb{C} \setminus \{0,1\}$. We clearly have that Z(s) = Z(1-s). The Z function has poles at 0 and 1, with residues $Res_Z(0) = -1$ and $Res_Z(1) = 1$. Since the function $\Gamma(s/2) = (2/s)\Gamma(s/2+1)$ has a simple pole at 0, but not at 1, it follows that the ζ -function has only a pole at 1. From Prop.9.1(iii) we see that $\Gamma(1/2) = \sqrt{\pi}$. Therefore the residue of $\zeta(s)$ at 1 is 1.

(iv) Suppose ρ is a zero of the Riemann ζ -function. By (i) we have that $\text{Re}(s) \leq 1$. Suppose Re(s) < 0 and that ρ is not an even negative integer. We have that $Z(\rho) = \Gamma(\rho/2)\pi^{-\rho/2}\zeta(\rho)$. By Prop.9.1, the function $\Gamma(s/2)$ does not have a pole at ρ . Therefore $Z(\rho) = 0$ and by (iii) we see that $Z(1-\rho) = 0$. It is immediate from Prop.9.1(iii) that the Γ -function has no zeroes. We conclude that $\zeta(1-\rho) = 0$. This contradicts the fact that $\text{Re}(\rho) > 1$ and the result follows.

(v) Let $R \in \frac{1}{2} + \mathbf{Z}$ be a large number and let C_R be a big square in \mathbf{C} with corners $\pm R \pm iR$. The contour integral

$$\int_{C_R} \frac{z^{-m}}{e^z - 1} dz \qquad \text{for } m \ge 2$$

approaches 0 as $R \to \infty$, yielding

$$0 = 2\pi i \sum_{n \in \mathbb{Z}} Res_F(2\pi i n), \qquad F = \frac{z^{-m}}{e^z - 1}.$$

One has

$$Res_F(0) = \frac{B_m}{m!}, \qquad Res_F(2\pi i n) = (2\pi i n)^{-m}, \quad n \in \mathbf{Z}_{\neq 0},$$

and summing up over $n \in \mathbf{Z}$, one finds for even values of m that

$$\sum_{n=1}^{\infty} \frac{1}{(2\pi i n)^m} + \frac{1}{2} \frac{B_m}{m!} = 0.$$

This gives

$$\zeta(m) = \sum_{n>1} \frac{1}{n^s} = -\frac{(2\pi i)^m}{2 \cdot m!} B_m,$$

for even positive integers m. The values of $\zeta(1-m)$ follow from the functional equation proved in (ii). Finally one obtains that $\zeta(0) = -1/2$ by observing that both Z(s) and $\Gamma(s/2)$ have a simple pole at 0. The Z-function has a residue equal to -1 and the function $\Gamma(s/2)$ has a residue 2, because $\Gamma(s/2) = (2/s)\Gamma(s/2+1)$. This proves Proposition 9.3.