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1 Growth of entire functions

A complex function f : C → C that is analytic (holomorphic) on C is called

an entire function. Every entire function is given by its Taylor’s expansion:

f(z) =
∞∑
n=0

f (n)(0)

n!
zn, ∀z ∈ C.

The maximum modulus function of an entire function f is given by:

M(r, f) := max
|z|≤r

|f(z)|, r > 0.

By the Maximum Modulus Principle, we have:

M(r, f) = max
|z|=r

|f(z)|, r > 0.

Moreover, M(r, f) is an increasing function from a non-constant entire func-

tion f , i.e., M(r1, f) < M(r2, f) for every r1, r2 > 0 with r1 < r2 (Again this

follows from Max-Modulus principle). Since f is continuous on every compact set

Sr := {z : |z| = r}, it follows that:

∀r > 0,∃zr ∈ Sr : |f(zr)| =M(r, f).

(In particular, we do not need to consider “sup” in defining M(r, f)). The

behavior of the function M(r, f) at infinity describes the growth of f .

During this section, we will classify entire functions based on the growth

rates lnM(r, f)/ ln r and ln lnM(r, f)/ ln r. In particular, we will show some

relation between these rates, and the coefficients of the Taylor’s expansion

of f .

Before doing so, we recall two main results from Cauchy’s integral theory

of complex functions.

Lemma 1.1 (Cauchy’s integral formula). If f : D → C is analytic on

a simply connected domain D, then:

f (n)(z) =
n!

2πi

∮
Γ

f(ξ)

(ξ − z)n+1
dξ, ∀n ≥ 1,∀z ∈ int(Γ),

where Γ is any simple closed contour in D.
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Lemma 1.2 (Cauchy’s inequality). Let f be an entire function given

by its Taylor expansion

f(z) =
∞∑
n=0

anz
n, ∀z ∈ C.

Then

|an| ≤
M(r, f)

rn
, ∀n ≥ 1, ∀r > 0.

Proof. we have, for any n ≥ 1 and for any r > 0,

|an| =
∣∣∣∣f (n)(0)n!

∣∣∣∣ =
∣∣∣∣∣∣∣
1

2πi

∮
|z|=r

f(z)

zn+1
d z

∣∣∣∣∣∣∣
≤ 1

2π

∮
|z|=r

|f(z)|
|z|n+1

| d z| ≤ M(r, f)

2πrn+1
(2πr) =

M(r, f)

rn
.

Exercise 1.1. Let f be entire. Suppose that ∃M > 0 s.th. |f(z)| ≤ Me|z|,

∀z ∈ C. Show that

|f (n)(0)| ≤M
( e
n

)n
n!, ∀n ≥ 1.

Solution. One way to see this is by applying Cauchy’s inequality on the

circles |z| = n, n ≥ 1, i.e.,∣∣∣∣f (n)(0)n!

∣∣∣∣ ≤ M(n, f)

nn
≤ Men

nn
, ∀n ≥ 1.

This is obviously yields the required inequality. This way doesn’t show the

sharpness of the upper bound in the required inequality. Thus, we proceed

as follows: From Cauchy’s inequality, we have:

|an| ≤
M(r, f)

rn
≤ Mer

rn
, n ≥ 1, r > 0.

Since the left-hand side does not depend on r, we seek the minimum of the

function:

φ(r) =
Mer

rn
, r > 0.
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We have:

φ′(r) =Mer
r − n

rn+1
= 0 ⇐⇒ r = r0 = n.

The function φ(r) has a single stationary point at r0 = n. Since lim
r→0+

φ(r) =

lim
r→+∞

φ(r) = +∞, it follows that r0 = n is a minimum point. Substituting

r = r0 = n, we obtain:∣∣∣∣f (n)(0)n!

∣∣∣∣ = |an| ≤
Men

nn
=M

( e
n

)n
, n ≥ 1.

1.1 Liouville’s Theorems

Here we recall some generalizations of Liouville’s theorem. The original

version of Liouville’s theorem asserts: If an entire function is bounded in C,
then it must be constant.

Theorem 1.1. If f is a non-constant entire function, then

lim
r→+∞

M(r, f) = +∞.

Proof. Since r 7→M(r, f) is increasing, then lim
r→+∞

M(r, f) exists. Assume it

is finite, i.e., ∃C > 0 s.th. lim
r→+∞

M(r, f) = C. Then M(r, f) ≤ C for every

r > 0. Let now f be written in its Taylor’s expansion

f(z) =
∞∑
n=0

anz
n, ∀z ∈ C.

It follows from Cauchy’s inequality that

|an| ≤
M(r, f)

rn
≤ C

rn
, ∀n ≥ 1, ∀r > 0.

By letting r → +∞, we obtain that an = 0 for every n ≥ 1. Thus f must be

a constant, which contradicts the condition on f being non-constant. Thus

lim
r→+∞

M(r, f) = +∞.
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Theorem 1.2. Let f be an entire function. If there exists a sequence

(rk)k≥1 of positive real numbers satisfying rk −→ +∞ as k → +∞ such

that

M(rk, f) ≤ Crλk , ∀k ≥ 1,

where C > 0 and λ > 0, then f is a polynomial of degree ≤ ⌊λ⌋.

Proof. Let f be written in its Taylor’s expansion

f(z) =
∞∑
n=0

anz
n, ∀z ∈ C.

Then by Cauchy’s inequality we have

|an| ≤
M(rk, f)

rnk
≤ Crλ−n

k , ∀n ≥ 1, ∀k ≥ 1.

By letting k ≥ +∞, we obtain that an = 0, for every n ≥ ⌊λ⌋ + 1. This

completes the proof.

The converse of Theorem 1.2 is also valid. In fact, if f is a polynomial of

degree n ≥ 1, then

M(r, f) ≤ Crn, ∀r ≥ R,

where C > 0 and R > 0. This follows directly from the following theorem.

Theorem 1.3. If f is a non-constant polynomial, then

deg(f) = lim
r→+∞

lnM(r, f)

ln r
.

