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1 Growth of entire functions

A complex function f: C — C that is analytic (holomorphic) on C is called

an entire function. Every entire function is given by its Taylor’s expansion:

flz) = z‘x’: f(”>(0)2n7 vz e C.

n!

n=0
The maximum modulus function of an entire function f is given by:
M(r, f) := max|f(z)[, r>0.
|2|<r

By the Maximum Modulus Principle, we have:

M(r, f) = max|f(2)|, r>0.

I2|=r
Moreover, M (r, f) is an increasing function from a non-constant entire func-
tion f, i.e., M(ry, f) < M(ry, f) for every ri,ry > 0 with 71 < r9 (Again this
follows from Max-Modulus principle). Since f is continuous on every compact set
S, =4z :|z| = r}, it follows that:

Vr > 0,3z, €S, |f(z)] = M(r, f).

(In particular, we do not need to consider “sup” in defining M(r, f)). The
behavior of the function M(r, ) at infinity describes the growth of f.
During this section, we will classify entire functions based on the growth
rates In M (r, f)/Inr and Inln M (r, f)/Inr. In particular, we will show some
relation between these rates, and the coefficients of the Taylor’s expansion
of f.
Before doing so, we recall two main results from Cauchy’s integral theory

of complex functions.

Lemma 1.1 (Cauchy’s integral formula). If f : D — C is analytic on

a stmply connected domain D, then:

f(n)(z) — 277Lr!2' j{ G f(f))n+1d§, VYn > 1,Vz € int(I),

where I' is any simple closed contour in D.




Lemma 1.2 (Cauchy’s inequality). Let f be an entire function given

by its Taylor expansion

f(z) = Zanz”, Vz € C.

n=0

Then
M(r, f)

,,an

la,| < ., VYn>1, Vr>0.

Proof. we have, for any n > 1 and for any r > 0,

o) (2)
jan] = ‘ n! |27 zntl dz
|z|=r
1 /()] M(r, f) M(r, f)
< < 2 = .
~ 2 \Z|n+1|dz‘ = 2qmrntl (2) ™ -
|z|=r

Exercise 1.1. Let f be entire. Suppose that IM > 0 s.th. |f(2)] < Mel,
Vz € C. Show that

e

£ (0)] < M ( )”n!, Vn > 1,

n
Solution. One way to see this is by applying Cauchy’s inequality on the

circles |z| =n, n > 1, i.e.,

f™(0)
| n!

M(n, f) < Me"

, Vn > 1.
nn nn

<
This is obviously yields the required inequality. This way doesn’t show the

sharpness of the upper bound in the required inequality. Thus, we proceed

as follows: From Cauchy’s inequality, we have:

M(r, f) < Me"

an] < r rt

, n>1, r>0.

Since the left-hand side does not depend on r, we seek the minimum of the

function:
B Me"

/InTL

3

() , r>0.



We have:
r—mn

/ _ T
¢ = e

=0<=r=ry=n.

The function ¢(r) has a single stationary point at ry = n. Since 111%1r o(r) =
r—

l1r+n ©(r) = 400, it follows that 1y = n is a minimum point. Substituting
r—400

r = 1rp = n, we obtain:

f(n)

Me" n
—lal < ——=M(5), n>1 0

n" n

1.1 Liouville’s Theorems

Here we recall some generalizations of Liouville’s theorem. The original
version of Liouville’s theorem asserts: If an entire function is bounded in C,

then it must be constant.

Theorem 1.1. If f s a non-constant entire function, then
lim M(r, f) =

r—-+00

Proof. Since r — M (r, f) is increasing, then hm M (r, f) exists. Assume it
is finite, i.e., 3C' > 0 s.th. lim M(r, f) = C Then M(r, f) < C for every

r—-+00
r > 0. Let now f be written in its Taylor’s expansion

= ianz”, Vz e C.

n=0
It follows from Cauchy’s inequality that

M) o€ st wrso.
rn /]nn

|an| <

By letting » — +00, we obtain that a, = 0 for every n > 1. Thus f must be
a constant, which contradicts the condition on f being non-constant. Thus
lim M(r, f) = O

r—-+00



Theorem 1.2. Let f be an entire function. If there exists a sequence
(ri)k>1 of positive real numbers satisfying r, — +00 as k — +o0o such
that

M(ry, f) < Crp,  Vk>1,

where C' > 0 and X\ > 0, then f is a polynomial of degree < |A].

Proof. Let f be written in its Taylor’s expansion

f(z)=>» a,z", VzeC.

n=0
Then by Cauchy’s inequality we have

M (ry, f)

ol < =10

<Cry™, VYn>1,VYk>1.

By letting k& > +o00, we obtain that a, = 0, for every n > |A| + 1. This
completes the proof. H

The converse of Theorem 1.2 is also valid. In fact, if f is a polynomial of
degree n > 1, then
M(r,f)<Cr", Vr>R,

where C' > 0 and R > 0. This follows directly from the following theorem.