Proof. Let f(z) = anz
n + · · ·+ a1z + a0, where aj ∈ C and an ̸= 0. Then

|f(z)| = |an||z|n
∣∣∣∣1 + an−1

an

1

z
+ · · ·+ a0

an

1

zn

∣∣∣∣︸ ︷︷ ︸
I(z)

, |z| > 0.

Since I(z) −→ 1 as |z| → +∞, there exists R > 0 s.th. 1/2 < I(z) < 3/2

for every |z| ≥ R. Thus

|an|
2
rn ≤ |f(z)| ≤ 3|an|

2
rn, ∀r = |z| ≥ R.
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This yields

n+
ln (|an|/2)

ln r
≤ lnM(r, f)

ln r
≤ n+

ln (3|an|/2)
ln r

, ∀r ≥ R,

from which we obtain the result.

Combining Theorems 1.2 and 1.3 gives the characterization of polynomial

functions.

Theorem 1.4. A function f is a polynomial if and only if lnM(r, f) =

O(ln r).

1.2 Transcendental entire functions

An entire function that is not polynomial is called a transcendental entire

function. In fact, f(z) =
∑
n≥0

anz
n is transcendental if there exists an infinite

sequence (nk)k≥1 of non-negative integers such that ank
̸= 0 for every k ≥ 1.

Lemma 1.3. If f is a transcendental entire function, then, for every

m ≥ 1,

lim
r→+∞

M(r, f)

rm
= +∞.

Proof. As f is transcendental, it follows that ∀m ≥ 1, ∃n s.th. an ̸= 0 and

n ≥ m+ 1. By making use of Cauchy’s inequality, we obtain

|an| ≤
M(r, f)

rn
=⇒ M(r, f)

rm
≥ |an|rn−m ≥ |an|r, ∀r > 0.

By letting r → +∞, we obtain the result.

This lemma says that any transcendental entire function f grows faster

than any non-constant polynomial (The growth of a transcendental entire function

and the growth of a polynomial are not comparable). In fact, we have from Lemma 1.3

that

lim
r→+∞

M(r, f)

M(r, P )
= +∞,
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for any transcendental entire function f and for any non-constant polynomial

P .

Now, we prove the version of Theorem 1.4 for transcendental entire func-

tions. It is clear from Theorem 1.4 that f is transcendental if and only

if

lim sup
r→+∞

lnM(r, f)

ln r
+∞.

In the following theorem we will prove a better version.

Theorem 1.5. A function f is transcendental if and only if

lim
r→+∞

lnM(r, f)

ln r
= +∞. (1.1)

Proof. ⇐=) Obvious from Theorem 1.4.

=⇒) Assume that f is a transcendental. By Lemma 1.3, ∀m ≥ 1,∀C > 1,

∃R > 0 s.th.

M(r, f) ≥ Crm, ∀r ≥ R.

Then
lnM(r, f)

ln r
≥ m+

lnC

ln r
≥ m, ∀r ≥ R,

which implies (by definition of limit) that (1.1) holds.

Exercise 1.2. Find the maximum modulus function for the entire functions:

f1(z) = ez, f2(z) = ee
z

, f3(z) = cos(z), f4(z) = ecos(z).

Remark 1.1. Notice in general, for entire function g, we have

M(r, eg) = max
|z|=r

|eg(z)| = max
|z|=r

eRe(g(z)) ≤ max
|z|=r

e|g(z)| = emax|z|=r |g(z)| = eM(r,g).

Solution. 1 We haveM(r, f1) ≤ er. At the point z0 = r, we have |f1(z0)| =
er. So, by the max-modulus principle,

M(r, f1) = max
|z|=r

|f1(z)| ≥ |f(z0)| = er.

Thus M(r, f1) = er.
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2 Notice that f2 = ef1. ThenM(r, f2) ≤ eM(r,f1) = ee
r

. At the point z0 = r,

we have |f2(z0)| = ee
r

, so M(r, f2) = ee
r

.

3 We have

M(r, f3) = max
|z|=r

| cos z| = max
|z|=r

∣∣∣∣∣
+∞∑
n=0

(−1)n
z2n

(2n)!

∣∣∣∣∣
≤ max

|z|=r

+∞∑
n=0

|z|2n

(2n)!
=

+∞∑
n=0

r2n

(2n)!
= cosh r.

At the point z0 = ir, we have |f3(z0)| = | cos ir| = cosh r, so

M(r, f3) = cosh r =
er + e−r

2
∼ er

2
, r → +∞.

4 Notice that f4 = ef3. Then M(r, f4) ≤ eM(r,f3) = ecosh r. At the point

z0 = ir, we have |f4(z0)| = ecosh r. So, M(r, f4) = ecosh r. In particular, we

have

lnM(r, f4) = cosh r ∼ er

2
, r → +∞.

Exercise 1.3. Estimate the maximum modulus function for f(z) = sin(z).

Solution. Note that M(r, sin) = sinh r. This can be obtained similarly to

the function M(r, cos). Thus M(r, f) ≤ eM(r,sin) = esinh r, i.e.,

lnM(r, f) ≤ sinh r. (1.2)

On the other hand, we cannot use the trick replacing z by z0 = ir, because

in this case, we get |f(ir)| = |esin(ir)| = |ei sinh r| = 1. Thus, we need another

way to estimate M(r, f).

We proceed as follows: We know that sin(π/2+ ir) = cos(ir) = cosh(r), and

the point z0 = π/2 + ir is in the disc D(0, π/2 + r) (by the triangle inequality).

Then

M
(π
2
+ r, f

)
≥
∣∣∣f (π

2
+ ir

)∣∣∣ = ∣∣ecosh r∣∣ = ecosh r.

Therefore, lnM(r, f) ≥ cosh(r − π/2). Combining this with (1.2) yields

cosh(r − π/2) ≤ lnM(r, f) ≤ sinh r.
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As cosh(r − π/2) ≍ er and sinh r ≍ er as r → +∞, we deduce that

lnM(r, f) ≍ er, r → +∞.

The Hardy’s notation “ϕ ≍ ψ” means ϕ = O(ψ) and ψ = O(ϕ).

1.3 Order of growth

for a transcendental entire function f , we have by Theorem 1.5,

lim
r→+∞

lnM(r, f)

ln r
= +∞.

That is, lnM(r, f) cannot be comparable to ln r. By reducing the growth

of lnM(r, f) by introducing an additional logarithm, we expect that, at

least for some functions f , ln lnM(r, f) might become comparable to ln r.

This suggests that we are dealing with a concept analogous to the degree

of polynomials (see Theorems 1.2, 1.3 and 1.4). This concept will later be

referred to as the order of growth.

Definition 1.1. An entire function f is said to be of finite order of

growth if ∃β > 0 and ∃R > 0 (that may depend on β) s.th.

lnM(r, f) ≤ rβ, ∀r ≥ R.

Otherwise, f is of infinite order. The order of growth of f , denoted

by ρ(f), is the quantity

ρ(f) := inf
{
β > 0 : lnM(r, f) ≤ rβ, ∀r ≥ R(β)

}
.

(1) If f is of infinite order of growth, then{
β > 0 : lnM(r, f) ≤ rβ, ∀r ≥ R(β)

}
= ∅.

Here we use the convention inf ∅ = +∞.

(2) f is of infinite order if and only if there exists a sequence (rn)n≥1 of

positive real numbers s.th. rn −→ +∞ as n→ +∞ and

lnM(rn, f) > rnn, ∀n ≥ 1.
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(3) Since lnM(r, f) is an increasing function for non-constant entire func-

tions f , we may always takeR > 0 sufficiently large so that lnM(r, f) > 1

for every r ≥ R. Hence, we have that f is of finite order if and only if

ln lnM(r, f) = O(ln r), r ≥ R.

This is analogous to Theorem 1.4.

(4) By definition, constant functions are of zero order of growth.

Now we prove an analogous result to Theorem 1.3.

Theorem 1.6. The order of growth of a non-constant entire function

f is given by

ρ(f) = lim sup
r→+∞

ln lnM(r, f)

ln r
.

Proof. Set

α := lim sup
r→+∞

ln lnM(r, f)

ln r
,

and we aim to show that α = ρ(f). By the remarks following Definition 1.1,

it is clear that ρ(f) = +∞ if and only if α = +∞. Thus we may assume

that f is of finite order, i.e., α is also a finite number. By definition of limits,

∀ε, ∃R = R(ε) > 0 s.th. ∀r ≥ R we have lnM(r, f) ≤ rα+ε. By definition

of the order of growth, ρ(f) ≤ α + ε. Since ε > 0 is arbitrary, we deduce

that ρ(f) ≤ α. On the other hand, for any β > 0 satisfying lnM(r, f) ≤ rβ,

∀r ≥ R = R(β) (with R > 0 large enough), we have

ln lnM(r, f)

ln r
≤ β, ∀r ≥ R.

Taking the lim sup, we obtain ρ(f) ≤ β. Since ρ(f) is the infimum of such

constants β, we deduce that α ≤ ρ. Thus α = ρ(f).

Example 1.1. (1) Any non-constant polynomial is of zero order of growth.

(2) If f(z) = ez, then M(r, f) = er, and consequently ρ(f) = 1.
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(3) If f(z) = sin z, then M(r, f) ∼ er

2
as r → +∞, and consequently

ρ(f) = 1.

(4) If f(z) = esin z, then lnM(r, f) ≍ er, and consequently ρ(f) = +∞.

Theorem 1.7. Let f and g be entire functions. Then

1 ρ(f + g) ≤ max{ρ(f), ρ(g)}.

2 ρ(fg) ≤ max{ρ(f), ρ(g)}.

3 If ρ(f) > ρ(g), then ρ(f + g) = ρ(f).

Proof. We may clearly suppose that ρ(f) < ∞ and ρ(g) < ∞. Let ε > 0.

Then there exists an r(ε) > 1 such that

M(r, f) ≤ er
ρ(f)+ε/2

and M(r, g) ≤ er
ρ(g)+ε/2

, ∀r ≥ r(ε).

1 By elementary estimates,

M(r, f + g) = max
|z|≤r

|f(z) + g(z)| ≤ max
|z|≤r

|f(z)|+max
|z|≤r

|g(z)|

=M(r, f) +M(r, g) ≤ er
ρ(f)+ε/2

+ er
ρ(g)+ε/2

≤ 2er
max{ρ(f),ρ(g)+ε/2}

= elog 2+rmax{ρ(f),ρ(g)}+ε/2

, r ≥ r(ε).

We may suppose that r(ε) ≥ exp
(
2 log 2

ε

)
. Then r(ε)ε/2 ≥ 2 ≥ log 2 and

log 2 + rmax{ρ(f),ρ(g)}+ε/2 ≤ rε/2 + rmax{ρ(f),ρ(g)}+ε/2

≤ 2rmax{ρ(f),ρ(g)}+ε/2 ≤ rmax{ρ(f),ρ(g)}+ε

for all r ≥ r(ε). In particular,

M(r, f + g) ≤ er
max{ρ(f),ρ(g)}+ε

, r ≥ r(ε).

Hence ρ(f + g) ≤ max{ρ(f), ρ(g)} + ε, where ε > 0 is arbitrarily small.

Hence ρ(f + g) ≤ max{ρ(f), ρ(g)}.
2 This part is proved similarly by relying on the estimates

M(r, fg) = max
|z|≤r

|f(z)g(z)| ≤ max
|z|≤r

|f(z)| ·max
|z|≤r

|g(z)|
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=M(r, f) ·M(r, g) ≤ erρ(f)+ε/2 · erρ(g)+ε/2

≤ e2r
max{ρ(f),ρ(g)}+ε/2 ≤ er

max{ρ(f),ρ(g)}+ε

valid for all r ≥ r(ε).

3 If ρ(f) > ρ(g), then from 1 we have ρ(f + g) ≤ ρ(f). Note that for any

entire function h we have ρ(−h) = ρ(h) as M(r,−h) = M(r, h). Thus from

f = (f + g) + (−g) we obtain by using 1 that ρ(f) ≤ max{ρ(f + g), ρ(g)}.
Since ρ(f) > ρ(g), it follows that ρ(f) ≤ ρ(f+g). Thus ρ(f+g) = ρ(f).