Theorem 1.3. If f is a non-constant polynomial, then

deg(f) = lim M

r—+00 ln r

Proof. Let f(2) = ap2" + - - -+ a1z + ap, where a; € C and a,, # 0. Then

a,_1 1 an 1
F(2)] = lanl2[* |1+ =2 4o 22 2] > 0.
a z A, 2

n n

1(z2)
Since I(z) — 1 as |z| — +o0, there exists R > 0 s.th. 1/2 < I(2) < 3/2
for every |z| > R. Thus

3|an|

lanl < 152 <

r', Vr=|z| > R.



This yields

(a2 Moy Gl
Inr Inr Inr
from which we obtain the result. ]

Combining Theorems 1.2 and 1.3 gives the characterization of polynomial

functions.

Theorem 1.4. A function f is a polynomial if and only if In M (r, f) =
O(lnr).

1.2 Transcendental entire functions

An entire function that is not polynomial is called a transcendental entire

function. In fact, f(z) = > a,2" is transcendental if there exists an infinite
n>0

sequence (ny)r>1 of non-negative integers such that a,, # 0 for every k > 1.

Lemma 1.3. If f is a transcendental entire function, then, for every
m > 1,

M
lim M. f) = +o00.
r—+400 grie

Proof. As f is transcendental, it follows that Vm > 1, dn s.th. a, # 0 and

n > m + 1. By making use of Cauchy’s inequality, we obtain

M M
lan| < M(r, f) — M(r, f) > Jan|r™™ > |an|r,  Vr > 0.
/'nn /’1m

By letting r — 400, we obtain the result. ]

This lemma says that any transcendental entire function f grows faster
than any non-constant polynomial (The growth of a transcendental entire function
and the growth of a polynomial are not comparable). In fact, we have from Lemma 1.3
that

lim )
P00 M(r, P) 00,



for any transcendental entire function f and for any non-constant polynomial
P.
Now, we prove the version of Theorem 1.4 for transcendental entire func-

tions. It is clear from Theorem 1.4 that f is transcendental if and only
if
In M(r, f)

lim sup —————= + oc.
r—+00 Inr

In the following theorem we will prove a better version.

Theorem 1.5. A function f is transcendental if and only if

In M
im M (1.1)
r——+00 Inr

Proof. <=) Obvious from Theorem 1.4.
—>) Assume that f is a transcendental. By Lemma 1.3, Vm > 1,VC > 1,
dR > 0 s.th.

M(r, f)>Cr™, Vr>R.

Then | InC
Inr Inr
which implies (by definition of limit) that (1.1) holds. O

Exercise 1.2. Find the maximum modulus function for the entire functions:

fl(Z) = e, fZ(Z) = eeZ’ f3(2) — COS(Z), f4(2) _ ecos(z).
Remark 1.1. Notice in general, for entire function g, we have

M(r, %) = max [e%4)] = max eR0() < max o) — gmasimr o)l — Miro)
|z|=r |z|=r T z|=r

Solution. We have M (r, f1) < e”". At the point zy = r, we have | f1(z0)]| =

e”. So, by the max-modulus principle,

M(r, fi) = max|fi(2)] = |f(z0)] = €

Thus M(r, f1) =€



Notice that f, = e/t. Then M(r, f5) < M) = ¢ At the point z) = 7,
we have |f2(29)| = €, so M(r, fo) = e°".

We have

+00 m
z
M (r, max | cos z| = max g —-1)"
( f3) i2ler | ‘ izler n:()( ) (2’/2,)'

+00 |Z‘2n +0o o

T
< max = = coshr.
|z|=r o (271)' nZ:O (271)'
At the point zg = ir, we have |f3(z)| = | cosir| = coshr, so

e +e " e
~—, T — +00.

M (r, f3) = coshr = 5 5

Notice that f; = efs. Then M(r, fy) < M(r.fs) = ecoshr At the point
2 = ir, we have | f4(z)| = e“"". So, M(r ,f4) = ¢h" In particular, we
have

r

In M(r, fy) = coshr ~ %, r— 400. O
Exercise 1.3. Estimate the maximum modulus function for f(z) = sin(z).

Solution. Note that M (r,sin) = sinhr. This can be obtained similarly to
the function M (r,cos). Thus M(r, f) < eMrsin) — gsinhr 4§ o

In M(r, f) < sinhr. (1.2)

On the other hand, we cannot use the trick replacing z by zy = ir, because
in this case, we get |f(ir)| = |e(")| = |e’smh7| = 1. Thus, we need another
way to estimate M (r, f).
We proceed as follows: We know that sin(7/2 4+ ir) = cos(ir) = cosh(r), and
the point zp = /2 + ir is in the disc D(0,7/2 4 r) (by the triangle inequality).
Then

M (54 ) = |1 (5 +ir)| = e | = et
Therefore, In M (r, f) > cosh(r — 7/2). Combining this with (1.2) yields

cosh(r — w/2) <InM(r, f) < sinhr.

8



As cosh(r — m/2) < €" and sinhr < e" as r — +o00, we deduce that
InM(r, f) <e', r— 4oc.