Exercise 1.4. Prove 3 by using the definition of the order rather than 1 .

Remark 1.2. (1) If ρ(f) > ρ(g) and g ̸≡ 0, then ρ(fg) = ρ(f) is also true.

Similarly as above,

M(r, fg) ≤M(r, f) ·M(r, g) ≤ er
ρ(f)+ε/2 · erρ(g)+ε/2

≤ e2r
ρ(f)+ε/2 ≤ er

ρ(f)+ε

, r ≥ r(ε),

and so ρ(fg) ≤ ρ(f). However, we do not have enough tools at this

point to prove the reverse inequality ρ(fg) ≥ ρ(f).

(2) The inequality ρ(f + g) ≤ max{ρ(f), ρ(g)} can be strict. E.g., f(z) = ez

and g(z) = z − ez. Similarly, the inequality ρ(fg) ≤ max{ρ(f), ρ(g)}
can be strict. f(z) = ez and g(z) = ze−z. E.g.,

1.4 Growth in terms of Taylor’s coefficients

In this section, besides establishing the relationship between the growth of

the modulus of an entire function and the rate of decay of its Taylor co-

efficients, we will also construct entire functions with a pre-given order of

growth.
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Theorem 1.8. Let f be an entire function given by its Taylor expansion

f(z) =
∞∑
n=0

anz
n, ∀z ∈ C,

and let α ≥ 0. Then ρ(f) ≤ α if and only if, ∀ε > 0, the sequence(
n

1
α+ε

n
√

|an|
)
n≥1

(1.3)

is bounded.

Proof. =⇒) Assume that ρ(f) ≤ α. Let ε > 0 be arbitrary. Then ∃R > 0

s.th.

lnM(r, f) ≤ rα+ε, ∀r ≥ R.

To show that (1.3) is bounded, we may assume that an ̸= 0 for every n ≥ 1.

By Cauchy’s inequality we obtain, for every n ≥ 1, that

ln |an| ≤ lnM(r, f)− n ln r ≤ rα+ε − n ln r, ∀r ≥ R,

and hence

lnn

α + ε
+

ln |an|
n

≤ lnn

α + ε
+
rα+ε

n
− ln r, ∀r ≥ R. (1.4)

The function ϕ(r) =
rα+ε

n
− ln r is differentiable on ]0,+∞[, and

ϕ′(r) =
α + ε

n
rα+ε − 1

r
= 0 ⇐⇒ r =

(
n

α + ε

) 1
α+ε

.

Since lim
r→+∞

ϕ(r) = lim
r→0+

ϕ(r) = +∞, it follows that ϕ takes its minimum at

rn =

(
n

α + ε

) 1
α+ε

. We take N ≥ 1 large enough so that rn ≥ R for every

n ≥ N . In particular, we may choose N = ⌊(α + ε)Rα+ε⌋. Plugging rn in

(1.4), we obtain, every n ≥ N ,

lnn

α + ε
+

ln |an|
n

≤ 1

α + ε
(1 + ln(α + ε)) =: K.

Taking the exponential of both sides, we deduce that ∀ε, ∃C > 0 s.th.

n
1

α+ε n
√

|an| ≤ C, ∀n ≥ 1.
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⇐=) Conversely, let ε > 0. Then ∃C > 0 s.th. 0 ≤ n
1

α+ε n
√

|an| ≤ C, ∀n ≥ 1.

Hence

|an| ≤ n
−n
α+εCn, ∀n ≥ 1. (1.5)

From the Taylor’s expansion of f we have

M(r, f) ≤ |a0|+
∑
n≥1

|an|rn, r > 0.

Using (1.5) yields, for r > 0,

M(r, f) ≤ |a0|+
∑
n≥1

n
−n
α+εCnrn

≤ |a0|+
∑

n≥(2Cr)
α+ε

(
n

−1
α+εCr

)n
︸ ︷︷ ︸

S1

+
∑

n<(2Cr)
α+ε

n
−n
α+ε (Cr)n

︸ ︷︷ ︸
S2

.

For the sum S1, we have

n ≥ (2Cr)α+ε ⇐= n
−1
α+εCr ≤ 1

2
,

and hence

S1 ≤
∑

n≥(2Cr)
α+ε

1

2n
≤
∑
n≥1

1

2n
= 1.

For the sum S2, we have, for sufficiently large r > 0,

S2 ≤

 ∑
n<(2Cr)

α+ε

n
−n
α+ε

 (Cr)(2Cr)α+ε

≤

(∑
n≥1

n
−n
α+ε

)
(Cr)(2Cr)α+ε ≤ K(Cr)(2Cr)α+ε

.

The series
∑
n≥1

n
−n
α+ε converges (By Cauchy’s test). Therefore, for sufficiently

large r > 0, we have

lnM(r, f) = O
(
rα+ε ln r

)
,

which clearly implies that ρ(f) ≤ α + ε. Again, as ε > 0 is arbitrary, we

deduce that ρ(f) ≤ α.
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Theorem 1.9. Let f be an entire function given by its Taylor expansion

f(z) =
∞∑
n=0

anz
n, ∀z ∈ C.

Set, for n ≥ 0,

bn =


0, if an = 0,
n lnn

− ln |an|
, if an ̸= 0.

Then ρ(f) = lim sup
n→+∞

bn.

Proof. Set σ := lim sup
n→+∞

bn. Assume first that σ < +∞.

Let ε > 0. Then ∃n0 ≥ 1 s.th. ∀n ≥ n0, we have bn ≤ σ + ε. Thus

n lnn

− ln |an|
≤ σ + ε, ∀n ≥ n0, an ̸= 0.

Taking n0 ≥ 1 sufficiently large so that − ln |an| > 0 yields

n
1

σ+ε
n
√
|an| ≤ 1,∀n ≥ n0.