The Hardy’s notation “¢ =< ¢” means ¢ = O(¢)) and ¥ = O(9). O

1.3 Order of growth

for a transcendental entire function f, we have by Theorem 1.5,

i S = e
That is, In M (r, f) cannot be comparable to Inr. By reducing the growth
of In M(r, f) by introducing an additional logarithm, we expect that, at
least for some functions f, Inln M (r, f) might become comparable to Inr.
This suggests that we are dealing with a concept analogous to the degree
of polynomials (see Theorems 1.2, 1.3 and 1.4). This concept will later be

referred to as the order of growth.

Definition 1.1. An entire function f is said to be of finite order of
growth if 33 > 0 and IR > 0 (that may depend on ) s.th.

InM(r, f) <r°, Vr>R.

Otherwise, f is of infinite order. The order of growth of f, denoted
by p(f), is the quantity

p(f) ==inf {B>0:InM(r f) <r’, vr > R(3)}.

(1) If f is of infinite order of growth, then
{B>0:InM(r, f) <rP, vr > R(B)} = 0.
Here we use the convention inf () = 4o0.

(2) f is of infinite order if and only if there exists a sequence (r,),>1 of

positive real numbers s.th. r, — +00 as n — +00 and

InM(ry,, f) >r, VYn>1.

n’

9



(3) Since In M (r, f) is an increasing function for non-constant entire func-
tions f, we may always take R > 0 sufficiently large so that In M (r, f) > 1

for every r > R. Hence, we have that f is of finite order if and only if
Inln M(r, f) = O(nr), r>R.
This is analogous to Theorem 1.4.

(4) By definition, constant functions are of zero order of growth.

Now we prove an analogous result to Theorem 1.3.

Theorem 1.6. The order of growth of a non-constant entire function

f 1s given by

o(f) = limsup Inln M(r, f)

r—+00 Inr

Proof. Set

a := lim sup nIn M{r, f),
r— 400 Inr
and we aim to show that o = p(f). By the remarks following Definition 1.1,
it is clear that p(f) = +oo if and only if & = +o00. Thus we may assume
that f is of finite order, i.e., « is also a finite number. By definition of limits,
Ve, AR = R(e) > 0 s.th. Vr > R we have In M (r, f) < r**¢. By definition
of the order of growth, p(f) < a + e. Since £ > 0 is arbitrary, we deduce
that p(f) < a. On the other hand, for any 3 > 0 satisfying In M (r, f) < r¥,

Vr > R = R(S) (with R > 0 large enough), we have
Inln M(r, f)

Inr

<B, Vr>R

Taking the limsup, we obtain p(f) < 5. Since p(f) is the infimum of such
constants 3, we deduce that o < p. Thus a = p(f). O

Example 1.1. (1) Any non-constant polynomial is of zero order of growth.

(2) If f(2) = €*, then M(r, f) = €", and consequently p(f) = 1.

10



r

(3) If f(z) = sinz, then M(r, f) ~ % as r — +o0o, and consequently
p(f) =1

(4) If f(2) = ™% then In M(r, f) < €", and consequently p(f) = +oo.

Theorem 1.7. Let f and g be entire functions. Then
p(f +g) < max{p(f),p(9)}.
p(fg) < max{p(f), p(g)}.
If p(f) > plg), then p(f + g) = p(f)-

Proof. We may clearly suppose that p(f) < oo and p(g) < oo. Let € > 0.
Then there exists an () > 1 such that

(f)+e/2 (9)+e/2

M(r, f) <e” and M(r,g) <e” , Vr>r(e).

By elementary estimates,

|2|<r

M(r, f+g) = max|f(z) + g(2)] < max|f(z)] + max|g(z)]

p(f)+e/2 p(g)+e/2
=M(r,f)+ M(r,g) <€ +e"
max{p(f),p(g)+e/2} max{p(f),p(g)}+e/2
< 2¢" — elog 2+ , 1 >r(e).

We may suppose that r(e) > exp (%) Then 7(£)*/? > 2 > log 2 and

log 2 + rmax{e(f)rlgli+e/2 < /2 4 pmax{p(f).p(g)}+e/2

< opmax{p(f).p(g)}+e/2 < pmax{p(f).p(g)}+e
for all > r(e). In particular,

M(?“,f + g) < ermﬂx{r)(f)yp(g)}-ﬁ-e r> 7’(6).

Y

Hence p(f + g) < max{p(f),p(g)} + ¢, where ¢ > 0 is arbitrarily small.

Hence p(f + g) < max{p(f),p(9)}.
This part is proved similarly by relying on the estimates

M(r, fg) = max[f(2)g(z)| < max[f(2)] - max|g(2)|

|2|<r |2|<r |2|<r

11



= M(r,f)- M(r,g) < erPf)Fel2 | orplg)+e/2

ormax{p(f),p(g)}+e/2 max{p(f),p(g)}+e

< e

<e

valid for all r > r(¢).