From Theorem 1.8, and since ε > 0 is arbitrary, we directly deduce that

ρ(f) ≤ σ. If σ = 0, then ρ(f) = 0, and hence the theorem is proved. If

σ > 0, then assume that ρ(f) < σ. Therefore, ∃ξ > 0 s.th. ρ(f) ≤ σ − ξ.

Again, making use of Theorem 1.8 (for α = σ − ξ and ε = ξ/2), ∃C > 0 s.th.

n
1

σ−ξ/2 n
√
|an| ≤ C, ∀n ≥ 1.

Taking n0 ≥ 1 sufficiently large so that |an| < 1, for every n ≥ n0, yields

1

− ln |an|
≤ 1

n lnn
σ−ξ/2 − n lnC

, ∀n ≥ n0, an ̸= 0.

Hence

σ = lim sup
n→+∞

bn = lim sup
n→+∞

n lnn

− ln |an|
≤ lim sup

n→+∞

n lnn
n lnn
σ−ξ/2 − n lnC

= σ − ξ

2
,

which is a contradiction. Thus ρ(f) = σ.
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Now, if σ = +∞, then assume that ρ(f) < +∞, i.e., there exists α ≥ 0

s.th. ρ(f) ≤ α < +∞. From Theorem 1.8, ∃C > 0 s.th. n1/(2α) n
√

|an| ≤ C,

∀n ≥ 1. Hence as in previous case, we obtain

+∞ = lim sup
n→+∞

bn ≤ 2α,

which is a contradiction. Thus ρ(f) = +∞. This completes the proof.

Using this theorem, one may construct any entire function with pre-given

order of growth.

Theorem 1.10. Let α ∈ [0,+∞]. Then there exists an entire function

f whose order of growth is ρ(f) = α.

Proof. The functions

f1(z) =
∑
n≥0

e−n2

zn, f2(z) =
∑
n≥0

1

(lnn)lnn
zn

and f3(z) =
∑
n≥2

(
lnn

n

)n
α

zn, 0 < α < +∞,

are all entire functions (By Cauchy-Hadamard formula for the radius of convergence),

and are of orders ρ(f1) = 0, ρ(f2) = +∞ and ρ(f3) = α, respectively. One

can use Theorem 1.9 to check the orders.

Remark 1.3. In Theorem 1.8, ε > 0 cannot be replaced with 0. Take, e.g.,

the function f3 in previous result. we have ρ(f3) = α, but n1/α n
√

|an| = lnn

is not bounded.

1.5 Hadamard 3-circles Theorem

Let ψ and ϕ be two real functions, where ϕ is increasing on an interval I.

The function ψ is said to be convex in ϕ (or with respect to ϕ) on I if the

function ψ ◦ ϕ−1 is convex on ϕ(I). In other words, ψ is said to be convex in

ϕ if for every x1, x2, x3 ∈ ϕ(I) with x1 < x2 < x3 the following inequalities

hold

ψ(x2) ≤
ϕ(x3)− ϕ(x2)

ϕ(x2)− ϕ(x1)
ψ(x1) +

ϕ(x3)− ϕ(x1)

ϕ(x2)− ϕ(x1)
ψ(x2).
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This subsection is devoted to showing, for non-constant entire functions f ,

that lnM(r, f) is convex in ln r. That is, for every r1, r2 > 0 with r1 < r2,

and for every r ∈]r1, r2[ the following hold

lnM(r, f) ≤ ln r2 − ln r

ln r2 − ln r1
lnM(r1, f) +

ln r − ln r1
ln r2 − ln r1

lnM(r2, f).

Theorem 1.11 (Hadamard 3-circles Theorem). Let f be a non-constant

entire function. Then lnM(r, f) is convex in ln r.

Proof. (1) Consider the case f(z) = czn, c ∈ C∗ and n ≥ 1 (integer). Then

lnM(r, f) = ln |c|+ n ln r, r > 0,

which is clearly convex in ln r.

(2) Assume now that f is not of the form czn. Define the function ϕ : C∗ → R
by

z 7→ ϕ(z) =
|f(z)|
|z|α

, α > 0.

Clearly the function ϕ is continuous on C∗.

Lemma 1.4. On any closed annulus C = Ar1,r2(0), 0 < r1 < r2, the

function ϕ achieves its maximum on the boundary ∂C, i.e., either on

{|z| = r1} or on {|z| = r2}.

Proof of Lemma 1.4. Assume there exists z0 with r1 < |z0| < r2 such that

ϕ(z) ≤ ϕ(z0) for every z ∈ C. Let U ⊂ C be any neighborhood of z0. Then

there exists an analytic branch of log z such that

F (z) :=
f(z)

zα
= f(z)e−α log z

is analytic on U . By maximum modulus principle, the function F is constant

on U , and hence f(z) = czα for every z ∈ U for some nonzero constant c.

Consequently from the identity theorem we deduce that f(z) = czα in a slit

complex plane C \ Lϑ, where

Lϑ :=
{
seiϑ : s ≥ 0

}
.
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Therefore, max
θ ̸=ϑ

|f(reiθ)| = |c|rα, r > 0. Notice by the continuity of |f |, we
have

|f(reiϑ)| = lim
θ→ϑ

|f(reiθ)| = |c|rα, r > 0.

Thus M(r, f) = |c|rα, for every r > 0. This, in fact, implies that α ∈ N and

f is of the form czn, which contradicts our assumption. This completes the

proof of Lemma 1.4.

Now we choose α so that max
|z|=r1

ϕ(z) = max
|z|=r2

ϕ(z), where 0 < r1 < r2. In

this way, we get

max
z∈C

ϕ(z) = max
z∈∂C

ϕ(z) = max
|z|=r1

ϕ(z) = max
|z|=r2

ϕ(z).

This is always possible by choosing

α =
lnM(r2, f)− lnM(r1, f)

ln r2 − ln r1
.

Therefore, for every r ∈]r1, r2[ we get

lnM(r, f) ≤ ln r2 − ln r

ln r2 − ln r1
lnM(r1, f) +

ln r − ln r1
ln r2 − ln r1

lnM(r2, f),

and this shows that lnM(r, f) is convex in ln r.

Remark 1.4. This theorem also shows that f is a continuous function on

[0,+∞[.

Theorem 1.12 (Clunie). Let ϕ :]r0,+∞[→ R+ be an increasing func-

tion and convex in ln r such that ϕ(r)/ ln r → +∞ as r → +∞. Then

there exists an entire function f such that

lnM(r, f) ∼ ϕ(r), as r → +∞.

1.6 Type of growth

Let f be entire. If 0 < ρ(f) < +∞, then the growth of f can be expressed

more precisely in terms of its type.
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Definition 1.2. Let f be an entire function of order 0 < ρ = ρ(f) <

+∞. We say that f is of finite type if there exist β > 0 and R > 0 (R

may depend on β) such that

lnM(r, f) ≤ βrρ, ∀r ≥ R.

Otherwise, f has an infinite type. The type of f , denoted by τ(f), is

defined by

τ(f) := inf {β > 0 : lnM(r, f) ≤ βrρ, ∀r ≥ R(β)} .

Clearly τ(f) ∈ [0,+∞]. According to as τ = ∞, 0 < τ < ∞ or τ = 0,

the function f is said to be of maximum (or infinite), mean (or finite)

or minimum (or zero) type of order ρ.

Theorem 1.13. Let f be an entire function of order 0 < ρ = ρ(f) <

+∞. Then

τ(f) = lim sup
r→+∞

lnM(r, f)

rρ
.

Proof. Left as an exercise!

Example 1.2. The entire function f(z) = cos(az), where a ∈ C∗, satisfies

M(r, f) = cosh(|a|r) ∼ e|a|r

2
, r → +∞.

Thus ρ(f) = 1 and τ(f) = |a|.
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Lemma 1.5. Let f be analytic in a neighborhood of 0 having the Taylor

expansion

f(z) =
+∞∑
n=0

anz
n. (1.6)

Suppose there exist λ > 0, µ > 0 and N = N(λ, µ) ∈ N such that

|an| ≤
(
eµλ

n

)n/µ

, ∀n ≥ N. (1.7)

Then f is an entire function. Moreover, for every ε > 0, there exists

R > 0 such that

lnM(r, f) ≤ (λ+ ε)rµ, ∀r ≥ R. (1.8)

Proof. From (1.7), the radius of convergence of the series in (1.6) equals

lim inf
n→+∞

1
n
√
|an|

≥ lim inf
n→+∞

(
n

eµλ

)1/µ

= +∞.

Thus f is an entire function. To prove (1.8), for a fixed r > 0, we write

M(r, f) ≤
+∞∑
n=0

|an|rn =
N∑
n=0

|an| rn+
M(r)∑

n=N+1

|an| rn+
+∞∑

n=M(r)+1

|an| rn =: Σ1+Σ2+Σ3,

where M(r) satisfies M(r) > N + 1,

|an|rn ≤ 1/2n, ∀n ≥ N(r).

If we choose M(r) ≥ max{N, eµλ(2r)µ}, then from (1.7), we obtain

|an|rn ≤
(
eµλ

n

)n/µ

rn ≤ 1

2n
, ∀n ≥M(r).

Since eµλ(2r)µ → +∞ as r → +∞, there exists R1 > 0 such that eµλ(2r)µ >

N + 1 for every r > R1. So, we can choose M(r) = ⌊eµλ(2r)µ⌋ and r > R1.

So, in particular, Σ2 ̸= 0. Therefore, for r > R1, we have

Σ1 ≤ CrN and Σ2 ≤
+∞∑

n=M(r)+1

1

2n
≤ 1,
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where C =
∑N

n=0 |an|. To estimate Σ2, define

H(x) =

(
eµλ

x

)x/µ

rx, x > 0.

Then

H ′(x) = H(x)

(
1

µ

(
ln

(
eµλ

x

)
− 1

)
+ ln r

)
= 0

if and only if x = µλrµ. Notice that H reaches its maximum at this point.

Therefore, (
eµλ

x

)x/µ

rx ≤ H(µλrµ) = eλr
µ

, ∀x > 0.

Hence, for r > R1,

Σ2 ≤ (M(r)−N) max
N+1≤n≤M(r)

|an|rn

≤ (M(r)−N)max
n≥N

((
eµλ

n

)n/µ

rn

)
≤ (M(r)−N)eλr

µ

.

Putting all together, the estimate (1.8) follows.

Theorem 1.14. Let f(z) =
∑+∞

n=0 anz
n be an entire function of order

ρ (0 < ρ < +∞). Then

τ(f) =
1

eρ
lim sup
n→+∞

(
n n
√

|an|ρ
)
.

Proof. Left as an exercise!

Question. For any (α, β) ∈]0,+∞[×[0,+∞], is there always an entire func-

tion f with ρ(f) = α and τ(f) = β ?

1.7 Order and type of a derivative

Exercise 1.5. Let f be an entire function.

(1) Show that

M(r, f)− |f(0)|
r

≤M(r, f ′) ≤ M(R, f)

R− r
, for every 0 < r < R < +∞.

(1.9)
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(2) Deduce that f and f ′ have the same order of growth and the same type

(when it’s defined).

Solution. (1) Integrating along a line segment [0, z] gives

f(z) =

∫ z

0

f ′(ξ) d ξ + f(0).

Hence,

|f(z)| ≤M(r, f ′)

∫ z

0

| d ξ|+|f(0)| = rM(r, f ′)+|f(0)|, ∀z s.th. |z| = r > 0.

This gives the first inequality in (1.9). Now, let z with |z| = r > 0 and let

R > r. By using Cauchy’s integral’s formula along the circle |ξ− z| = R− r,

we obtain

|f ′(z)| ≤ 1

2π

∮
|ξ−z|=R−r

|f(ξ)|
|ξ − z|2

d |ξ| ≤ 1

2π

M(R, f)

(R− r)2
2π(R− r) =

M(R, f)

R− r
,

which gives the second inequality in (1.9).

(2) Left as an exercise!