If p(f) > p(g), then from |1] we have p(f + g) < p(f). Note that for any
entire function h we have p(—h) = p(h) as M(r,—h) = M (r, h). Thus from
f=(f+g)+ (—g) we obtain by using [1] that p(f) < max{p(f + g), p(9)}.
Since p(f) > p(g), it follows that p(f) < p(f+g). Thus p(f+g) = p(f). O

Exercise 1.4. Prove [3] by using the definition of the order rather than [1]

Remark 1.2. (1) If p(f) > p(g) and g #Z 0, then p(fg) = p(f) is also true.

Similarly as above,

rr(f)+e/2 6rr)(g)+s/2

M(r, fg) < M(r, f) - M(r,g) < e

p(f)+e/2 p(f)+e
< e <e r>r(e),

— ) —

and so p(fg) < p(f). However, we do not have enough tools at this
point to prove the reverse inequality p(fg) > p(f).

(2) The inequality p(f+g) < max{p(f), p(¢9)} can be strict. E.g., f(z) = €?
and ¢g(z) = z — €. Similarly, the inequality p(fg) < max{p(f),p(g9)}
can be strict. f(z) = e® and ¢g(z) = ze™*. E.g.,

1.4 Growth in terms of Taylor’s coefficients

In this section, besides establishing the relationship between the growth of
the modulus of an entire function and the rate of decay of its Taylor co-
efficients, we will also construct entire functions with a pre-given order of

growth.

12



Theorem 1.8. Let f be an entire function given by its Taylor expansion

a,z", VzeC,

f(z) =

WK

Il
=

n

and let « > 0. Then p(f) < a if and only if, Ve > 0, the sequence

(n7 3/l (13)

n>1

18 bounded.

Proof. =) Assume that p(f) < a. Let ¢ > 0 be arbitrary. Then 3R > 0
s.th.
InM(r, f) <r**®, Vr >R.

To show that (1.3) is bounded, we may assume that a,, # 0 for every n > 1.
By Cauchy’s inequality we obtain, for every n > 1, that

Inla,) <InM(r,f) —nlnr <r*** —nlnr, Vr>R,

and hence

Inn  Infa,|] Inn  rote
+ < +

< —Inr, Vr>R. (1.4)
o+ € n o+ € n

Ta+5

The function ¢(r) =

— Inr is differentiable on |0, +00], and

1

1 a+e
¢/(T)=a+5r‘”€——:0<:>r:< n ) .
n r o+ €

Since lim ¢(r) = lim ¢(r) = +o0o, it follows that ¢ takes its minimum at
r—>+00 r—0t
1

are
r, = (ais) . We take N > 1 large enough so that r, > R for every

n > N. In particular, we may choose N = [(a + ¢)R*™]|. Plugging r, in
(1.4), we obtain, every n > N,

1 I |a, 1
nn | Injan] (1+In(a+e)) = K.

o+ € n a+¢€
Taking the exponential of both sides, we deduce that Ve, 4C' > 0 s.th.
nav /lan] < C, Vn > 1.

13



<) Conversely, let ¢ > 0. Then 3C' > 0 s.th. 0 < nate Vlan| < C,Vn > 1.

Hence

la,| < nat<C™  Vn > 1. (1.5)

From the Taylor’s expansion of f we have

M(r, f) < lao| + ) lag|r”, r>0.

n>1

Using (1.5) yields, for r > 0,

M(r, f) <lao| + ZnﬁsC”r”

n>1
_ n T
<ao| + Z (nwlsC’r> + Z na+e(Cr)" .
n>(207r)**e n<(2C07r)***

A 7 A 4
~" ~"

Sl 52

For the sum S7, we have

and hence

For the sum S,, we have, for sufficiently large r» > 0,

Sy < Z nate (C’?“)(QCT)Q+E

n<(2C7)***

< (Z n> (Cr) ™ < K (Cr)em™,

n>1

The series > nat< converges (By Cauchy’s test). Therefore, for sufficiently

n>1
large » > 0, we have

InM(r, f) = O (r**1nr),

which clearly implies that p(f) < a+¢. Again, as € > 0 is arbitrary, we
deduce that p(f) < a. O

14



Theorem 1.9. Let f be an entire function given by its Taylor expansion

f(z) = Zanz”, Vz e C.

n=0
Set, forn > 0,
0, if a, =0,
b, = 1
nlan
—In |ay,|

Then p(f) = limsup b,.

n——+00

Proof. Set o := limsupb,. Assume first that ¢ < +o0.
n—-+00o

Let € > 0. Then dny > 1 s.th. ¥n > ng, we have b, < 0 + ¢. Thus

nlnn
<o+e Vn>ng, a, #0.
—In |a,|

Taking ng > 1 sufficiently large so that —In |a,| > 0 yields

neee Y/ |an| < 1,0 > ng.

From Theorem 1.8, and since € > 0 is arbitrary, we directly deduce that
p(f) < o. If 0 =0, then p(f) = 0, and hence the theorem is proved. If
o > 0, then assume that p(f) < o. Therefore, 3¢ > 0 s.th. p(f) < o —&.
Again, making use of Theorem 1.8 (for a = ¢ — ¢ and ¢ = ¢/2), IC' > 0 s.th.