2 Zeros of entire functions

If f is a non-constant polynomial, then from the first lecture, and by FTA,

we have

lim sup
r→+∞

lnM(r, f)

ln r
= # {z : f(z) = 0} .

Question. Does the relation between the number of zeros of f and the

growth of M(r, f) extend to transcendental entire functions? and how ?

In what follows, f will be always a transcendental entire function. The

zeros of f cannot accumulate in C. In particular, if f has infinitely many

zeros, then they are accumulating to ∞.

Exercise 2.1. If f is an entire function with no zeros, then show that there

exists an entire function g such that f = eg.
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Solution. Since f has no zeros, it follows that f ′/f is an entire function.

Hence f ′/f has a primitive in C, i.e., there exists an entire function h for

which h′ = f ′/f in C. Define now φ = fe−h. Then φ′ = (f ′ − fh′)e−h ≡ 0,

which yields φ is a constant function, say φ(z) = ea for every z ∈ C. Hence,
f(z) = eh(z)+a for every z ∈ C. This completes the proof.

An analytic function f that has no zeros in a domain D is called a zero-

free function in D.

The previous exercise can be generalized to any zero-free analytic function

f on simply connected domainD. That, if f is zero-free in a simply connected

domain D, then f = eg, where g is an analytic function on D.

2.1 Jensen’s formula and its consequences

Theorem 2.1 (Jensen’s Theorem). Let f be an entire function such

that f(0) ̸= 0, and let r > 0 and a1, . . . , ak be the zeros of f in the disc

|z| < r (each is repeated according to its multiplicity), and suppose that

f has no zeros on the circle |z| = r. Then

ln |f(0)| = 1

2π

∫ 2π

0

ln |f(reiθ)| d θ −
k∑

j=1

ln
r

|aj|
.

Proof. Consider the function

F (z) = f(z)
k∏

j=1

r2 − ājz

r (z − aj)
.

Notice that F is analytic on the disc D(0, r), and has no zeros there. In

addition, F has no zeros on the circle |z| = r, since∣∣∣∣ r2 − ākz

r (z − ak)

∣∣∣∣ = ∣∣∣∣ r2 − ākre
iφ

r (reiφ − ak)

∣∣∣∣ = ∣∣∣∣ r − āke
iφ

r − ake−iφ

∣∣∣∣ =
∣∣∣∣∣r − ake−iφ

r − ake−iφ

∣∣∣∣∣ = 1, for |z| = r.

That is, |F (reiθ)| = |f(reiθ)| ≠ 0 for every θ ∈ [0, 2π]. Then there exists R >

r for which F is zero-free and analytic on D(0, R). This implies that ln |F (z)|
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is harmonic on the disc D(0, R) (Hint. Use similar technique as Exercise 2.1). By

the mean property of harmonic functions, we have

ln |F (0)| = 1

2π

∫ 2π

0

ln |F (reiθ)| d θ. (2.1)

Since

|F (0)| = |f(0)|
k∏

j=1

r

|aj|
and |F (reiθ)| = |f(reiθ)|, ∀θ ∈ [0, 2π],

the conclusion of Jensen’s theorem follow from (2.1).

Denote by nf(r) the number of zeros zn of f in |z| ≤ r, where each zero

is counted according to its multiplicity. We define the integrated counting

function Nf(r) for f by

Nf(r) =

∫ r

0

nf(t)− nf(0)

t
d t+ nf(0) ln r, r > 0.

Notice that if f(0) ̸= 0, then Nf(r) =

∫ r

0

nf(t)

t
d t.

Theorem 2.2 (Jensen’s Theorem - Version 2). Let f be an entire func-

tion such that f(0) ̸= 0, and suppose that f has no zeros on the circle

|z| = r > 0. Then

Nf(r) =
1

2π

∫ 2π

0

ln
∣∣f (reiθ)∣∣ dθ − log |f(0)|.

Proof. Let a1, a2, . . . , ak be the zeros of f in the disc D(0, r) (each is repeated

according to its multiplicity). Then by Jensen’s Theorem (Thm 2.1) we have

k∑
j=1

ln
r

|aj|
=

1

2π

∫ 2π

0

ln
∣∣f (reiθ)∣∣ dθ − log |f(0)|.

It remains to show that

k∑
j=1

ln
r

|aj|
= Nf(r).
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Assume without loss of generality that the zeros are ordered according to

their moduli, i.e., |a1| ≤ |a2| ≤ · · · ≤ |ak|. Then

k∑
j=1

ln
r

|aj|
= ln

rk

|a1| × |a2| × · · · × |ak−1| × |ak|

= ln

(
|a2|
|a1|

× |a3|2

|a2|2
× · · · × |ak|k−1

|ak−1|k−1
× rk

|ak|k

)
=

k−1∑
j=1

j (ln |aj+1| − ln |aj|) + k (ln r − ln |ak|)

=
k−1∑
j=1

∫ |aj+1|

|aj |

j

t
d t+

∫ r

|ak|

k

t
d t =

∫ r

0

nf(t)

t
d t,

where we have used

nf(t) =


0, 0 ≤ t < |a1|,

j, |aj| ≤ t < |aj+1|, (1 ≤ j ≤ k − 1),

k, |ak| ≤ t < r.

This completes the proof.

Exercise 2.2. 1 The restriction regarding zeros on |z| = r can be removed

by constructing a suitable function F that is zero-free and analytic onD(0, r).

(Address the zeros on the circle |z| = r.)

2 By applying the Poisson formula for harmonic functions, derive an anal-

ogous expression for ln |f(z)| when f(z) ̸= 0 and z ∈ D(0, r).

3 What is the analogous statement for the case when f(0) = 0?

Corollary 2.3. If f is an entire function such that f(0) ̸= 0, then

nf(r) ≤ lnM(er, f)− ln |f(0)|, ∀r > 0.

Proof. Let r > 0. From Theorem 2.2, we have∫ er

0

nf(t)

t
d t ≤ lnM(er, f)− ln |f(0)|.