R {y la,| < C, Vn>1.

Taking ng > 1 sufficiently large so that |a,| < 1, for every n > ny, yields

1 1
< . VYn >mng, a, # 0.
—In|a,| (;1_1572 —nlnC
Hence
: : nlnn _ nlnn £
o = lim sup b, = lim sup < limsup — =0 — =,
n—+400 n—+oo T In |an‘ n—+400 :%5172 —nln C 2

which is a contradiction. Thus p(f) = o.

15



Now, if ¢ = 400, then assume that p(f) < +o0, i.e., there exists o > 0
s.th. p(f) < a < +00. From Theorem 1.8, 3C > 0 s.th. n'/?/]a,| < C,
Vn > 1. Hence as in previous case, we obtain

400 = limsup b, < 2a;,
n—-+00

which is a contradiction. Thus p(f) = +o00. This completes the proof. [

Using this theorem, one may construct any entire function with pre-given

order of growth.

Theorem 1.10. Let « € [0, +00]|. Then there exists an entire function

f whose order of growth is p(f) = «.

Proof. The functions

2 1
Az =Y e fo(z) = 2‘6 T

Inn\ -«
and = — "<
f3(2) Z<n) 2", a < +00,
n>2
are all entire functions (By Cauchy-Hadamard formula for the radius of convergence),
and are of orders p(f1) = 0, p(f2) = 400 and p(f3) = «, respectively. One

can use Theorem 1.9 to check the orders. ]

Remark 1.3. In Theorem 1.8, € > 0 cannot be replaced with 0. Take, e.g.,
the function f3 in previous result. we have p(f3) = a, but n'/*{/|a,| = Inn

1s not bounded.

1.5 Hadamard 3-circles Theorem

Let ¢ and ¢ be two real functions, where ¢ is increasing on an interval I.
The function ¢ is said to be convex in ¢ (or with respect to ¢) on [ if the
function v o ¢~ is convex on ¢(I). In other words, 9 is said to be convex in
¢ if for every z1,x9, 23 € ¢(I) with x1 < 29 < x3 the following inequalities

hold
¢(x3) — P(x2)

= B(w2) — o(z1)

Y (z2) Y(z1) +

16



This subsection is devoted to showing, for non-constant entire functions f,
that In M (r, f) is convex in Inr. That is, for every 1,7y > 0 with 71 < 7o,

and for every r €]ry, o[ the following hold

Inry —Inr Inr —Innr
< - -

In M(r, f) In M(ry, f) + In M (rs, f).

T Inry —Innr Inry —Inr

Theorem 1.11 (Hadamard 3-circles Theorem). Let f be a non-constant

entire function. Then In M (r, f) is convex in Inr.

Proof. (1) Consider the case f(z) = cz", c € C* and n > 1 (integer). Then
InM(r,f) =In|c| +nlnr, >0,

which is clearly convex in Inr.
(2) Assume now that f is not of the form cz". Define the function ¢ : C* — R

by
S (2)]

2 P(z) = ETR

Clearly the function ¢ is continuous on C*.

a > 0.

Lemma 1.4. On any closed annulus € = A, ,,(0), 0 < r1 < ro, the

function ¢ achieves its maximum on the boundary OC, i.e., either on

{|z]| =} or on {|z| = r}.

Proof of Lemma 1.4. Assume there exists zy with . < |z9| < ro such that
d(2) < @(z) for every z € €. Let U C € be any neighborhood of zy. Then

there exists an analytic branch of log z such that

_ f(z)e—alogz

is analytic on U. By maximum modulus principle, the function F is constant
on U, and hence f(z) = cz® for every z € U for some nonzero constant c.
Consequently from the identity theorem we deduce that f(z) = cz® in a slit

complex plane C \ Ly, where
Ly = {se“9 iS5 > O}.

17



Therefore, max |f(re?)| = |c|r®, r > 0. Notice by the continuity of |f|, we
have

\f(rew)| = lim |f(7“6i9)‘ =lc|r", r >0,
60—

Thus M(r, f) = |c|r®, for every r > 0. This, in fact, implies that a € N and
f is of the form cz", which contradicts our assumption. This completes the

proof of Lemma 1.4. ]

Now we choose « so that |n‘1ax o(z) = |H|1ax ¢(2), where 0 < 1 < 19. In
Z|=Tr1 Z|=T2

this way, we get

max ¢(z) = max ¢(z) = max ¢(z) = max o (2).

This is always possible by choosing

_ In M(rq, f) — lnM(ﬁ,f).

Q
Inry —Inmr

Therefore, for every r €|ry, ro| we get

1 —1 Inr —1
InM(r, f) < 27 B 00 M, f) + = M (g, f),
Inry —Innr Inre —Innr
and this shows that In M (r, f) is convex in Inr. O

Remark 1.4. This theorem also shows that f is a continuous function on

[0, +00.

Theorem 1.12 (Clunie). Let ¢ :]rg, +oo[— Ry be an increasing func-
tion and convex in Inr such that ¢(r)/Inr — +00 as r — +o0o. Then

there exists an entire function f such that

InM(r, f) ~o(r), asr— 4oo.

1.6 Type of growth

Let f be entire. If 0 < p(f) < 400, then the growth of f can be expressed

more precisely in terms of its type.

18



Definition 1.2. Let f be an entire function of order 0 < p = p(f) <
+00. We say that f is of finite type if there exist >0 and R > 0 (R
may depend on () such that

InM(r, f) < pr’, Vr>R.

Otherwise, f has an infinite type. The type of f, denoted by 7(f), is
defined by

7(f) :=inf {8 >0:InM(r, f) < pBr’, Vr > R(5)} .

Clearly 7(f) € [0, +00]. According to as 7 =00, 0 <7 < o0 or 7 = 0,
the function f is said to be of maximum (or infinite), mean (or finite)

or minimum (or zero) type of order p.

Theorem 1.13. Let f be an entire function of order 0 < p = p(f) <

+o00. Then _—
T(f):limsup—n (T’f).

r—-+00 rP

Proof. Left as an exercise! ]

Example 1.2. The entire function f(z) = cos(az), where a € C*, satisfies

|a|r
M(r, f) = cosh(|a|r) ~ 62 T — oo

Thus p(f) =1 and 7(f) = |al.
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Lemma 1.5. Let f be analytic in a neighborhood of 0 having the Taylor

ETPaAnNSILon
400
f(z) = Zanz”. (1.6)
n=0
Suppose there exist A >0, p >0 and N = N(\, p) € N such that
A n/p
lan| < (6“ ) . Yn>N. (1.7)
n

Then f is an entire function. Moreover, for every e > 0, there exists
R > 0 such that

InM(r,f) < (A+e)r*, Vr>R. (1.8)

Proof. From (1.7), the radius of convergence of the series in (1.6) equals

n \/#
> lim inf (—) = +00.
ap| — notee \epA

lim inf
n—+oo

Thus f is an entire function. To prove (1.8), for a fixed r > 0, we write

+00 +oo
r, f) < Z la,|r" = Z la,| "+ Z |a,| "+ Z lan| " =: X1+ 423,
n=0 n=N+1 n=M(r)+1

where M (r) satisfies

M(r)> N +1,
la,|r" < 1/2" ¥n > N(r).

If we choose M(r) > max{N, euA(2r)*}, then from (1.7), we obtain
A\ 1
|a,|r" < <%> r" < —, Vn>M(r).
n 2"
Since epA(2r)" — +00 as r — 400, there exists Ry > 0 such that eu\(2r)" >

N + 1 for every r > R;. So, we can choose M (r) = [epuA(2r)*| and r > Rj.
So, in particular, 39 # 0. Therefore, for r > Ry, we have

Y.< CrY and 3, < Z
n=M/(r) +1
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where C' = - |a,|. To estimate ¥y, define

z/p
H(x) = e r, x> 0.
T

H'(z) = H(z) (i (m (?) - 1) +In 7’) 0

if and only if x = pAr*. Notice that H reaches its maximum at this point.

Then

Therefore,

A x/p p
(%> r® < H(pr?) =N, Vo > 0.
x

Hence, for » > Ry,

22 = (M(T) B N) N+1El7?<XM(T) |an|Tn

< (M(r) ~ V) max ((?)/M rn)

< (M(r) — N)eM".

Putting all together, the estimate (1.8) follows. O

Theorem 1.14. Let f(2) = Y120 a,z" be an entire function of order

p (0<p<+oc0). Then

7(f) = ilimsup (nm) :

€0 n—+oo

Proof. Left as an exercise! ]

Question. For any (a, 8) €]0, +00[x[0, 4-00], is there always an entire func-

tion f with p(f) =« and 7(f) =7

1.7 Order and type of a derivative

Exercise 1.5. Let f be an entire function.
(1) Show that

M) = lFO)]

for every 0 <r < R < 400.
(1.9)



(2) Deduce that f and f’ have the same order of growth and the same type
(When it’s deﬁned).

Solution. (1) Integrating along a line segment [0, z| gives
)= [ fieyae+ s
0
Hence,
[f ()| < M(r, f’)/O | dE[+f(0)] = rM(r, f)+]f(0)], Vzsth. |z =r>0.

This gives the first inequality in (1.9). Now, let z with |z| = > 0 and let
R > r. By using Cauchy’s integral’s formula along the circle [ —z| = R —r,

we obtain
1 £ (€] 1 M(R, f) M(R, f)
f'(z S—j{ dé| < ———327r(R—7r) = ————,
F() 27 Jie_sjmr—r | — 2 <] 27 (R —1)? ( ) R—r
which gives the second inequality in (1.9).
(2) Left as an exercise! O

2 Zeros of entire functions

If f is a non-constant polynomial, then from the first lecture, and by FTA,

we have
) In M(r, f)
limsup ————=

r——+00 Inr

= #{z: f() =0}

Question. Does the relation between the number of zeros of f and the

growth of M (r, f) extend to transcendental entire functions? and how ?