25



In addition, since nf(r) is non-decreasing function, we have∫ er

0

nf(t)

t
d t ≥

∫ er

r

nf(t)

t
d t ≥ nf(r)

∫ er

r

d t

t
= nf(r).

Combining these two inequalities, we obtain the conclusion.

This corollary may be helpful in estimating the number of zeros of f is

a certain disc, or detecting the zero-free discs of f . E. g., if f(0) ̸= 0 and let

r0 > 0 such that M(er0, f) < e|f(0)|, then by the corollary we have

nf(r0) ≤ lnM(er0, f)− ln |f(0)| < 1.

So, f has no zeros in the disc |z| ≤ r0.

Corollary 2.4. If f is an entire function of order ρ < +∞. Then for

every ε > 0, we have nf(r) ≲ rρ+ε for sufficiently large r > 0.

The proof left as an exercise.

If we define the quantity λ(f) for an entire function f by

λ(f) = lim sup
r→+∞

lnnf(r)

ln r
, (2.2)

then from Corollary 2.4, we directly deduce that λ(f) ≤ ρ(f).

Exercise 2.3. Show that

λ(f) = lim sup
r→+∞

lnNf(r)

ln r
. (2.3)

2.2 Exponent of convergence

This section is devoted to showing that λ(f), introduced in (2.2) or (2.3), is,

in fact, the exponent of convergence of the sequence of moduli of the zeros

of an entire function f .
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Definition 2.1. Let f be an entire function, and let (zn)n≥1 be the

sequence of nonzero zeros of f , repeated according to their multiplicities

and ordered according to their moduli, i.e., 0 < |z1| ≤ |z2| ≤ · · · . The

exponent of convergence µ(f) of (zn)n≥1 is defined by

µ(f) = inf

{
α > 0 :

+∞∑
n=1

|zn|−α < +∞

}
.

In particular, if
+∞∑
n=1

|zn|−α = +∞ for every α > 0, then µ(f) = +∞.

Lemma 2.1. Given α > 0. Then

+∞∑
n=1

|zn|−α < +∞ ⇐⇒
∫ +∞

0

nf(t)

tα+1
d t < +∞.

Proof. We may assume that f(0) ̸= 0. Notice that we can always replace

nf(r) with nf(r)− nf(0) when f(0) = 0. In addition, finitely many zeros at

the origin have no significant impact on the growth of nf(r) if it is unbounded.

Let (rj)j≥1 be the sequence of radii at which all the zeros of f are located.

Clearly the sequence (rj)j≥1 must be increasing, as the zeros don’t have

accumulation points in C. The number of zeros located on a circle |z| = rj is

given by nf(r
+
j )− nf(r

−
j ) counting the multiplicities. Notice that t 7→ nf(t)

is a step function. By Riemann-Stieltjes integration, we have∫ r

0

dnf(t)

tα
=
∑
rj<r

nf(r
+
j )− nf(r

−
j )

rαj
=
∑
|zn|<r

1

|zn|α
.

Integration by parts yields∑
|zn|<r

1

|zn|α
=
nf(r)

rα
+ α

∫ r

0

nf(t)

tα+1
d t. (2.4)

Assume that
∑
n≥1

|zn|α < +∞. Then from (2.4), we have

0 <

∫ r

0

nf(t)

tα+1
d t ≤

∑
n≥1

|zn|α < +∞,
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which means the integral is convergent. Now, assume that

∫ +∞

0

nf(t)

tα+1
d t <

+∞. Since t 7→ nf(t) is non-decreasing, it follows that

nf(r)

rα
= αnf(r)

∫ +∞

r

d t

tα+1
≤ α

∫ +∞

r

nf(t)

tα+1
d t −→ 0, r → +∞. (2.5)

From (2.4), we deduce that the series
∑
n≥1

|zn|α is convergent.

Remark 2.1. From (2.4) and (2.5), we dedeuce that∑
n≥1

|zn|α = α

∫ +∞

0

nf(t)

tα+1
d t.

From this we directly obtain that if f is an entire function such that f(0) ̸= 0,

then

µ(f) = inf

{
α > 0 :

∫ +∞

0

nf(t)

tα+1
d t < +∞

}
. (2.6)

Theorem 2.5. Let f be an entire function, then λ(f) = µ(f).

Proof. Since finitely many possible zeros at the origin have no a affect on

λ(f) or on µ(f), we may assume that f(0) ̸= 0. We will denote λ(f) and

µ(f) by λ and µ respectively.

We prove first that µ ≤ λ. This inequality is obvious if λ = +∞, and so we

assume that λ < +∞. Recall that

λ = lim sup
r→+∞

lnnf(r)

ln r
.

For any given ε > 0, there exists rε > 0 such that

nf(r) ≤ rλ+ε, ∀r ≥ rε.

From this we have, for every r > rε and for every α > 0,∫ r

0

nf(t)

tα+1
d t =

∫ rε

0

nf(t)

tα+1
d t+

∫ r

rε

nf(t)

tα+1
d t ≤

∫ rε

0

nf(t)

tα+1
d t+

∫ r

rε

1

tα+1−λ−ε
d t︸ ︷︷ ︸

I(r)

.

28



If α > λ + ε, then I(r) converges as r → +∞, and hence

∫ +∞

0

nf(t)

tα+1
d t <

+∞. This shows that

]λ+ ε,+∞[⊂
{
α > 0 :

∫ +∞

0

nf(t)

tα+1
d t < +∞

}
.

Therefore, (2.6) yields µ ≤ λ + ε. As ε > 0 is arbitrary, we deduce that

µ ≤ λ.

Now we prove µ ≥ λ. By definition of µ, we have, for every ε > 0,∫ +∞

0

nf(t)

tµ+ε+1
d t < +∞.

Similarly to (2.5) we obtain

nf(r)

rµ+ε
≤ (µ+ε)

∫ +∞

r

nf(t)

tµ+ε+1
d t ≤ (µ+ε)

∫ +∞

0

nf(t)

tµ+ε+1
d t = constant, ∀r > 0.

Thus nf(r) ≲ rµ+ε for r > 0, which yields λ ≤ µ. This completes the

proof.
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