In what follows, f will be always a transcendental entire function. The
zeros of f cannot accumulate in C. In particular, if f has infinitely many

zeros, then they are accumulating to oo.

Exercise 2.1. If f is an entire function with no zeros, then show that there

exists an entire function g such that f = e9.
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Solution. Since f has no zeros, it follows that f’/f is an entire function.
Hence f'/f has a primitive in C, i.e., there exists an entire function h for
which ' = f’/f in C. Define now ¢ = fe™". Then ¢’ = (f' — fh')e™" =0,
which yields ¢ is a constant function, say ¢(z) = e” for every z € C. Hence,

f(2) = e"?)* for every » € C. This completes the proof. O

An analytic function f that has no zeros in a domain D is called a zero-
free function in D.

The previous exercise can be generalized to any zero-free analytic function
f on simply connected domain D. That, if f is zero-free in a simply connected

domain D, then f = e9, where g is an analytic function on D.

2.1 Jensen’s formula and its consequences

Theorem 2.1 (Jensen’s Theorem). Let f be an entire function such
that f(0) # 0, and let r > 0 and ay, .. .,ay be the zeros of f in the disc
|z| <1 (each is repeated according to its multiplicity), and suppose that

f has no zeros on the circle |z| =r. Then

1 21
ln|f(0)|:%/0 In| f(re)|d6 — Zln‘a‘
J

Proof. Consider the function

Sl
i (z—a;)
Notice that F' is analytic on the disc D(0,r), and has no zeros there. In

addition, F' has no zeros on the circle |z| = r, since

r? — a2

r(z — ag)

r? — agre'? r — ape'? r— ape" P

=1, for|z|=r.

r(re® — ay) r—ape” ¥ r— ape” ¥

That is, |F(re?)| = | f(re')| # 0 for every 6 € [0, 27]. Then there exists R >
r for which F' is zero-free and analytic on D(0, R). This implies that In |F'(2)|
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is harmonic on the disc D(O, R) (Hmt. Use similar technique as Exercise 2.1). By

the mean property of harmonic functions, we have

1 2T )
In |F(0)] = —/ In|F(re)|d . (2.1)
21 0
Since
E _ |
[E(0)] = |£(0)] Hm and |F(re")| = |f(re”)], ¥0 € [0,27],
j=1
the conclusion of Jensen’s theorem follow from (2.1). O]

Denote by n(r) the number of zeros z, of f in |2| < r, where each zero

is counted according to its multiplicity. We define the integrated counting
function N¢(r) for f by

Nf(r):/Ornf(t);nf(o)dt—knf(())lnr, r > 0.

Notice that if f(0) # 0, then Ns(r) = / nfT(t)dt.
0

Theorem 2.2 (Jensen’s Theorem - Version 2). Let f be an entire func-
tion such that f(0) # 0, and suppose that f has no zeros on the circle
|z| =r > 0. Then

Ny (r) i/0th!f(7“6"9)‘dQ—log\f(O)\.

:27r

Proof. Let ay,as, ..., a; be the zeros of f in the disc D(0, ) (each is repeated
according to its multiplicity). Then by Jensen’s Theorem (Thm 2.1) we have

k 2T
r 1 ;
Zlnm:%/o ln‘f(ree)‘dﬁ—log\f(O)L
=t
It remains to show that
i r
D In—— = Ny(r)
‘=l



Assume without loss of generality that the zeros are ordered according to
their moduli, i.e., |a1| < |as| < -+ < |ag|. Then

k k

T r
Zln—:ln
= gyl |ar| X fag| x - X fag-1] x |ag|

N T L VRV L LV
ar ” Jaa? ara 1 ]

k—
= Z (In|aj41| —Inla;|) + &k (Inr — Inag|)

a1l r r
Z/ —dt—i—/ Echt:/ ) g4
‘=1 1ol jag] T o t

;ru
,_\,_.

where we have used

p

0, O§t<\a1\,

nit) =97, laj| <t <lajnl, (1<j<k-1),

Lk Jak] St <
This completes the proof. [

Exercise 2.2. |1| The restriction regarding zeros on |z| = r can be removed
by constructing a suitable function F' that is zero-free and analytic on D(0, 7).
(Address the zeros on the circle |z| = r.)

By applying the Poisson formula for harmonic functions, derive an anal-
ogous expression for In|f(z)| when f(z) # 0 and z € D(0,r).

What is the analogous statement for the case when f(0) = 07

Corollary 2.3. If f is an entire function such that f(0) # 0, then

ng(r) <InM(er, f) —In|f(0)|, Vr >O0.

Proof. Let r > 0. From Theorem 2.2, we have

/ ”ft(t) dt < InM(er, f) — In | £(0)].
0
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In addition, since ny(r) is non-decreasing function, we have

/oernfT(t)dt > /jrnfT@dt 2nytr) [ =t

r

Combining these two inequalities, we obtain the conclusion. ]

This corollary may be helpful in estimating the number of zeros of f is
a certain disc, or detecting the zero-free discs of f. E. g., if f(0) # 0 and let
ro > 0 such that M (erg, f) < e|f(0)|, then by the corollary we have

ny(r0) < In M(ery, f) — In | f(0)] < 1.

So, f has no zeros in the disc |z| < r.

Corollary 2.4. If f is an entire function of order p < 4+o00. Then for

every € > 0, we have ns(r) < rP*e for sufficiently large r > 0.

The proof left as an exercise.

If we define the quantity A(f) for an entire function f by

A(f) = limsup lnﬁl fy), (2:2)
then from Corollary 2.4, we directly deduce that A\(f) < p(f).
Exercise 2.3. Show that

A(f) = limsup w (2.3)

r—-+00 Inr

2.2 Exponent of convergence

This section is devoted to showing that A(f), introduced in (2.2) or (2.3), is,
in fact, the exponent of convergence of the sequence of moduli of the zeros

of an entire function f.
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Definition 2.1. Let f be an entire function, and let (z,),>1 be the
sequence of nonzero zeros of f, repeated according to their multiplicities
and ordered according to their moduli, i.e., 0 < |z1]| < |z9| < ---. The

exponent of convergence u(f) of (z,),>1 is defined by

+00
p(f) = inf {a > 0: Z |20 < +oo} :

=1l

+00
In particular, if > |z,|™® = 400 for every a > 0, then u(f) = +o0.

n=1

Lemma 2.1. Giwven o« > 0. Then

+00 t)
>zl O‘<+oo<:)/ ta+1 dt < 4oo0.
n=1

Proof. We may assume that f(0) # 0. Notice that we can always replace
ng(r) with ng(r) —ns(0) when f(0) = 0. In addition, finitely many zeros at
the origin have no significant impact on the growth of ns(r) if it is unbounded.
Let (r;);>1 be the sequence of radii at which all the zeros of f are located.
Clearly the sequence (7;);>1 must be increasing, as the zeros don’t have
accumulation points in C. The number of zeros located on a circle |z| = r; is
given by ny(r;") —ny(r;) counting the multiplicities. Notice that ¢ — n(t)

is a step function. By Riemann-Stieltjes integration, we have

" dng(t) ng(ry) —ng(ry) 1
/0 tJ; - Z ra - Z z ‘O‘.

ri<r J |zn|<r ‘ "

Integration by parts yields

"t
Z ‘ n‘a ) +&/0 tfu—(kl) dt. (24)

|z |<r

Assume that > |2,|* < +o00. Then from (2.4), we have

n>1

n>1
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ng(t) df <

+00
which means the integral is convergent. Now, assume that / pro
0

+00. Since t — nys(t) is non-decreasing, it follows that

ne(r) o dt T (1)
J;a = Cmf(T)/r P < a/r t£+1 dt — 0, r—4o0. (2.5)

From (2.4), we deduce that the series Y |z,|“ is convergent. O
n>1

Remark 2.1. From (2.4) and (2.5), we dedeuce that

+o0o
t
g |zn\0‘:oz/ nf()dt.
0 tot1

n>1

From this we directly obtain that if f is an entire function such that f(0) # 0,
then

. +oon ¢
u(f):1nf{04>0:/0 ti—grl)dt<+oo}. (2.6)
Theorem 2.5. Let f be an entire function, then \(f) = u(f). ]

Proof. Since finitely many possible zeros at the origin have no a affect on
A(f) or on u(f), we may assume that f(0) # 0. We will denote A(f) and
w(f) by A and p respectively.

We prove first that © < A. This inequality is obvious if A = 400, and so we
assume that A < +o00. Recall that

1
A = limsup ke A, nf(r).
r—-+00 Inr

For any given £ > 0, there exists r. > 0 such that
ne(r) <r*te Vr >

From this we have, for every r > r. and for every a > 0,

"ng(t) o [T ng(t) "ny(t) " ng(t) T
/O tat+l dt_/o tatl dt+ - ta+l dt < 0 ta+l dt+ - ta+1—)\—edt'

\ . 7
-~

1(r)
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If « > XA+ ¢, then I(r) converges as r — +o00, and hence /
+o00. This shows that

+oon
])\+s,+oo[c{oz>0:/ pro }
0

Therefore, (2.6) yields © < A +e. As ¢ > 0 is arbitrary, we deduce that
p< A
Now we prove u > A. By definition of i, we have, for every ¢ > 0,

/+OO nf(t) dt < +o0.
0

tpte+l

Similarly to (2.5) we obtain

ns(r T mg(t T gt
A0 < (,u+6)/ tufr;)l dt < (,u+€)/0 tﬂig"‘)l dt = constant, Vr > 0.

Thus ng(r) < r#¢ for r > 0, which yields A < p. This completes the
proof. ]
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